18
Informe de laboratorio de física II Sistema Masa-Resorte Presentado por: Baldovinos Alex Camelo Brayan Guerrero Jair Meléndez Andrés Presentado a: Silva Nieves Nelson José Física II Departamento de Ingeniería Mecánica Facultad de Ingeniería

Lab. 2 sistema masa-resorte

Embed Size (px)

Citation preview

Page 1: Lab. 2   sistema masa-resorte

Informe de laboratorio de física II

Sistema Masa-Resorte

Presentado por:

Baldovinos Alex

Camelo Brayan

Guerrero Jair

Meléndez Andrés

Presentado a:

Silva Nieves Nelson José

Física II

Departamento de Ingeniería Mecánica

Facultad de Ingeniería

Barranquilla-Colombia

2015

Page 2: Lab. 2   sistema masa-resorte

Universidad del Atlántico Física II

ÍNDICE GENERAL

LISTA DE FIGURAS……………………………………………………....................... 3

LISTA DE TABLAS………………………………………………................................ 4

1. INTRODUCCIÓN…………………………………………………………….….. 52. OBJETIVOS……………………………………………………………………... 7

2.1Objetivo General2.2Objetivos Específicos

3. MARCO TEÓRICO…………………………………………………………....... 84. EXPERIMENTACIÓN……………………………………………………….…..11

4.1Materiales4.2Metodología

4.2.1 Toma de datos4.2.2 Análisis de datos

5. RESULTADOS…………………………………………………………..............12 6. CONCLUSIONES……………………………………………………………......147. SUGERENCIAS……………………………………………………………….....14

BIBLIOGRAFÍA…………………………………………………………...................15

2

Page 3: Lab. 2   sistema masa-resorte

Universidad del Atlántico Física II

LISTA DE FIGURAS

Diagrama de fuerzas de un sistema masa-resorte vertical. -FUENTE: Wordpress……………………………………………………………………….5

Esquematización de un sistema masa- resorte horizontal. -FUENTE: Blogspot ………………………………………………………………………....6

La masa colgada del resorte forma un oscilador armónico. -FUENTE: Wikipedia…………………………………………………………………………8

Curvas de energías. -FUENTE: Wikipedia…………………………………...11

3

Page 4: Lab. 2   sistema masa-resorte

Universidad del Atlántico Física II

LISTA DE TABLAS Y GRÁFICAS

Datos obtenidos en el laboratorio al medir las oscilaciones del resorte al variar la masa añadida…………………………………………………………11

Gráfica de Masa contra Período, a partir de los datos obtenidos…..……..12

Gráfica de Longitud contra Fuerza, a partir de los datos obtenidos..……..13

Gráfica de Masa contra Período elevado al cuadrado, a partir de los datos obtenidos…..……………………………………………………………………..13

INTRODUCCIÓN

4

Page 5: Lab. 2   sistema masa-resorte

Universidad del Atlántico Física II

El sistema masa resorte está compuesto por una masa puntual, un resorte ideal una colgante y un punto de sujeción del resorte.

El resorte ideal puede ser un resorte de alto coeficiente de elasticidad y que no se deforma en el rango de estiramiento del resorte. La ecuación de fuerzas del sistema masa resorte es: donde es la posición (altura) de la masa

respecto a la línea de equilibrio de fuerzas del sistema, es la constante de

elasticidad del resorte y m la masa del cuerpo que es sometido a esta oscilación. Esta ecuación puede escribirse como: cuya solución es

, donde: Am es la máxima amplitud de la oscilación, es la

velocidad angular que se calcula como (k /m) 0,5. La constante es conocida

como ángulo de desfase que se utiliza para ajustar la ecuación para que calce con los datos que el observador indica.

Figura 1.

De la ecuación anterior se puede despejar el periodo de oscilación del sistema que es dado por: (m/k) 0,5 A partir de la ecuación de posición se puede

determinar la rapidez con que se desplaza el objeto: Vs = valor absoluto de

En la condición de equilibrio la

5

Page 6: Lab. 2   sistema masa-resorte

Universidad del Atlántico Física II

fuerza ejercida por la atracción gravitacional sobre la masa colgante es cancelada por la fuerza que ejerce el resorte a ser deformado.

