65
. . . . . . Section 5.4 The Fundamental Theorem of Calculus V63.0121, Calculus I April 22, 2009 Announcements I Quiz 6 next week on §§5.1–5.2

Lesson 26: The Fundamental Theorem of Calculus (Section 10 version)

Embed Size (px)

DESCRIPTION

The First Fundamental Theorem of Calculus looks at the area function and its derivative. It so happens that the derivative of the area function is the original integrand.

Citation preview

Page 1: Lesson 26: The Fundamental Theorem of Calculus (Section 10 version)

. . . . . .

Section5.4TheFundamentalTheoremofCalculus

V63.0121, CalculusI

April22, 2009

Announcements

I Quiz6nextweekon§§5.1–5.2

Page 2: Lesson 26: The Fundamental Theorem of Calculus (Section 10 version)

. . . . . .

Thedefiniteintegralasalimit

DefinitionIf f isafunctiondefinedon [a,b], the definiteintegralof f from ato b isthenumber∫ b

af(x)dx = lim

∆x→0

n∑i=1

f(ci) ∆x

Page 3: Lesson 26: The Fundamental Theorem of Calculus (Section 10 version)

. . . . . .

Theorem(TheSecondFundamentalTheoremofCalculus)Suppose f isintegrableon [a,b] and f = F′ foranotherfunction F,then ∫ b

af(x)dx = F(b) − F(a).

Page 4: Lesson 26: The Fundamental Theorem of Calculus (Section 10 version)

. . . . . .

TheIntegralasTotalChange

Anotherwaytostatethistheoremis:∫ b

aF′(x)dx = F(b) − F(a),

or theintegralofaderivativealonganintervalisthetotalchangebetweenthesidesofthatinterval. Thishasmanyramifications:

Page 5: Lesson 26: The Fundamental Theorem of Calculus (Section 10 version)

. . . . . .

TheIntegralasTotalChange

Anotherwaytostatethistheoremis:∫ b

aF′(x)dx = F(b) − F(a),

or theintegralofaderivativealonganintervalisthetotalchangebetweenthesidesofthatinterval. Thishasmanyramifications:

TheoremIf v(t) representsthevelocityofaparticlemovingrectilinearly,then ∫ t1

t0v(t)dt = s(t1) − s(t0).

Page 6: Lesson 26: The Fundamental Theorem of Calculus (Section 10 version)

. . . . . .

TheIntegralasTotalChange

Anotherwaytostatethistheoremis:∫ b

aF′(x)dx = F(b) − F(a),

or theintegralofaderivativealonganintervalisthetotalchangebetweenthesidesofthatinterval. Thishasmanyramifications:

TheoremIf MC(x) representsthemarginalcostofmaking x unitsofaproduct, then

C(x) = C(0) +

∫ x

0MC(q)dq.

Page 7: Lesson 26: The Fundamental Theorem of Calculus (Section 10 version)

. . . . . .

TheIntegralasTotalChange

Anotherwaytostatethistheoremis:∫ b

aF′(x)dx = F(b) − F(a),

or theintegralofaderivativealonganintervalisthetotalchangebetweenthesidesofthatinterval. Thishasmanyramifications:

TheoremIf ρ(x) representsthedensityofathinrodatadistanceof x fromitsend, thenthemassoftherodupto x is

m(x) =

∫ x

0ρ(s)ds.

Page 8: Lesson 26: The Fundamental Theorem of Calculus (Section 10 version)

. . . . . .

Myfirsttableofintegrals∫[f(x) + g(x)] dx =

∫f(x)dx +

∫g(x)dx∫

xn dx =xn+1

n + 1+ C (n ̸= −1)∫

ex dx = ex + C∫sin x dx = − cos x + C∫cos x dx = sin x + C∫sec2 x dx = tan x + C∫

sec x tan x dx = sec x + C∫1

1 + x2dx = arctan x + C

∫cf(x)dx = c

∫f(x)dx∫

1xdx = ln |x| + C∫

ax dx =ax

ln a+ C∫

csc2 x dx = − cot x + C∫csc x cot x dx = − csc x + C∫

1√1− x2

dx = arcsin x + C

Page 9: Lesson 26: The Fundamental Theorem of Calculus (Section 10 version)

. . . . . .

Outline

Myfirsttableofintegrals

TheFirstFundamentalTheoremofCalculusTheAreaFunctionStatementandproofof1FTCBiographies

Differentiationoffunctionsdefinedbyintegrals“Contrived”examplesErfOtherapplications

Factsabout g from fA problem

Page 10: Lesson 26: The Fundamental Theorem of Calculus (Section 10 version)

. . . . . .

