50
. . . . . . Section 5.5 Integration by Substitution V63.0121, Calculus I April 27, 2009 Announcements I Quiz 6 this week covering 5.1–5.2 I Practice finals on the website. Solutions Friday . . Image credit: kchbrown

Lesson 27: Integration by Substitution (Section 10 version)

Embed Size (px)

DESCRIPTION

The method of substitution is the chain rule in reverse. At first it looks magical, then logical, and then you realize there's an art to choosing the right substitution. We try to demystify with many worked-out examples.

Citation preview

Page 1: Lesson 27: Integration by Substitution (Section 10 version)

. . . . . .

Section5.5IntegrationbySubstitution

V63.0121, CalculusI

April27, 2009

Announcements

I Quiz6thisweekcovering5.1–5.2I Practicefinalsonthewebsite. SolutionsFriday

..Imagecredit: kchbrown

Page 2: Lesson 27: Integration by Substitution (Section 10 version)

. . . . . .

Outline

Announcements

LastTime: TheFundamentalTheorem(s)ofCalculus

SubstitutionforIndefiniteIntegrals

SubstitutionforDefiniteIntegralsTheoryExamples

Page 3: Lesson 27: Integration by Substitution (Section 10 version)

. . . . . .

OfficeHoursandotherhelpthisweekInadditiontorecitation

Day Time Who/What WhereinWWHM 1:00–2:00 LeingangOH 624

3:30–4:30 KatarinaOH 6075:00–7:00 CurtoPS 517

T 1:00–2:00 LeingangOH 6244:00–5:50 CurtoPS 317

W 1:00–2:00 KatarinaOH 6072:00–3:00 LeingangOH 624

R 9:00–10:00am LeingangOH 6245:00–7:00pm MariaOH 807

F 2:00–4:00 CurtoOH 1310

Page 4: Lesson 27: Integration by Substitution (Section 10 version)

. . . . . .

Finalstuff

I FinalisMay8, 2:00–3:50pminCANT 101/200I Oldfinalsonline, includingFall2008I Reviewsessions: May5and6, 6:00–8:00pm, SILV 703

.

.Imagecredit: Pragmagraphr

Page 5: Lesson 27: Integration by Substitution (Section 10 version)

. . . . . .

ResurrectionPolicyIfyourfinalscorebeatsyourmidtermscore, wewilladd10%toitsweight, andsubtract10%fromthemidtermweight.

..Imagecredit: ScottBeale/LaughingSquid

Page 6: Lesson 27: Integration by Substitution (Section 10 version)

. . . . . .

Outline

Announcements

LastTime: TheFundamentalTheorem(s)ofCalculus

SubstitutionforIndefiniteIntegrals

SubstitutionforDefiniteIntegralsTheoryExamples

Page 7: Lesson 27: Integration by Substitution (Section 10 version)

. . . . . .

DifferentiationandIntegrationasreverseprocesses

Theorem(TheFundamentalTheoremofCalculus)

1. Let f becontinuouson [a,b]. Then

ddx

∫ x

af(t)dt = f(x)

2. Let f becontinuouson [a,b] and f = F′ forsomeotherfunction F. Then ∫ b

aF′(x)dx = F(b) − F(a).

Page 8: Lesson 27: Integration by Substitution (Section 10 version)

. . . . . .

Techniquesofantidifferentiation?

Sofarweknowonlyafewrulesforantidifferentiation. Somearegeneral, like∫

[f(x) + g(x)] dx =

∫f(x)dx +

∫g(x)dx

Someareprettyparticular, like∫1

x√x2 − 1

dx = arcsec x + C.

Whatarewesupposedtodowiththat?

Page 9: Lesson 27: Integration by Substitution (Section 10 version)

. . . . . .

Techniquesofantidifferentiation?

Sofarweknowonlyafewrulesforantidifferentiation. Somearegeneral, like∫

[f(x) + g(x)] dx =

∫f(x)dx +

∫g(x)dx

Someareprettyparticular, like∫1

x√x2 − 1

dx = arcsec x + C.

Whatarewesupposedtodowiththat?

Page 10: Lesson 27: Integration by Substitution (Section 10 version)

. . . . . .

Techniquesofantidifferentiation?

Sofarweknowonlyafewrulesforantidifferentiation. Somearegeneral, like∫

[f(x) + g(x)] dx =

∫f(x)dx +

∫g(x)dx

Someareprettyparticular, like∫1

x√x2 − 1

dx = arcsec x + C.