A partir de esta posición de equilibrio se puede realizar un estiramiento lento hasta llegar a la amplitud máxima deseada y esta es la que se utilizará como de la

ecuación de posición del centro de masa de la masa colgante. Si se toma como posición inicial la parte más baja, la constante de desfase será , pues la

posición se encuentra en la parte más baja de la oscilación.

Figura 2.

6

Page 7: Lab. 2   sistema masa-resorte

Universidad del Atlántico Física II

OBJETIVOS

Objetivo General

Ampliar nuestros conocimientos sobre el movimiento oscilatorio con la experimentación de un sistema masa-resorte.

Objetivos Específicos

Verificar las ecuaciones del sistema masa-resorte. Observar el comportamiento de un sistema masa-resorte. Analizar las variables que afectan un sistema masa-resorte. Determinar la contante de elasticidad experimental en el laboratorio.

7

Page 8: Lab. 2   sistema masa-resorte

Universidad del Atlántico Física II

MARCO TEÓRICO

Se dice que un sistema cualquiera, mecánico, eléctrico, neumático, etc., es un oscilador armónico si, cuando se deja en libertad fuera de su posición de equilibrio, vuelve hacia ella describiendo oscilaciones sinusoidales, o sinusoidales amortiguadas en torno a dicha posición estable.

Figura 3.

El ejemplo es el de una masa colgada a un resorte. Cuando se aleja la masa de su posición de reposo, el resorte ejerce sobre la masa una fuerza que es proporcional al desequilibrio (distancia a la posición de reposo) y que está dirigida hacia la posición de equilibrio. Si se suelta la masa, la fuerza del resorte acelera la masa hacia la posición de equilibrio. A medida que la masa se acerca a la posición de equilibrio y que aumenta su velocidad, la energía potencial elástica del resorte se transforma en energía cinética de la masa. Cuando la masa llega a su posición de equilibrio, la fuerza será cero, pero como la masa está en movimiento, continuará y pasará del otro lado. La fuerza se invierte y comienza a frenar la masa. La energía cinética de la masa va transformándose ahora en energía potencial del resorte hasta que la masa se para. Entonces este proceso vuelve a producirse en dirección opuesta completando una oscilación.

Si toda la energía cinética se transformase en energía potencial y viceversa, la oscilación seguiría eternamente con la misma amplitud. En la realidad, siempre hay una parte de la energía que se transforma en otra forma, debido a la viscosidad del aire o porque el resorte no es perfectamente elástico. Así pues, la amplitud del movimiento disminuirá más o menos lentamente con el paso del tiempo. Se empezará tratando el caso ideal, en el cual no hay pérdidas. Se analizará el caso unidimensional de un único oscilador (para la situación con varios osciladores.

Oscilador armónico sin pérdidas

8

Page 9: Lab. 2   sistema masa-resorte

Universidad del Atlántico Física II

Se denominará a la distancia entre la posición de equilibrio y la masa, a la que se le dominara ( ). Se supondrá que la fuerza del resorte es estrictamente proporcional al desequilibrio: (ley de Hooke). es la fuerza y la constante elástica del resorte. El signo negativo indica que cuando es positiva la fuerza está dirigida hacia las negativas.

La segunda ley de Newton nos dice:

Remplazando la fuerza obtenemos:

La solución de esta ecuación diferencial ordinaria es inmediata: las únicas funciones reales (no complejas) cuya segunda derivada es la misma función con el signo invertido son seno y coseno. Las dos funciones corresponden al mismo movimiento. Escogemos arbitrariamente "coseno". La solución se escribe:

es la elongación o diferencia respecto al estado de equilibrio, sus unidades son las de .

es la amplitud, máxima diferencia respecto a la posición de equilibrio.

es la pulsación (o frecuencia angular) y la frecuencia.

es el tiempo.

es la fase inicial (para ).

Es fácil comprobar que el valor de es:

9

Page 10: Lab. 2   sistema masa-resorte

Universidad del Atlántico Física II

El período de oscilación es:

Figura 4.