Anareafunction

Let f(t) = t3 anddefine g(x) =

∫ x

0f(t)dt. Canweevaluatethe

integralin g(x)?

..0 .x

Dividingtheinterval [0, x] into n pieces

gives ∆x =xnand xi = 0 + i∆x =

ixn.

So

Rn =xn· x

3

n3+

xn· (2x)3

n3+ · · · + x

n· (nx)3

n3

=x4

n4(13 + 23 + 33 + · · · + n3

)=

x4

n4[12n(n + 1)

]2=

x4n2(n + 1)2

4n4→ x4

4

as n → ∞.

Page 11: Lesson 26: The Fundamental Theorem of Calculus (Section 10 version)

. . . . . .

Anareafunction

Let f(t) = t3 anddefine g(x) =

∫ x

0f(t)dt. Canweevaluatethe

integralin g(x)?

..0 .x

Dividingtheinterval [0, x] into n pieces

gives ∆x =xnand xi = 0 + i∆x =

ixn.

So

Rn =xn· x

3

n3+

xn· (2x)3

n3+ · · · + x

n· (nx)3

n3

=x4

n4(13 + 23 + 33 + · · · + n3

)=

x4

n4[12n(n + 1)

]2=

x4n2(n + 1)2

4n4→ x4

4

as n → ∞.

Page 12: Lesson 26: The Fundamental Theorem of Calculus (Section 10 version)

. . . . . .

Anareafunction, continued

So

g(x) =x4

4.

Thismeansthatg′(x) = x3.

Page 13: Lesson 26: The Fundamental Theorem of Calculus (Section 10 version)

. . . . . .

Anareafunction, continued

So

g(x) =x4

4.

Thismeansthatg′(x) = x3.

Page 14: Lesson 26: The Fundamental Theorem of Calculus (Section 10 version)

. . . . . .

Theareafunction

Let f beafunctionwhichisintegrable(i.e., continuousorwithfinitelymanyjumpdiscontinuities)on [a,b]. Define

g(x) =

∫ x

af(t)dt.

I Whenis g increasing?

I Whenis g decreasing?I Overasmallinterval, what’stheaveragerateofchangeof g?

Page 15: Lesson 26: The Fundamental Theorem of Calculus (Section 10 version)

. . . . . .

Theareafunction

Let f beafunctionwhichisintegrable(i.e., continuousorwithfinitelymanyjumpdiscontinuities)on [a,b]. Define

g(x) =

∫ x

af(t)dt.

I Whenis g increasing?I Whenis g decreasing?

I Overasmallinterval, what’stheaveragerateofchangeof g?

Page 16: Lesson 26: The Fundamental Theorem of Calculus (Section 10 version)

. . . . . .

Theareafunction

Let f beafunctionwhichisintegrable(i.e., continuousorwithfinitelymanyjumpdiscontinuities)on [a,b]. Define

g(x) =

∫ x

af(t)dt.

I Whenis g increasing?I Whenis g decreasing?I Overasmallinterval, what’stheaveragerateofchangeof g?

Page 17: Lesson 26: The Fundamental Theorem of Calculus (Section 10 version)

. . . . . .

Theorem(TheFirstFundamentalTheoremofCalculus)Let f beanintegrablefunctionon [a,b] anddefine

g(x) =

∫ x

af(t)dt.

If f iscontinuousat x in (a,b), then g isdifferentiableat x and

g′(x) = f(x).

Page 18: Lesson 26: The Fundamental Theorem of Calculus (Section 10 version)

. . . . . .

Proof.Let h > 0 begivensothat x + h < b. Wehave

g(x + h) − g(x)h

=

1h

∫ x+h

xf(t)dt.

Let Mh bethemaximumvalueof f on [x, x + h], and mh theminimumvalueof f on [x, x + h]. From§5.2wehave

mh · h ≤

∫ x+h

xf(t)dt

≤ Mh · h

So

mh ≤ g(x + h) − g(x)h

≤ Mh.

As h → 0, both mh and Mh tendto f(x). Zappa-dappa.

Page 19: Lesson 26: The Fundamental Theorem of Calculus (Section 10 version)

. . . . . .

Proof.Let h > 0 begivensothat x + h < b. Wehave

g(x + h) − g(x)h

=1h

∫ x+h

xf(t)dt.

Let Mh bethemaximumvalueof f on [x, x + h], and mh theminimumvalueof f on [x, x + h]. From§5.2wehave

mh · h ≤

∫ x+h

xf(t)dt

≤ Mh · h

So

mh ≤ g(x + h) − g(x)h

≤ Mh.

As h → 0, both mh and Mh tendto f(x). Zappa-dappa.

