34
Inverse Trig Functions

Inverse trig functions

Embed Size (px)

Citation preview

Page 1: Inverse trig functions

Inverse Trig Functions

Page 2: Inverse trig functions

Let us begin with a simple question:

xxf

xxf

)(

)(1

2

What is the first pair of inverse functions that pop into YOUR mind?

This may not be your pair but this is a famous pair. But something is not quite right with this pair. Do you know what is wrong?

Congratulations if you guessed that the top function does not really have an inverse because it is not 1-1 and therefore, the graph will not pass the horizontal line test.

Page 3: Inverse trig functions

Consider the graph of .2xy

x

y

Note the two points on the graph and also on the line y=4.

f(2) = 4 and f(-2) = 4 so what is an inverse function supposed to do with 4?

?2)4(2)4( 11 forf

By definition, a function cannot generate two different outputs for the same input, so the sad truth is that this function, as is, does not have an inverse.

Page 4: Inverse trig functions

So how is it that we arrange for this function to have an inverse?

We consider only one half of the graph: x > 0.

The graph now passes the horizontal line test and we do have an inverse:

xxf

xforxxf

)(

0)(1

2

Note how each graph reflects across the line y = x onto its inverse.

xy

x

4

y=x

2xy

2

Page 5: Inverse trig functions

A similar restriction on the domain is necessary to create an inverse function for each trig function.

Consider the sine function.

You can see right away that the sine function does not pass the horizontal line test.

But we can come up with a valid inverse function if we restrict the domain as we did with the previous function.

How would YOU restrict the domain?

x

yy = sin(x)

y = 1/2

Page 6: Inverse trig functions

Take a look at the piece of the graph in the red frame.

x

yWe are going to build the inverse function from this section of the sine curve because:This section picks up all the outputs of the sine from –1 to 1.This section includes the origin. Quadrant I angles generate the positive ratios and negative angles in Quadrant IV generate the negative ratios.

Lets zoom in and look at some key points in this section.

Page 7: Inverse trig functions

x

yy = sin(x)

12

2

3

3

2

2

4

2

1

6

002

1

6

2

2

4

2

3

3

12

)(

xfx

I have plotted the special angles on the curve and the table.

Page 8: Inverse trig functions

21

32

342

262

10062

142

232

32

1

)(sin 1

xx

The new table generates the graph of the inverse.

12

2

3

3

2

2

4

2

1

6

002

1

6

2

2

4

2

3

3

12

)sin(

xx

To get a good look at the graph of the inverse function, we will “turn the tables” on the sine function.

The domain of the chosen section of the sine is

So the range of the arcsin is

2,

2

2,

2

The range of the chosen section of the sine is [-1 ,1] so the domain of the arcsin is [-1, 1].

Page 9: Inverse trig functions

Note how each point on the original graph gets “reflected” onto the graph of the inverse.

2,11,

2

to

3

,2

3

2

3,

3

to

4

,2

2

2

2,

4

to

etc.

You will see the inverse listed as both:

)(sin)arcsin( 1 xandx

x

yy = arcsin(x)

y = sin(x)

Page 10: Inverse trig functions

In the tradition of inverse functions then we have:

32

3sin

32

3arcsin

2

3

3sin

2)1(sin

2)1arcsin(1

2sin

1

1

or

or

The thing to remember is that for the trig function the input is the angle and the output is the ratio, but for the inverse trig function the input is the ratio and the output is the angle.

Unless you are instructed to use degrees, you should assume that inverse trig functions will generate outputs of real numbers (in radians).

Page 11: Inverse trig functions

The other inverse trig functions are generated by using similar restrictions on the domain of the trig function. Consider the cosine function:

x

yy = cos(x)What do you

think would be a good domain restriction for the cosine?Congratulations if you realized that the restriction we used on the sine is not going to work on the cosine.

Page 12: Inverse trig functions

x

yy = cos(x)

The chosen section for the cosine is in the red frame. This section includes all outputs from –1 to 1 and all inputs in the first and second quadrants.

Since the domain and range for the section are the domain and range for the inverse cosine are

,1,1,0 and .,01,1 and

x

yy = arccos(x)

Page 13: Inverse trig functions

x

y

x

y

The other trig functions require similar restrictions on their domains in order to generate an inverse.