Whatarewesupposedtodowiththat?

Page 11: Lesson 27: Integration by Substitution (Section 10 version)

. . . . . .

Sofarwedon’thaveanywaytofind∫2x√x2 + 1

dx

or ∫tan x dx.

Luckily, wecanbesmartandusethe“anti”versionofoneofthemostimportantrulesofdifferentiation: thechainrule.

Page 12: Lesson 27: Integration by Substitution (Section 10 version)

. . . . . .

Sofarwedon’thaveanywaytofind∫2x√x2 + 1

dx

or ∫tan x dx.

Luckily, wecanbesmartandusethe“anti”versionofoneofthemostimportantrulesofdifferentiation: thechainrule.

Page 13: Lesson 27: Integration by Substitution (Section 10 version)

. . . . . .

Outline

Announcements

LastTime: TheFundamentalTheorem(s)ofCalculus

SubstitutionforIndefiniteIntegrals

SubstitutionforDefiniteIntegralsTheoryExamples

Page 14: Lesson 27: Integration by Substitution (Section 10 version)

. . . . . .

SubstitutionforIndefiniteIntegrals

ExampleFind ∫

x√x2 + 1

dx.

SolutionStareatthislongenoughandyounoticethetheintegrandisthederivativeoftheexpression

√1 + x2.

Page 15: Lesson 27: Integration by Substitution (Section 10 version)

. . . . . .

SubstitutionforIndefiniteIntegrals

ExampleFind ∫

x√x2 + 1

dx.

SolutionStareatthislongenoughandyounoticethetheintegrandisthederivativeoftheexpression

√1 + x2.

Page 16: Lesson 27: Integration by Substitution (Section 10 version)

. . . . . .

Saywhat?

Solution(Moreslowly, now)Let g(x) = x2 + 1.

Then f′(x) = 2x andso

ddx

√g(x) =

1

2√g(x)

g′(x) =x√

x2 + 1

Thus ∫x√

x2 + 1dx =

∫ (ddx

√g(x)

)dx

=√g(x) + C =

√1 + x2 + C.

Page 17: Lesson 27: Integration by Substitution (Section 10 version)

. . . . . .

Saywhat?

Solution(Moreslowly, now)Let g(x) = x2 + 1. Then f′(x) = 2x andso

ddx

√g(x) =

1

2√g(x)

g′(x) =x√

x2 + 1

Thus ∫x√

x2 + 1dx =

∫ (ddx

√g(x)

)dx

=√g(x) + C =

√1 + x2 + C.

Page 18: Lesson 27: Integration by Substitution (Section 10 version)

. . . . . .

Saywhat?

Solution(Moreslowly, now)Let g(x) = x2 + 1. Then f′(x) = 2x andso

ddx

√g(x) =

1

2√g(x)

g′(x) =x√

x2 + 1

Thus ∫x√

x2 + 1dx =

∫ (ddx

√g(x)

)dx

=√g(x) + C =

√1 + x2 + C.

Page 19: Lesson 27: Integration by Substitution (Section 10 version)

. . . . . .

Leibniziannotationwinsagain

Solution(Sametechnique, newnotation)Let u = x2 + 1.

Then du = 2x dx and√1 + x2 =

√u. Sothe

integrandbecomescompletelytransformedinto∫x√

x2 + 1dx =

∫1√u

(12du

)=

∫1

2√udu

=

∫12u

−1/2 du

=√u + C =

√1 + x2 + C.

Page 20: Lesson 27: Integration by Substitution (Section 10 version)

. . . . . .

Leibniziannotationwinsagain

Solution(Sametechnique, newnotation)Let u = x2 + 1. Then du = 2x dx and

√1 + x2 =

√u.

Sotheintegrandbecomescompletelytransformedinto∫

x√x2 + 1

dx =

∫1√u

(12du

)=

∫1

2√udu

=

∫12u

−1/2 du

=√u + C =

√1 + x2 + C.

Page 21: Lesson 27: Integration by Substitution (Section 10 version)

. . . . . .

Leibniziannotationwinsagain

Solution(Sametechnique, newnotation)Let u = x2 + 1. Then du = 2x dx and

√1 + x2 =

√u. Sothe

integrandbecomescompletelytransformedinto∫x√

x2 + 1dx =

∫1√u

(12du

)=

∫1

2√udu

=

∫12u

−1/2 du

=√u + C =

√1 + x2 + C.

Page 22: Lesson 27: Integration by Substitution (Section 10 version)

. . . . . .