Page 20: Lesson 26: The Fundamental Theorem of Calculus (Section 10 version)

. . . . . .

Proof.Let h > 0 begivensothat x + h < b. Wehave

g(x + h) − g(x)h

=1h

∫ x+h

xf(t)dt.

Let Mh bethemaximumvalueof f on [x, x + h], and mh theminimumvalueof f on [x, x + h]. From§5.2wehave

mh · h ≤

∫ x+h

xf(t)dt

≤ Mh · h

So

mh ≤ g(x + h) − g(x)h

≤ Mh.

As h → 0, both mh and Mh tendto f(x). Zappa-dappa.

Page 21: Lesson 26: The Fundamental Theorem of Calculus (Section 10 version)

. . . . . .

Proof.Let h > 0 begivensothat x + h < b. Wehave

g(x + h) − g(x)h

=1h

∫ x+h

xf(t)dt.

Let Mh bethemaximumvalueof f on [x, x + h], and mh theminimumvalueof f on [x, x + h]. From§5.2wehave

mh · h ≤

∫ x+h

xf(t)dt ≤ Mh · h

So

mh ≤ g(x + h) − g(x)h

≤ Mh.

As h → 0, both mh and Mh tendto f(x). Zappa-dappa.

Page 22: Lesson 26: The Fundamental Theorem of Calculus (Section 10 version)

. . . . . .

Proof.Let h > 0 begivensothat x + h < b. Wehave

g(x + h) − g(x)h

=1h

∫ x+h

xf(t)dt.

Let Mh bethemaximumvalueof f on [x, x + h], and mh theminimumvalueof f on [x, x + h]. From§5.2wehave

mh · h ≤∫ x+h

xf(t)dt ≤ Mh · h

So

mh ≤ g(x + h) − g(x)h

≤ Mh.

As h → 0, both mh and Mh tendto f(x). Zappa-dappa.

Page 23: Lesson 26: The Fundamental Theorem of Calculus (Section 10 version)

. . . . . .

Proof.Let h > 0 begivensothat x + h < b. Wehave

g(x + h) − g(x)h

=1h

∫ x+h

xf(t)dt.

Let Mh bethemaximumvalueof f on [x, x + h], and mh theminimumvalueof f on [x, x + h]. From§5.2wehave

mh · h ≤∫ x+h

xf(t)dt ≤ Mh · h

So

mh ≤ g(x + h) − g(x)h

≤ Mh.

As h → 0, both mh and Mh tendto f(x). Zappa-dappa.

Page 24: Lesson 26: The Fundamental Theorem of Calculus (Section 10 version)

. . . . . .

Proof.Let h > 0 begivensothat x + h < b. Wehave

g(x + h) − g(x)h

=1h

∫ x+h

xf(t)dt.

Let Mh bethemaximumvalueof f on [x, x + h], and mh theminimumvalueof f on [x, x + h]. From§5.2wehave

mh · h ≤∫ x+h

xf(t)dt ≤ Mh · h

So

mh ≤ g(x + h) − g(x)h

≤ Mh.

As h → 0, both mh and Mh tendto f(x). Zappa-dappa.

Page 25: Lesson 26: The Fundamental Theorem of Calculus (Section 10 version)

. . . . . .

MeettheMathematician: JamesGregory

I Scottish, 1638-1675I AstronomerandGeometer

I Conceivedtranscendentalnumbersandfoundevidencethatπ wastranscendental

I Provedageometricversionof1FTC asalemmabutdidn’ttakeitfurther

Page 26: Lesson 26: The Fundamental Theorem of Calculus (Section 10 version)

. . . . . .

MeettheMathematician: IsaacBarrow

I English, 1630-1677I ProfessorofGreek,theology, andmathematicsatCambridge

I Hadafamousstudent

Page 27: Lesson 26: The Fundamental Theorem of Calculus (Section 10 version)

. . . . . .

MeettheMathematician: IsaacNewton

I English, 1643–1727I ProfessoratCambridge(England)

I PhilosophiaeNaturalisPrincipiaMathematicapublished1687

Page 28: Lesson 26: The Fundamental Theorem of Calculus (Section 10 version)

. . . . . .

MeettheMathematician: GottfriedLeibniz

I German, 1646–1716I Eminentphilosopheraswellasmathematician

I Contemporarilydisgracedbythecalculusprioritydispute

Page 29: Lesson 26: The Fundamental Theorem of Calculus (Section 10 version)

. . . . . .

DifferentiationandIntegrationasreverseprocesses

Puttingtogether1FTC and2FTC,wegetabeautifulrelationshipbetweenthetwofundamentalconceptsincalculus.