Like the sine function, the domain of the section of the

tangent that generates the arctan is .

2,

2

,

2,

2RandD

2,

2,

RandD

y=tan(x)

y=arctan(x)

Page 14: Inverse trig functions

The table below will summarize the parameters we have so far. Remember, the angle is the input for a trig function and the ratio is the output. For the inverse trig functions the ratio is the input and the angle is the output.

arcsin(x) arccos(x) arctan(x)

Domain

Range

11 x 11 x x

22

x

20

x

22

x

When x<0, y=arccos(x) will be in which quadrant?

When x<0, y=arcsin(x) will be in which quadrant?

When x<0, y=arctan(x) will be in which quadrant?

y<0 in IV y>0 in II

y<0 in IV

Page 15: Inverse trig functions

Inverse Sine Function

y

2

1

1

x

y = sin x

Sin x has an inverse function on this interval.

Recall that for a function to have an inverse, it must be a one-to-one function and pass the Horizontal Line Test.

f(x) = sin x does not pass the Horizontal Line Test

and must be restricted to find its inverse.

Page 16: Inverse trig functions

The inverse sine function is defined byy = arcsin x if and only if sin y = x.

Angle whose sine is x

The domain of y = arcsin x is [–1, 1].

Example:

1a. arcsin2 6

1 is the angle whose sine is .6 2

1 3b. sin2 3

3sin3 2

This is another way to write arcsin x.

The range of y = arcsin x is [–/2 , /2].

Page 17: Inverse trig functions

Inverse Cosine Function

Cos x has an inverse function on this interval.

f(x) = cos x must be restricted to find its inverse.

y

2

1

1

x

y = cos x

Page 18: Inverse trig functions

The inverse cosine function is defined byy = arccos x if and only if cos y = x.

Angle whose cosine is x

The domain of y = arccos x is [–1, 1].

Example: 1a.) arccos2 3

1 is the angle whose cosine is .3 2

1 3 5b.) cos2 6

35cos6 2

This is another way to write arccos x.

The range of y = arccos x is [0 , ].

Page 19: Inverse trig functions

Inverse Tangent Functionf(x) = tan x must be restricted to find its inverse.

Tan x has an inverse function on this interval.

y

x

2

3

2

32

2

y = tan x

Page 20: Inverse trig functions

The inverse tangent function is defined byy = arctan x if and only if tan y = x.

Angle whose tangent is x

Example: 3a.) arctan

3 6 3 is the angle whose tangent is .

6 3

1b.) tan 33 tan 3

3

This is another way to write arctan x.

The domain of y = arctan x is .( , ) The range of y = arctan x is [–/2 , /2].

Page 21: Inverse trig functions
Page 22: Inverse trig functions

Graphing Utility: Graph the following inverse functions.

a. y = arcsin x

b. y = arccos x

c. y = arctan x

–1.5 1.5

–1.5 1.5

2

–3 3

Set calculator to radian mode.

Page 23: Inverse trig functions

Graphing Utility: Approximate the value of each expression.

a. cos–1 0.75 b. arcsin 0.19

c. arctan 1.32 d. arcsin 2.5

Set calculator to radian mode.

Page 24: Inverse trig functions

You should be able to do inverse trig calculations without a calculator when special angles from the special triangles are involved. You should also be able to do inverse trig calculations without a calculator for quadrantal angles.

Its not that bad. Quadrantal angles are the angles between the quadrants—angles like

180,902

,00,902

orororor

To solve arccos(-1) for example, you could draw a quick sketch of the cosine section:

x

yy = cos(x)

And observe that arccos(-1) = 1,

Page 25: Inverse trig functions

But a lot of people feel comfortable using the following sketch and the definitions of the trig ratios.For arccos(-1) for example, you can observe that, since

the point (-1, 0) is the one we want. That point is on the terminal side of

r

xcos

.

Or for arccot(0), you can observe that, since the point (0, 1)

is the one we want. That point is on the terminal side of 90 degrees.

y

xcot

.)1arccos(

,11

1)cos(

r

xSo, since

x

y (0, 1)

(1, 0)

(-1, 0)

(-1, 0)

r = 1

.90So, arccot(0)

Good luck getting that answer off of a calculator.