Leibniziannotationwinsagain

Solution(Sametechnique, newnotation)Let u = x2 + 1. Then du = 2x dx and

√1 + x2 =

√u. Sothe

integrandbecomescompletelytransformedinto∫x√

x2 + 1dx =

∫1√u

(12du

)=

∫1

2√udu

=

∫12u

−1/2 du

=√u + C =

√1 + x2 + C.

Page 23: Lesson 27: Integration by Substitution (Section 10 version)

. . . . . .

Leibniziannotationwinsagain

Solution(Sametechnique, newnotation)Let u = x2 + 1. Then du = 2x dx and

√1 + x2 =

√u. Sothe

integrandbecomescompletelytransformedinto∫x√

x2 + 1dx =

∫1√u

(12du

)=

∫1

2√udu

=

∫12u

−1/2 du

=√u + C =

√1 + x2 + C.

Page 24: Lesson 27: Integration by Substitution (Section 10 version)

. . . . . .

TheoremoftheDay

Theorem(TheSubstitutionRule)If u = g(x) isadifferentiablefunctionwhoserangeisaninterval Iand f iscontinuouson I, then∫

f(g(x))g′(x)dx =

∫f(u)du

or ∫f(u)

dudx

dx =

∫f(u)du

Page 25: Lesson 27: Integration by Substitution (Section 10 version)

. . . . . .

A polynomialexample

Example

Usethesubstitution u = x2 + 3 tofind∫

(x2 + 3)34x dx.

SolutionIf u = x2 + 3, then du = 2x dx, and 4x dx = 2du. So∫

(x2 + 3)34x dx =

∫u3 2du = 2

∫u3 du

=12u4 =

12(x2 + 3)4

Page 26: Lesson 27: Integration by Substitution (Section 10 version)

. . . . . .

A polynomialexample

Example

Usethesubstitution u = x2 + 3 tofind∫

(x2 + 3)34x dx.

SolutionIf u = x2 + 3, then du = 2x dx, and 4x dx = 2du. So∫

(x2 + 3)34x dx =

∫u3 2du = 2

∫u3 du

=12u4 =

12(x2 + 3)4

Page 27: Lesson 27: Integration by Substitution (Section 10 version)

. . . . . .

A polynomialexample, thehardway

Comparethistomultiplyingitout:∫(x2 + 3)34x dx =

∫ (x6 + 9x4 + 27x2 + 27

)4x dx

=

∫ (4x7 + 36x5 + 108x3 + 108x

)dx

=12x8 + 6x6 + 27x4 + 54x2

Page 28: Lesson 27: Integration by Substitution (Section 10 version)

. . . . . .

Compare

Wehave∫(x2 + 3)34x dx =

12(x2 + 3)4

+ C

∫(x2 + 3)34x dx =

12x8 + 6x6 + 27x4 + 54x2

+ C

Now

12

(x2 + 3)4 =12

(x8 + 12x6 + 54x4 + 108x2 + 81

)=

12x8 + 6x6 + 27x4 + 54x2 +

812

Isthisaproblem?

No, that’swhat +C means!

Page 29: Lesson 27: Integration by Substitution (Section 10 version)

. . . . . .

Compare

Wehave∫(x2 + 3)34x dx =

12(x2 + 3)4 + C∫

(x2 + 3)34x dx =12x8 + 6x6 + 27x4 + 54x2 + C

Now

12

(x2 + 3)4 =12

(x8 + 12x6 + 54x4 + 108x2 + 81

)=

12x8 + 6x6 + 27x4 + 54x2 +

812

Isthisaproblem? No, that’swhat +C means!

Page 30: Lesson 27: Integration by Substitution (Section 10 version)

. . . . . .

A slickexample

Example

Find∫

tan x dx.

(Hint: tan x =sin xcos x

)

SolutionLet u = cos x. Then du = − sin x dx. So∫

tan x dx =

∫sin xcos x

dx = −∫

1udu

= − ln |u| + C

= − ln | cos x| + C = ln | sec x| + C

Page 31: Lesson 27: Integration by Substitution (Section 10 version)

. . . . . .

A slickexample

Example

Find∫

tan x dx. (Hint: tan x =sin xcos x

)

SolutionLet u = cos x. Then du = − sin x dx. So∫

tan x dx =

∫sin xcos x

dx = −∫

1udu

= − ln |u| + C

= − ln | cos x| + C = ln | sec x| + C

Page 32: Lesson 27: Integration by Substitution (Section 10 version)

. . . . . .