Iddx

∫ x

af(t)dt = f(x)

I ∫ b

aF′(x)dx = F(b) − F(a).

Page 30: Lesson 26: The Fundamental Theorem of Calculus (Section 10 version)

. . . . . .

DifferentiationandIntegrationasreverseprocesses

Puttingtogether1FTC and2FTC,wegetabeautifulrelationshipbetweenthetwofundamentalconceptsincalculus.

Iddx

∫ x

af(t)dt = f(x)

I ∫ b

aF′(x)dx = F(b) − F(a).

Page 31: Lesson 26: The Fundamental Theorem of Calculus (Section 10 version)

. . . . . .

Outline

Myfirsttableofintegrals

TheFirstFundamentalTheoremofCalculusTheAreaFunctionStatementandproofof1FTCBiographies

Differentiationoffunctionsdefinedbyintegrals“Contrived”examplesErfOtherapplications

Factsabout g from fA problem

Page 32: Lesson 26: The Fundamental Theorem of Calculus (Section 10 version)

. . . . . .

Differentiationofareafunctions

Example

Let g(x) =

∫ x

0t3 dt. Weknow g′(x) = x3. Whatifinsteadwehad

h(x) =

∫ 3x

0t3 dt.

Whatis h′(x)?

SolutionWecanthinkof h asthecomposition g ◦ k, where g(u) =

∫ u

0t3 dt

and k(x) = 3x. Then

h′(x) = g′(k(x))k′(x) = 3(k(x))3 = 3(3x)3 = 81x3.

Page 33: Lesson 26: The Fundamental Theorem of Calculus (Section 10 version)

. . . . . .

Differentiationofareafunctions

Example

Let g(x) =

∫ x

0t3 dt. Weknow g′(x) = x3. Whatifinsteadwehad

h(x) =

∫ 3x

0t3 dt.

Whatis h′(x)?

SolutionWecanthinkof h asthecomposition g ◦ k, where g(u) =

∫ u

0t3 dt

and k(x) = 3x. Then

h′(x) = g′(k(x))k′(x) = 3(k(x))3 = 3(3x)3 = 81x3.

Page 34: Lesson 26: The Fundamental Theorem of Calculus (Section 10 version)

. . . . . .

Example

Let h(x) =

∫ sin2 x

0(17t2 + 4t− 4)dt. Whatis h′(x)?

SolutionWehave

ddx

∫ sin2 x

0(17t2 + 4t− 4)dt

=(17(sin2 x)2 + 4(sin2 x) − 4

)· ddx

sin2 x

=(17 sin4 x + 4 sin2 x− 4

)· 2 sin x cos x

Page 35: Lesson 26: The Fundamental Theorem of Calculus (Section 10 version)

. . . . . .

Example

Let h(x) =

∫ sin2 x

0(17t2 + 4t− 4)dt. Whatis h′(x)?

SolutionWehave

ddx

∫ sin2 x

0(17t2 + 4t− 4)dt

=(17(sin2 x)2 + 4(sin2 x) − 4

)· ddx

sin2 x

=(17 sin4 x + 4 sin2 x− 4

)· 2 sin x cos x

Page 36: Lesson 26: The Fundamental Theorem of Calculus (Section 10 version)

. . . . . .

ErfHere’safunctionwithafunnynamebutanimportantrole:

erf(x) =2√π

∫ x

0e−t2 dt.

Itturnsout erf istheshapeofthebellcurve. Wecan’tfind erf(x),explicitly, butwedoknowitsderivative.

erf′(x) =2√πe−x2 .

Example

Findddx

erf(x2).

SolutionBythechainrulewehave

ddx

erf(x2) = erf′(x2)ddx

x2 =2√πe−(x2)22x =

4√πxe−x4 .

Page 37: Lesson 26: The Fundamental Theorem of Calculus (Section 10 version)

. . . . . .

ErfHere’safunctionwithafunnynamebutanimportantrole:

erf(x) =2√π

∫ x

0e−t2 dt.

Itturnsout erf istheshapeofthebellcurve.

Wecan’tfind erf(x),explicitly, butwedoknowitsderivative.

erf′(x) =2√πe−x2 .

Example

Findddx

erf(x2).

SolutionBythechainrulewehave

ddx

erf(x2) = erf′(x2)ddx

x2 =2√πe−(x2)22x =

4√πxe−x4 .

Page 38: Lesson 26: The Fundamental Theorem of Calculus (Section 10 version)

. . . . . .

ErfHere’safunctionwithafunnynamebutanimportantrole:

erf(x) =2√π

∫ x

0e−t2 dt.