10

Page 11: Lab. 2   sistema masa-resorte

Universidad del Atlántico Física II

EXPERIMENTACIÓN

Materiales

1 Soporte universal 1 regla. Escala: 0-100 cm. Resolución: 0.01mm 4 masas. Cada una de valor

1 balanza. Resolución: 0.1 g 1 cronometro. Escala: 0-24 hrs. Resolución: 0.01s 1 resorte. Longitud: 16.5 cm

Metodología

En esta experiencia se calculó la constante del resorte de 2 maneras; la primera consistió en calcular la pendiente de una gráfica de con respecto a la longitud

la segunda forma fue mediante el despeje de la ecuación . A continuación

se presentan los datos obtenidos en la experimentación:

Tabla 1

11

Masa (g) ∆L(cm) T de 5 osc. Tprom(s) T^2 Fw(dyn)

50,00 6,00 3,45 0,69 0,48 490,00100,00 15,70 4,56 0,91 0,83 980,00150,00 24,60 5,51 1,10 1,21 1470,00200,00 33,50 6,23 1,25 1,55 1960,00

Page 12: Lab. 2   sistema masa-resorte

Universidad del Atlántico Física II

RESULTADOS

Gráfico 1

Para analizar la gráfica tenemos que conocer como parametrizar todas las cantidades que medimos; para esto existe una relación entre el periodo de un

resorte y la masa y tendremos que analizar un poco la ecuación de

gráfica para saber que son aproximadamente igual, la cual ya sabiendo esto

llegamos a que la pendiente es igual a .

12

Page 13: Lab. 2   sistema masa-resorte

Universidad del Atlántico Física II

Gráfico 2

De este gráfico sabemos la relación entre la longitud de un resorte y la fuerza ejercida sobre él, en este caso el peso de la masa lo cual es una relación directa tal cual como nos lo muestra el grafico y la ecuación que relaciona es lo

cual nos muestra las mismas relaciones de las gráficas.

Gráfico 3

La ecuación que nos relaciona los dos ejes de la gráfica la cual es

donde la pendiente se relaciona con el coeficiente de la ecuación que es lo

13

Page 14: Lab. 2   sistema masa-resorte

Universidad del Atlántico Física II

cual nos permitiría hallar lo que nos interesa que es la constante elástica del resorte.

CONCLUSIONES

Gracias a dicha experiencia pudimos alcanzar los objetivos propuestos, y sacar las inferencias siguientes:

La constante elástica del resorte (k) es 4540,41 dinas/cm aproximadamente.

Se logró conocer la relación entre la longitud y el peso que es un término lineal.

Se pudo demostrar que la relación entre la masa y el periodo es aproximadamente la raíz cuadrada.

SUGERENCIAS

Durante la realización del laboratorio pudimos observar ciertos factores que aumentaban el margen de error en cuanto a la toma de valores. Si se quiere hacer el experimento lo más exacto posible, hay que tener en cuenta los siguientes datos:

Uno de ellos es que al aproximar el valor de la masa para poder realizar los cálculos más fácilmente, aparece una pequeña incertidumbre de masa que equivale a 1gr.

Otra cosa que se observo fue que al dejar caer la masa atada al resorte para que comenzara a oscilar, el soporte universal se movía ligeramente. Por lo tanto se recomienda colocar peso sobre el soporte universal para disminuir este movimiento lo más posible.

Por último hay que tener en cuenta el tiempo de reacción de la persona que calcula el tiempo de las oscilaciones con ayuda de un cronómetro, ya que siempre se calcula un tiempo levemente inferior al real debido a que inicia el cronómetro unos milisegundos después de dejar caer la masa. Estos milisegundos habría que restarlos del valor final del tiempo para disminuir el margen de error.

14

Page 15: Lab. 2   sistema masa-resorte

Universidad del Atlántico Física II

BIBLIOGRAFÍA

[1] oscilador armónico [en línea], gestionado por Wikipedia. [Consulta: 8 de septiembre de 2015] Disponible En: https://es.wikipedia.org/wiki/Oscilador_arm%C3%B3nico

[2] sistema masa-resorte [en línea], gestionado por wordpress. [Consulta: 8 de septiembre de 2015] Disponible en: https://amrs17.wordpress.com/2-movimientos-ondulatorios/movimiento-armonico-simple/sistema-masa-resorte/

[3] sistema masa-resorte [en línea], gestionado por fatela. [Consulta: 8 de septiembre de 2015] DisponibleEn: http://www.fatela.com.ar/trabajo_final_svga/5pag3.htm

[4] Young, H; HUGH D; ROGER, F. Pearson educación. Sears-zemansky Física Universitaria Volumen 1. Ed. 13va. Méjico

15