A slickexample

Example

Find∫

tan x dx. (Hint: tan x =sin xcos x

)

SolutionLet u = cos x. Then du = − sin x dx.

So∫tan x dx =

∫sin xcos x

dx = −∫

1udu

= − ln |u| + C

= − ln | cos x| + C = ln | sec x| + C

Page 33: Lesson 27: Integration by Substitution (Section 10 version)

. . . . . .

A slickexample

Example

Find∫

tan x dx. (Hint: tan x =sin xcos x

)

SolutionLet u = cos x. Then du = − sin x dx. So∫

tan x dx =

∫sin xcos x

dx = −∫

1udu

= − ln |u| + C

= − ln | cos x| + C = ln | sec x| + C

Page 34: Lesson 27: Integration by Substitution (Section 10 version)

. . . . . .

A slickexample

Example

Find∫

tan x dx. (Hint: tan x =sin xcos x

)

SolutionLet u = cos x. Then du = − sin x dx. So∫

tan x dx =

∫sin xcos x

dx = −∫

1udu

= − ln |u| + C

= − ln | cos x| + C = ln | sec x| + C

Page 35: Lesson 27: Integration by Substitution (Section 10 version)

. . . . . .

A slickexample

Example

Find∫

tan x dx. (Hint: tan x =sin xcos x

)

SolutionLet u = cos x. Then du = − sin x dx. So∫

tan x dx =

∫sin xcos x

dx = −∫

1udu

= − ln |u| + C

= − ln | cos x| + C = ln | sec x| + C

Page 36: Lesson 27: Integration by Substitution (Section 10 version)

. . . . . .

Outline

Announcements

LastTime: TheFundamentalTheorem(s)ofCalculus

SubstitutionforIndefiniteIntegrals

SubstitutionforDefiniteIntegralsTheoryExamples

Page 37: Lesson 27: Integration by Substitution (Section 10 version)

. . . . . .

Theorem(TheSubstitutionRuleforDefiniteIntegrals)If g′ iscontinuousand f iscontinuousontherangeof u = g(x),then ∫ b

af(g(x))g′(x)dx =

∫ g(b)

g(a)f(u)du.

Page 38: Lesson 27: Integration by Substitution (Section 10 version)

. . . . . .

Example

Compute∫ π

0cos2 x sin x dx.

Solution(SlowWay)

Firstcomputetheindefiniteintegral∫

cos2 x sin x dx andthen

evaluate. Let u = cos x. Then du = − sin x dx and∫cos2 x sin x dx = −

∫u2 du

= −13u

3 + C = −13 cos

3 x + C.

Therefore ∫ π

0cos2 x sin x dx = −1

3 cos3 x

∣∣π0 = 2

3 .

Page 39: Lesson 27: Integration by Substitution (Section 10 version)

. . . . . .

Example

Compute∫ π

0cos2 x sin x dx.

Solution(SlowWay)

Firstcomputetheindefiniteintegral∫

cos2 x sin x dx andthen

evaluate.

Let u = cos x. Then du = − sin x dx and∫cos2 x sin x dx = −

∫u2 du

= −13u

3 + C = −13 cos

3 x + C.

Therefore ∫ π

0cos2 x sin x dx = −1

3 cos3 x

∣∣π0 = 2

3 .

Page 40: Lesson 27: Integration by Substitution (Section 10 version)

. . . . . .

Example

Compute∫ π

0cos2 x sin x dx.

Solution(SlowWay)

Firstcomputetheindefiniteintegral∫

cos2 x sin x dx andthen

evaluate. Let u = cos x. Then du = − sin x dx and∫cos2 x sin x dx = −

∫u2 du

= −13u

3 + C = −13 cos

3 x + C.

Therefore ∫ π

0cos2 x sin x dx = −1

3 cos3 x

∣∣π0 = 2

3 .

Page 41: Lesson 27: Integration by Substitution (Section 10 version)

. . . . . .

Solution(FastWay)Doboththesubstitutionandtheevaluationatthesametime.

Letu = cos x. Then du = − sin x dx, u(0) = 1 and u(π) = −1. So∫ π

0cos2 x sin x dx =

∫ −1

1−u2 du

=

∫ 1

−1u2 du

= 13u

3∣∣1−1 =

23

.

Page 42: Lesson 27: Integration by Substitution (Section 10 version)

. . . . . .

Solution(FastWay)Doboththesubstitutionandtheevaluationatthesametime. Letu = cos x. Then du = − sin x dx, u(0) = 1 and u(π) = −1.