Itturnsout erf istheshapeofthebellcurve. Wecan’tfind erf(x),explicitly, butwedoknowitsderivative.

erf′(x) =

2√πe−x2 .

Example

Findddx

erf(x2).

SolutionBythechainrulewehave

ddx

erf(x2) = erf′(x2)ddx

x2 =2√πe−(x2)22x =

4√πxe−x4 .

Page 39: Lesson 26: The Fundamental Theorem of Calculus (Section 10 version)

. . . . . .

ErfHere’safunctionwithafunnynamebutanimportantrole:

erf(x) =2√π

∫ x

0e−t2 dt.

Itturnsout erf istheshapeofthebellcurve. Wecan’tfind erf(x),explicitly, butwedoknowitsderivative.

erf′(x) =2√πe−x2 .

Example

Findddx

erf(x2).

SolutionBythechainrulewehave

ddx

erf(x2) = erf′(x2)ddx

x2 =2√πe−(x2)22x =

4√πxe−x4 .

Page 40: Lesson 26: The Fundamental Theorem of Calculus (Section 10 version)

. . . . . .

ErfHere’safunctionwithafunnynamebutanimportantrole:

erf(x) =2√π

∫ x

0e−t2 dt.

Itturnsout erf istheshapeofthebellcurve. Wecan’tfind erf(x),explicitly, butwedoknowitsderivative.

erf′(x) =2√πe−x2 .

Example

Findddx

erf(x2).

SolutionBythechainrulewehave

ddx

erf(x2) = erf′(x2)ddx

x2 =2√πe−(x2)22x =

4√πxe−x4 .

Page 41: Lesson 26: The Fundamental Theorem of Calculus (Section 10 version)

. . . . . .

ErfHere’safunctionwithafunnynamebutanimportantrole:

erf(x) =2√π

∫ x

0e−t2 dt.

Itturnsout erf istheshapeofthebellcurve. Wecan’tfind erf(x),explicitly, butwedoknowitsderivative.

erf′(x) =2√πe−x2 .

Example

Findddx

erf(x2).

SolutionBythechainrulewehave

ddx

erf(x2) = erf′(x2)ddx

x2 =2√πe−(x2)22x =

4√πxe−x4 .

Page 42: Lesson 26: The Fundamental Theorem of Calculus (Section 10 version)

. . . . . .

Otherfunctionsdefinedbyintegrals

I Thefuturevalueofanasset:

FV(t) =

∫ ∞

tπ(τ)e−rτ dτ

where π(τ) istheprofitabilityattime τ and r isthediscountrate.

I Theconsumersurplusofagood:

CS(q∗) =

∫ q∗

0(f(q) − p∗)dq

where f(q) isthedemandfunctionand p∗ and q∗ theequilibriumpriceandquantity.

Page 43: Lesson 26: The Fundamental Theorem of Calculus (Section 10 version)

. . . . . .

Outline

Myfirsttableofintegrals

TheFirstFundamentalTheoremofCalculusTheAreaFunctionStatementandproofof1FTCBiographies

Differentiationoffunctionsdefinedbyintegrals“Contrived”examplesErfOtherapplications

Factsabout g from fA problem

Page 44: Lesson 26: The Fundamental Theorem of Calculus (Section 10 version)

. . . . . .

Factsabout g from f

Let f bethefunctionwhosegraphisgivenbelow.Supposethethepositionattime t secondsofaparticlemoving

alongacoordinateaxisis s(t) =

∫ t

0f(x)dx meters. Usethegraph

toanswerthefollowingquestions.

. ..1

..2

..3

..4

..5

..6

..7

..8

..9

.1

.2

.3

.4

.• .(1,1)

.• .(2,2)

.• .(3,3).• .(5,2)

Page 45: Lesson 26: The Fundamental Theorem of Calculus (Section 10 version)

. . . . . .

Factsabout g from f

Let f bethefunctionwhosegraphisgivenbelow.Supposethethepositionattime t secondsofaparticlemoving

alongacoordinateaxisis s(t) =

∫ t

0f(x)dx meters. Usethegraph

toanswerthefollowingquestions.

. ..1

..2

..3

..4

..5

..6

..7

..8

..9

.1

.2

.3

.4

.• .(1,1)

.• .(2,2)

.• .(3,3).• .(5,2)

Whatistheparticle’svelocityattime t = 5?

Page 46: Lesson 26: The Fundamental Theorem of Calculus (Section 10 version)

. . . . . .

Factsabout g from f

Let f bethefunctionwhosegraphisgivenbelow.Supposethethepositionattime t secondsofaparticlemoving

alongacoordinateaxisis s(t) =

∫ t

0f(x)dx meters. Usethegraph

toanswerthefollowingquestions.

