53
1 Challenge the future H-L-3 Biomechanics case study The Modelling Team Faculty of Industrial Design Engineering Delft University of Technology

Lecture Slides: Biomechanics Case Study

Embed Size (px)

DESCRIPTION

The lecture slides of lecture Biomechanics Case Study of the Modelling Course of Industrial Design of the TU Delft

Citation preview

Page 1: Lecture Slides: Biomechanics Case Study

1Challenge the future

H-L-3

Biomechanics case study

The Modelling TeamFaculty of Industrial Design Engineering

Delft University of Technology

Page 2: Lecture Slides: Biomechanics Case Study

2Challenge the future

Table of Contents

Digital Human Model

A case study

Tracker

Summary01. The Solidworks® Model

02. Data Source

01. Basic functions

02. Tracking movements

• This is not a complete case study (Demo only)

• The main purpose: How to use the tools

Contents

1

2

Page 3: Lecture Slides: Biomechanics Case Study

3Challenge the future

Case brief

To explore how much torque a

person applied on his/her shoulder

joint in an abduction movement.

Case brief

Courtesy of http://medical-dictionary.thefreedictionary.com/adduction

Page 4: Lecture Slides: Biomechanics Case Study

4Challenge the future

Analysis

Forearm

Upper arm

Hand + Weight

Shoulder joint

System

Page 5: Lecture Slides: Biomechanics Case Study

5Challenge the future

Modelling - Sketch

1

2

3

Page 6: Lecture Slides: Biomechanics Case Study

6Challenge the future

Modelling - Model

1

2

3

1 1 2 3 3 5 1 1 2 3 3 5 0

2, 4, 5Measurement (individual) orDigital human model

1, 2, 3, 1, 3

Body mass segments

Tracker

Page 7: Lecture Slides: Biomechanics Case Study

7Challenge the future

The digital human Model

Page 8: Lecture Slides: Biomechanics Case Study

8Challenge the future

The model - Components

Romp (trunk)

Hoofd (head)

2* Bovenarm (forearm)

2* Onderarm (lower arm)

2* Hand

2* Bovenbeen (upper leg)

2* Onderbeen (lower leg)

2* Voet (foot)

Page 9: Lecture Slides: Biomechanics Case Study

9Challenge the future

The model

Size: For your inputs

MV1200-MV2100: Pre-defined

A design table driven DHM: Assembly

Page 10: Lecture Slides: Biomechanics Case Study

10Challenge the future

For an individual partA design table driven DHM: Part

Size: For your inputs

MV1200-MV2100: Pre-defined

Page 11: Lecture Slides: Biomechanics Case Study

11Challenge the future

The source of datadined.io.tudelft.nl/dined/

Page 12: Lecture Slides: Biomechanics Case Study

12Challenge the future

A simplified version The excel file

Attention:1. It is simplification of DINED data;2. It is a linear approximation, the most accurate region is 1473mm~1981mm

Check the validity of your model

Page 13: Lecture Slides: Biomechanics Case Study

13Challenge the future

How to setup customized dataThe excel file (each part)

Usage

1. Input the desired stature in the blue Region of excel2. Copy the data of “size” to the design table of each part, respectively (use paste values option).

The design table of a component in Solidworks

Page 14: Lecture Slides: Biomechanics Case Study

14Challenge the future

Sizing - Customize

Using “Size”