Page 26: Inverse trig functions

Finally, we encounter the composition of trig functions with inverse trig functions. The following are pretty straightforward compositions. Try them yourself before you click to the answer.

?2

3sinsin 1

First, what do we know about

?

We know that is an angle whose sine is .2

3

so2

3sin

2

3sinsin 1

Did you suspect from the beginning that this was the answer because that is the way inverse functions are SUPPOSED to behave? If so, good instincts but….

Page 27: Inverse trig functions

Consider a slightly different setup:

120sinarcsin This is also the composition of two inverse functions but…

.602

3arcsin

Did you suspect the answer was going to be 120 degrees? This problem behaved differently because the first angle, 120 degrees, was outside the range of the arcsin. So use some caution when evaluating the composition of inverse trig functions.

The remainder of this presentation consists of practice problems, their answers and a few complete solutions.

Page 28: Inverse trig functions

First, some calculator problems. On most calculators, you access the inverse trig functions by using the 2nd function option on the corresponding trig functions. The mode button allows you to choose whether your work will be in degrees or in radians.

You have to stay on top of this because the answer is not in a format that tells you which mode you are in.

Answers and selected complete solutions can be found after the exercises.

Page 29: Inverse trig functions

Find the exact value of each expression without using a calculator. When your answer is an angle, express it in radians. Work out the answers yourself before you click.

2

3cos.9

1sin.8

3arctan.7

2

1cos.6

0arcsin.5

3

1arctan.4

1tan.3

1arccos.2

2

1sin.1

1

1

1

1

1

2

1cossin.16

3cosarccos.15

2

1arccostan.14

270sinarcsin.13

2sinarcsin.12

2

1arccos.11

2sec.10

1

1

Page 30: Inverse trig functions

Use a calculator. For 17-20, round to the nearest tenth of a degree.

)8787.arccos(.20

)1234.arcsin(.19

)345.2arctan(.18

)6666(.cos.17 1

Use a calculator. For 21-24, express your answers in radians rounded to the nearest hundredth.

)7878arctan(..24

2345.cos.23

)7878arcsin(..22

585.3tan.21

1

1

On most calculators, you access the inverse trig functions by using the 2nd function option on the corresponding trig functions. The mode button allows you to choose whether your work will be in degrees or in radians. You have to stay on top of this because the answer is not in a format that tells you which mode you are in.

Page 31: Inverse trig functions

Use a calculator. When your answer is an angle, express it in radians rounded to the hundredth’s place. When your answer is a ratio, round it to four decimal places, but don’t round off until the very end of the problem.

2345.arccostan.30

5758.sincos.29

5758.arccoscos.28

)34.2arctan(sin.27

1cosarcsin.26

58.3sinarcsin.25

1

Answers appear in the following slides.

Page 32: Inverse trig functions

21sin.8

33arctan.7

42

1cos.6

00arcsin.5

63

1arctan.4

41tan.3

1arccos.2

62

1sin.1

1

1

1

1

6

5

2

3cos.9 1

Answers for problems 1 – 9.

Negative ratios for arccos generate angles in Quadrant II.

y

x

12

3

The reference angle is

so the answer is

6

6

5

66

6

6

Page 33: Inverse trig functions

2

3

3

2sin

2

1cossin.16

32

1arccos

3cosarccos.15

33

2tan

2

1arccostan.14

2901arcsin270sinarcsin.13

22sinarcsin.12

4

3

2

1arccos.11

32/1cos2sec.10

1

11

60

y

x

-1

23

14.

x

3

1

2

y15.

Page 34: Inverse trig functions

5.151)8787.arccos(.20

1.7)1234.arcsin(.19

9.66)345.2arctan(.18

2.48)6666(.cos.17 1

67.0)7878arctan(..24

81.12345.cos.23

91.0)7878arcsin(..22

30.1585.3tan.21

1

1

1455.4...3341.1tan2345.arccostan.30

8175.0...6136.0cos5758.sincos.29

5758.5758.arccoscos.28

62.0...7184.0arctan)34.2arctan(sin.27

57.0...5403.0arcsin1cosarcsin.26

44.0...4245.0arcsin58.3sinarcsin.25

1

Answers for 17 – 30.