. ..1

..2

..3

..4

..5

..6

..7

..8

..9

.1

.2

.3

.4

.• .(1,1)

.• .(2,2)

.• .(3,3).• .(5,2)

Whatistheparticle’svelocityattime t = 5?

SolutionRecallthatbytheFTC wehave

s′(t) = f(t).

So s′(5) = f(5) = 2.

Page 47: Lesson 26: The Fundamental Theorem of Calculus (Section 10 version)

. . . . . .

Factsabout g from f

Let f bethefunctionwhosegraphisgivenbelow.Supposethethepositionattime t secondsofaparticlemoving

alongacoordinateaxisis s(t) =

∫ t

0f(x)dx meters. Usethegraph

toanswerthefollowingquestions.

. ..1

..2

..3

..4

..5

..6

..7

..8

..9

.1

.2

.3

.4

.• .(1,1)

.• .(2,2)

.• .(3,3).• .(5,2)

Istheaccelerationofthepar-ticleattime t = 5 positiveornegative?

Page 48: Lesson 26: The Fundamental Theorem of Calculus (Section 10 version)

. . . . . .

Factsabout g from f

Let f bethefunctionwhosegraphisgivenbelow.Supposethethepositionattime t secondsofaparticlemoving

alongacoordinateaxisis s(t) =

∫ t

0f(x)dx meters. Usethegraph

toanswerthefollowingquestions.

. ..1

..2

..3

..4

..5

..6

..7

..8

..9

.1

.2

.3

.4

.• .(1,1)

.• .(2,2)

.• .(3,3).• .(5,2)

Istheaccelerationofthepar-ticleattime t = 5 positiveornegative?

SolutionWehave s′′(5) = f′(5), whichlooksnegativefromthegraph.

Page 49: Lesson 26: The Fundamental Theorem of Calculus (Section 10 version)

. . . . . .

Factsabout g from f

Let f bethefunctionwhosegraphisgivenbelow.Supposethethepositionattime t secondsofaparticlemoving

alongacoordinateaxisis s(t) =

∫ t

0f(x)dx meters. Usethegraph

toanswerthefollowingquestions.

. ..1

..2

..3

..4

..5

..6

..7

..8

..9

.1

.2

.3

.4

.• .(1,1)

.• .(2,2)

.• .(3,3).• .(5,2)

Whatistheparticle’spositionattime t = 3?

Page 50: Lesson 26: The Fundamental Theorem of Calculus (Section 10 version)

. . . . . .

Factsabout g from f

Let f bethefunctionwhosegraphisgivenbelow.Supposethethepositionattime t secondsofaparticlemoving

alongacoordinateaxisis s(t) =

∫ t

0f(x)dx meters. Usethegraph

toanswerthefollowingquestions.

. ..1

..2

..3

..4

..5

..6

..7

..8

..9

.1

.2

.3

.4

.• .(1,1)

.• .(2,2)

.• .(3,3).• .(5,2)

Whatistheparticle’spositionattime t = 3?

SolutionSinceon [0,3], f(x) = x, wehave

s(3) =

∫ 3

0x dx =

92.

Page 51: Lesson 26: The Fundamental Theorem of Calculus (Section 10 version)

. . . . . .

Factsabout g from f

Let f bethefunctionwhosegraphisgivenbelow.Supposethethepositionattime t secondsofaparticlemoving

alongacoordinateaxisis s(t) =

∫ t

0f(x)dx meters. Usethegraph

toanswerthefollowingquestions.

. ..1

..2

..3

..4

..5

..6

..7

..8

..9

.1

.2

.3

.4

.• .(1,1)

.• .(2,2)

.• .(3,3).• .(5,2)

Atwhattimeduringthefirst9secondsdoes s haveitslargestvalue?

Page 52: Lesson 26: The Fundamental Theorem of Calculus (Section 10 version)

. . . . . .

Factsabout g from f

Let f bethefunctionwhosegraphisgivenbelow.Supposethethepositionattime t secondsofaparticlemoving

alongacoordinateaxisis s(t) =

∫ t

0f(x)dx meters. Usethegraph

toanswerthefollowingquestions.

. ..1

..2

..3

..4

..5

..6

..7

..8

..9

.1

.2

.3

.4

.• .(1,1)

.• .(2,2)

.• .(3,3).• .(5,2)

Atwhattimeduringthefirst9secondsdoes s haveitslargestvalue?

Solution

Page 53: Lesson 26: The Fundamental Theorem of Calculus (Section 10 version)

. . . . . .