Input the desired stature in the excelCopy data regarding the component here

You must modify each components

Page 15: Lecture Slides: Biomechanics Case Study

15Challenge the future

Direct Sizing – In Assembly

MV-1200

MV-1700

MV-1800

MV-1900

MV-2000

MV-2100

Attention: The validity of your model

Page 16: Lecture Slides: Biomechanics Case Study

16Challenge the future

Pose

Using mouse drag & move a part

Page 17: Lecture Slides: Biomechanics Case Study

17Challenge the future

Measurement

1. Click - Tab Evaluate

2. Click - Button Measure

3. Click - The items to be measured

4. The measurements are presented

Page 18: Lecture Slides: Biomechanics Case Study

18Challenge the future

Measuring length

Upper arm length

0.272 meter

Page 19: Lecture Slides: Biomechanics Case Study

19Challenge the future

Measuring length

Forearm length

0.238 meter

Page 20: Lecture Slides: Biomechanics Case Study

20Challenge the future

Measuring length

From wrist to center of the hand

0.07 meter

Page 21: Lecture Slides: Biomechanics Case Study

21Challenge the future

Body mass segments

Page 22: Lecture Slides: Biomechanics Case Study

22Challenge the future

Centre of gravity (c.g.) of body segments

Proximal side

Distal side

Page 23: Lecture Slides: Biomechanics Case Study

23Challenge the future

Mass of body segmentFollowing Biomechanics and Motor Control of Human Movement

Segment SegmentTotal Body Weight

Centre of Mass Segment length

Centre of MassSegment length

Proximal DistalHand 0.006 0.506 0.494

Forearm 0.016 0.43 0.57Upper arm 0.028 0.436 0.564

F'arm+hand 0.022 0.682 0.318Upper limb 0.05 0.53 0.47

Foot 0.0145 0.5 0.5Shank 0.0465 0.433 0.567Thigh 0.1 0.433 0.567

Foot + shank 0.061 0.606 0.394Lower Limb 0.161 0.447 0.553

Head, neck, trunk 0.578 0.66 0.34Head, neck, arms,

trunk 0.678 0.626 0.374

Head and neck 0.081

Ref. http://books.google.nl/books?id=_bFHL08IWfwC&printsec=frontcover&source=gbs_ge_summary_r&cad=0#v=snippet&q=mass%20segment&f=false

Page 24: Lecture Slides: Biomechanics Case Study

24Challenge the future

Mass of body segmentby Zatsiorskji and Selujanov (1979), based on athlete's data

Courtesy of http://biomech.ftvs.cuni.cz/pbpk/kompendium/biomechanika/geometrie_hmotnost_en.php

+ +Height (cm)

Mass (kg)Mass of the

segment (kg)

Coefficient

Segment name B0[kg] B1 B2[kg/cm]

Head+neck 1.296 0.0171 0.0143Hand -0.1165 0.0036 0.00175

Forearm 0.3185 0.01445 -0.00114Upperarm 0.25 0.03012 -0.0027

Leg -0.829 0.0077 0.0073Shank -1.592 0.03616 0.0121Thigh -2.649 0.1463 0.0137Trunk