So∫ π

0cos2 x sin x dx =

∫ −1

1−u2 du

=

∫ 1

−1u2 du

= 13u

3∣∣1−1 =

23

.

Page 43: Lesson 27: Integration by Substitution (Section 10 version)

. . . . . .

Solution(FastWay)Doboththesubstitutionandtheevaluationatthesametime. Letu = cos x. Then du = − sin x dx, u(0) = 1 and u(π) = −1. So∫ π

0cos2 x sin x dx =

∫ −1

1−u2 du

=

∫ 1

−1u2 du

= 13u

3∣∣1−1 =

23

.

Page 44: Lesson 27: Integration by Substitution (Section 10 version)

. . . . . .

Anexponentialexample

Example

Find∫ ln

√8

ln√3

e2x√e2x + 1dx

SolutionLet u = e2x, so du = 2e2x dx. Wehave∫ ln

√8

ln√3

e2x√e2x + 1dx =

12

∫ 8

3

√u + 1du

Nowlet y = u + 1, dy = du. So

12

∫ 8

3

√u + 1du =

12

∫ 9

4

√y dy =

12

∫ 9

4y1/2 dy

=12· 23y3/2

∣∣∣∣94

=13

(27− 8) =198

Page 45: Lesson 27: Integration by Substitution (Section 10 version)

. . . . . .

Anexponentialexample

Example

Find∫ ln

√8

ln√3

e2x√e2x + 1dx

SolutionLet u = e2x, so du = 2e2x dx. Wehave∫ ln

√8

ln√3

e2x√e2x + 1dx =

12

∫ 8

3

√u + 1du

Nowlet y = u + 1, dy = du. So

12

∫ 8

3

√u + 1du =

12

∫ 9

4

√y dy =

12

∫ 9

4y1/2 dy

=12· 23y3/2

∣∣∣∣94

=13

(27− 8) =198

Page 46: Lesson 27: Integration by Substitution (Section 10 version)

. . . . . .

Anexponentialexample

Example

Find∫ ln

√8

ln√3

e2x√e2x + 1dx

SolutionLet u = e2x, so du = 2e2x dx. Wehave∫ ln

√8

ln√3

e2x√e2x + 1dx =

12

∫ 8

3

√u + 1du

Nowlet y = u + 1, dy = du. So

12

∫ 8

3

√u + 1du =

12

∫ 9

4

√y dy =

12

∫ 9

4y1/2 dy

=12· 23y3/2

∣∣∣∣94

=13

(27− 8) =198

Page 47: Lesson 27: Integration by Substitution (Section 10 version)

. . . . . .

ExampleFind ∫ 3π/2

πcot5

6

)sec2

6

)dθ.

Page 48: Lesson 27: Integration by Substitution (Section 10 version)

. . . . . .

SolutionLet φ =

θ

6. Then dφ =

16dθ.

∫ 3π/2

πcot5

6

)sec2

6

)dθ = 6

∫ π/4

π/6cot5 φ sec2 φdφ

= 6∫ π/4

π/6

sec2 φdφ

tan5 φ

Nowlet u = tanφ. So du = sec2 φdφ, and

6∫ π/4

π/6

sec2 φdφ

tan5 φ= 6

∫ 1

1/√3u−5 du

= 6(−14u−4

)∣∣∣∣11/

√3

=32

[9− 1] = 12.

Page 49: Lesson 27: Integration by Substitution (Section 10 version)

. . . . . .

SolutionLet φ =

θ

6. Then dφ =

16dθ.

∫ 3π/2

πcot5

6

)sec2

6

)dθ = 6

∫ π/4

π/6cot5 φ sec2 φdφ

= 6∫ π/4

π/6

sec2 φdφ

tan5 φ

Nowlet u = tanφ. So du = sec2 φdφ, and

6∫ π/4

π/6

sec2 φdφ

tan5 φ= 6

∫ 1

1/√3u−5 du

= 6(−14u−4

)∣∣∣∣11/

√3

=32

[9− 1] = 12.

Page 50: Lesson 27: Integration by Substitution (Section 10 version)

. . . . . .

Whatdowesubstitute?

I Linearfactors (ax + b) areeasysubstitutions: u = ax + b,du = a dx

I Lookforfunction/derivativepairsintheintegrand: Onetomake u andonetomake du:

I xn and xn−1 (fudgethecoefficient)I sineandcosineI ex and exI ax and ax (fudgethecoefficient)

I√x and

1√x

I ln x and1x