Factsabout g from f

Let f bethefunctionwhosegraphisgivenbelow.Supposethethepositionattime t secondsofaparticlemoving

alongacoordinateaxisis s(t) =

∫ t

0f(x)dx meters. Usethegraph

toanswerthefollowingquestions.

. ..1

..2

..3

..4

..5

..6

..7

..8

..9

.1

.2

.3

.4

.• .(1,1)

.• .(2,2)

.• .(3,3).• .(5,2)

Atwhattimeduringthefirst9secondsdoes s haveitslargestvalue?

SolutionThecriticalpointsof s arethezerosof s′ = f.

Page 54: Lesson 26: The Fundamental Theorem of Calculus (Section 10 version)

. . . . . .

Factsabout g from f

Let f bethefunctionwhosegraphisgivenbelow.Supposethethepositionattime t secondsofaparticlemoving

alongacoordinateaxisis s(t) =

∫ t

0f(x)dx meters. Usethegraph

toanswerthefollowingquestions.

. ..1

..2

..3

..4

..5

..6

..7

..8

..9

.1

.2

.3

.4

.• .(1,1)

.• .(2,2)

.• .(3,3).• .(5,2)

Atwhattimeduringthefirst9secondsdoes s haveitslargestvalue?

SolutionBylookingatthegraph, weseethat f ispositivefromt = 0 to t = 6, thennegativefrom t = 6 to t = 9.

Page 55: Lesson 26: The Fundamental Theorem of Calculus (Section 10 version)

. . . . . .

Factsabout g from f

Let f bethefunctionwhosegraphisgivenbelow.Supposethethepositionattime t secondsofaparticlemoving

alongacoordinateaxisis s(t) =

∫ t

0f(x)dx meters. Usethegraph

toanswerthefollowingquestions.

. ..1

..2

..3

..4

..5

..6

..7

..8

..9

.1

.2

.3

.4

.• .(1,1)

.• .(2,2)

.• .(3,3).• .(5,2)

Atwhattimeduringthefirst9secondsdoes s haveitslargestvalue?

SolutionTherefore s isincreasingon[0, 6], thendecreasingon[6, 9]. Soitslargestvalueisatt = 6.

Page 56: Lesson 26: The Fundamental Theorem of Calculus (Section 10 version)

. . . . . .

Factsabout g from f

Let f bethefunctionwhosegraphisgivenbelow.Supposethethepositionattime t secondsofaparticlemoving

alongacoordinateaxisis s(t) =

∫ t

0f(x)dx meters. Usethegraph

toanswerthefollowingquestions.

. ..1

..2

..3

..4

..5

..6

..7

..8

..9

.1

.2

.3

.4

.• .(1,1)

.• .(2,2)

.• .(3,3).• .(5,2)

Approximately when is theaccelerationzero?

Page 57: Lesson 26: The Fundamental Theorem of Calculus (Section 10 version)

. . . . . .

Factsabout g from f

Let f bethefunctionwhosegraphisgivenbelow.Supposethethepositionattime t secondsofaparticlemoving

alongacoordinateaxisis s(t) =

∫ t

0f(x)dx meters. Usethegraph

toanswerthefollowingquestions.

. ..1

..2

..3

..4

..5

..6

..7

..8

..9

.1

.2

.3

.4

.• .(1,1)

.• .(2,2)

.• .(3,3).• .(5,2)

Approximately when is theaccelerationzero?

Solutions′′ = 0 when f′ = 0, whichhappensat t = 4 and t = 7.5(approximately)

Page 58: Lesson 26: The Fundamental Theorem of Calculus (Section 10 version)

. . . . . .

Factsabout g from f

Let f bethefunctionwhosegraphisgivenbelow.Supposethethepositionattime t secondsofaparticlemoving

alongacoordinateaxisis s(t) =

∫ t

0f(x)dx meters. Usethegraph

toanswerthefollowingquestions.

. ..1

..2

..3

..4

..5

..6

..7

..8

..9

.1

.2

.3

.4

.• .(1,1)

.• .(2,2)

.• .(3,3).• .(5,2)

When is theparticlemovingtowardtheorigin? Awayfromtheorigin?

Page 59: Lesson 26: The Fundamental Theorem of Calculus (Section 10 version)

. . . . . .

Factsabout g from f

Let f bethefunctionwhosegraphisgivenbelow.Supposethethepositionattime t secondsofaparticlemoving

alongacoordinateaxisis s(t) =

∫ t

0f(x)dx meters. Usethegraph

toanswerthefollowingquestions.

. ..1

..2

..3

..4

..5

..6

..7

..8

..9

.1

.2

.3

.4

.• .(1,1)

.• .(2,2)

.• .(3,3).• .(5,2)

When is theparticlemovingtowardtheorigin? Awayfromtheorigin?