Upper part of the trunk 8.2144 0.1862 -0.0584

Middle part of the trunk 7.181 0.2234 -0.0663

Lower part of the trunk -7.498 0.0976 0.04896

Page 25: Lecture Slides: Biomechanics Case Study

25Challenge the future

Take a simple approach

If the mass of the person is 60kg

Upper arm

M1= 60 * 0.028 = 1.68

Forearm

M2 = 60 * 0.016 = 0.96

Hand

M3 = 60 * 0.006 = 0.36

Page 26: Lecture Slides: Biomechanics Case Study

26Challenge the future

Gravity center

Page 27: Lecture Slides: Biomechanics Case Study

27Challenge the future

The tracker

Page 28: Lecture Slides: Biomechanics Case Study

28Challenge the future

Tracker

The Tracker is a free video

analysis and modeling tool built

on the Open Source

Physics(OSP) Java framework. It

is designed to be used in physics

education

Tracker

Extract position (angle), velocity

(angular) and acceleration

(angular) of an object in the video

Page 29: Lecture Slides: Biomechanics Case Study

29Challenge the future

Tracker

http://www.cabrillo.edu/~dbrown/tracker/

Download

Page 30: Lecture Slides: Biomechanics Case Study

30Challenge the future

Basic interface

Page 31: Lecture Slides: Biomechanics Case Study

31Challenge the future

Prepare a video for Tracker

Origin markerIncrease the contrast

BackgroundUniform & different

from the subject

The dumbbell You can also use marker to increase the contrast

Camera direction:Perpendicular

Camera range:Enough room to cover the movements

Frame rate: At least 24pResolution: as high as possible

Page 32: Lecture Slides: Biomechanics Case Study

32Challenge the future

Procedure

Open

Or

Drag video in Tracker

Import video

Setup origin

Tracker

Setup point mass

Export data

Set “desired” video span

Page 33: Lecture Slides: Biomechanics Case Study

33Challenge the future

Procedure

Import video

Setup origin

Tracker

Setup point mass

Export data

Set “desired” video span

Mouse click

Page 34: Lecture Slides: Biomechanics Case Study

34Challenge the future

Procedure

Import video

Setup origin

Tracker

Setup point mass

Export data

Set “desired” video span

2. Mouse click

1. Mouse click

Page 35: Lecture Slides: Biomechanics Case Study

35Challenge the future

Procedure

Import video

Setup origin

Tracker

Setup point mass

Export data

Set “desired” video span

θ X

Y

Page 36: Lecture Slides: Biomechanics Case Study

36Challenge the future

Procedure

Import video

Setup origin

Tracker

Setup point mass

Export data

Set “desired” video span

Mouse click

Page 37: Lecture Slides: Biomechanics Case Study

37Challenge the future

Procedure

Fixed

Or

Dynamic (Demo is dynamic)

Import video

Setup origin

Tracker

Setup point mass

Export data

Set “desired” video span

Page 38: Lecture Slides: Biomechanics Case Study

38Challenge the future

Procedure

Import video

Setup origin

Tracker

Setup point mass

Export data

Set “desired” video span

Mouse click

Page 39: Lecture Slides: Biomechanics Case Study

39Challenge the future

Procedure

CTRL+SHIFT+Mouse click

Import video

Setup origin

Tracker

Setup point mass

Export data

Set “desired” video span

Page 40: Lecture Slides: Biomechanics Case Study

40Challenge the future

ProcedureMouse click

Import video

Setup origin

Tracker

Setup point mass

Export data

Set “desired” video span

Page 41: Lecture Slides: Biomechanics Case Study

41Challenge the future

Procedure

Import video

Setup origin

Tracker

Setup point mass

Export data

Set “desired” video span

Page 42: Lecture Slides: Biomechanics Case Study

42Challenge the future

Procedure

Mouse click for acccelerations

Import video

Setup origin

Tracker

Setup point mass

Export data

Set “desired” video span

Page 43: Lecture Slides: Biomechanics Case Study

43Challenge the future

The calculation

Page 44: Lecture Slides: Biomechanics Case Study

44Challenge the future

The result

Change model to a function

Input anthropometric & biomechanics data

Calculation

Input data from tracker(angle, angular velocity & acceleration)

Plot

Page 45: Lecture Slides: Biomechanics Case Study

45Challenge the future

The result

Change model to a function

Calculation

Page 46: Lecture Slides: Biomechanics Case Study

46Challenge the future

The result

Change model to a function

Input anthropometric & biomechanics data

Calculation

Input data from tracker(angle, angular velocity & acceleration)

Plot

Page 47: Lecture Slides: Biomechanics Case Study

47Challenge the future

The result

Change model to a function

Input anthropometric & biomechanics data

Calculation

Input data from tracker(angle, angular velocity & acceleration)

Plot

Column by column copy your

excel data to arrays in Maple

Page 48: Lecture Slides: Biomechanics Case Study

48Challenge the future

The result

Change model to a function

Input anthropometric & biomechanics data

Calculation

Plot

Input data from tracker(angle, angular velocity & acceleration)

Torque

Angle

Angular velocity

Angular acceleration

Page 49: Lecture Slides: Biomechanics Case Study

49Challenge the future

H-A-1 assignments

Page 50: Lecture Slides: Biomechanics Case Study

50Challenge the future

H-A-1-F

In the new set of dumbbells, CAP Barbell® want to specify the optimal weight and training positions in the manual.

For this, they have asked you to help them to explore the relations between the mass of the dumbbells, the maximum angular velocity, the torques applied on the elbow joints and the start position (angle) as in the figure.

H-A-1-F

Page 51: Lecture Slides: Biomechanics Case Study

51Challenge the future

Think

Target group

Model

Improvements

Page 52: Lecture Slides: Biomechanics Case Study

52Challenge the future

Report – Logical: Grading Criteria

IntroductionProblem Definition

1 2 3 4

Conclusions & recommendations

Abstract Model with Maple® file (appendix?) Experiment and its contribution in Modelling

Evaluation Optimization (possible new advices?)

Page 53: Lecture Slides: Biomechanics Case Study

53Challenge the future

Success!

The Modelling TeamFaculty of Industrial Design Engineering

Delft University of Technology