SolutionTheparticleismovingawayfromtheoriginwhen s > 0and s′ > 0.

Page 60: Lesson 26: The Fundamental Theorem of Calculus (Section 10 version)

. . . . . .

Factsabout g from f

Let f bethefunctionwhosegraphisgivenbelow.Supposethethepositionattime t secondsofaparticlemoving

alongacoordinateaxisis s(t) =

∫ t

0f(x)dx meters. Usethegraph

toanswerthefollowingquestions.

. ..1

..2

..3

..4

..5

..6

..7

..8

..9

.1

.2

.3

.4

.• .(1,1)

.• .(2,2)

.• .(3,3).• .(5,2)

When is theparticlemovingtowardtheorigin? Awayfromtheorigin?

SolutionSince s(0) = 0 and s′ > 0 on(0, 6), weknowtheparticleismovingawayfromtheoriginthen.

Page 61: Lesson 26: The Fundamental Theorem of Calculus (Section 10 version)

. . . . . .

Factsabout g from f

Let f bethefunctionwhosegraphisgivenbelow.Supposethethepositionattime t secondsofaparticlemoving

alongacoordinateaxisis s(t) =

∫ t

0f(x)dx meters. Usethegraph

toanswerthefollowingquestions.

. ..1

..2

..3

..4

..5

..6

..7

..8

..9

.1

.2

.3

.4

.• .(1,1)

.• .(2,2)

.• .(3,3).• .(5,2)

When is theparticlemovingtowardtheorigin? Awayfromtheorigin?

SolutionAfter t = 6, s′ < 0, sotheparticleismovingtowardtheorigin.

Page 62: Lesson 26: The Fundamental Theorem of Calculus (Section 10 version)

. . . . . .

Factsabout g from f

Let f bethefunctionwhosegraphisgivenbelow.Supposethethepositionattime t secondsofaparticlemoving

alongacoordinateaxisis s(t) =

∫ t

0f(x)dx meters. Usethegraph

toanswerthefollowingquestions.

. ..1

..2

..3

..4

..5

..6

..7

..8

..9

.1

.2

.3

.4

.• .(1,1)

.• .(2,2)

.• .(3,3).• .(5,2)

On which side (positive ornegative) of the origin doestheparticlelieattime t = 9?

Page 63: Lesson 26: The Fundamental Theorem of Calculus (Section 10 version)

. . . . . .

Factsabout g from f

Let f bethefunctionwhosegraphisgivenbelow.Supposethethepositionattime t secondsofaparticlemoving

alongacoordinateaxisis s(t) =

∫ t

0f(x)dx meters. Usethegraph

toanswerthefollowingquestions.

. ..1

..2

..3

..4

..5

..6

..7

..8

..9

.1

.2

.3

.4

.• .(1,1)

.• .(2,2)

.• .(3,3).• .(5,2)

On which side (positive ornegative) of the origin doestheparticlelieattime t = 9?

SolutionWehave s(9) =∫ 6

0f(x)dx +

∫ 9

6f(x)dx,

wheretheleftintegralispositiveandtherightintegralisnegative.

Page 64: Lesson 26: The Fundamental Theorem of Calculus (Section 10 version)

. . . . . .

Factsabout g from f

Let f bethefunctionwhosegraphisgivenbelow.Supposethethepositionattime t secondsofaparticlemoving

alongacoordinateaxisis s(t) =

∫ t

0f(x)dx meters. Usethegraph

toanswerthefollowingquestions.

. ..1

..2

..3

..4

..5

..6

..7

..8

..9

.1

.2

.3

.4

.• .(1,1)

.• .(2,2)

.• .(3,3).• .(5,2)

On which side (positive ornegative) of the origin doestheparticlelieattime t = 9?

SolutionInordertodecidewhethers(9) ispositiveornegative,weneedtodecideifthefirstareaismorepositivethanthesecondareaisnegative.

Page 65: Lesson 26: The Fundamental Theorem of Calculus (Section 10 version)

. . . . . .

Factsabout g from f

Let f bethefunctionwhosegraphisgivenbelow.Supposethethepositionattime t secondsofaparticlemoving

alongacoordinateaxisis s(t) =

∫ t

0f(x)dx meters. Usethegraph

toanswerthefollowingquestions.

. ..1

..2

..3

..4

..5

..6

..7

..8

..9

.1

.2

.3

.4

.• .(1,1)

.• .(2,2)

.• .(3,3).• .(5,2)

On which side (positive ornegative) of the origin doestheparticlelieattime t = 9?

SolutionThisappearstobethecase,so s(9) ispositive.