12
> > > > (2) (2) > > (3) (3) > > (1) (1) Ejercicios Numero 1. Dadas las siguientes matrices: with LinearAlgebra ; &x , Add, Adjoint , BackwardSubstitute , BandMatrix , Basis, BezoutMatrix, BidiagonalForm , BilinearForm , CARE , CharacteristicMatrix , CharacteristicPolynomial , Column, ColumnDimension, ColumnOperation, ColumnSpace , CompanionMatrix , ConditionNumber , ConstantMatrix, ConstantVector, Copy, CreatePermutation , CrossProduct , DARE, DeleteColumn, DeleteRow , Determinant , Diagonal , DiagonalMatrix , Dimension , Dimensions , DotProduct , EigenConditionNumbers, Eigenvalues , Eigenvectors , Equal , ForwardSubstitute, FrobeniusForm , GaussianElimination, GenerateEquations, GenerateMatrix, Generic , GetResultDataType , GetResultShape , GivensRotationMatrix, GramSchmidt , HankelMatrix, HermiteForm , HermitianTranspose, HessenbergForm, HilbertMatrix, HouseholderMatrix , IdentityMatrix, IntersectionBasis, IsDefinite, IsOrthogonal , IsSimilar, IsUnitary , JordanBlockMatrix , JordanForm, KroneckerProduct, LA_Main, LUDecomposition , LeastSquares , LinearSolve , LyapunovSolve, Map , Map2 , MatrixAdd , MatrixExponential , MatrixFunction , MatrixInverse , MatrixMatrixMultiply , MatrixNorm, MatrixPower , MatrixScalarMultiply , MatrixVectorMultiply, MinimalPolynomial , Minor, Modular, Multiply , NoUserValue, Norm, Normalize, NullSpace, OuterProductMatrix, Permanent , Pivot , PopovForm, QRDecomposition , RandomMatrix , RandomVector , Rank , RationalCanonicalForm , ReducedRowEchelonForm, Row, RowDimension, RowOperation , RowSpace , ScalarMatrix , ScalarMultiply , ScalarVector, SchurForm, SingularValues , SmithForm, StronglyConnectedBlocks , SubMatrix , SubVector , SumBasis , SylvesterMatrix , SylvesterSolve, ToeplitzMatrix, Trace , Transpose, TridiagonalForm, UnitVector, VandermondeMatrix , VectorAdd, VectorAngle , VectorMatrixMultiply, VectorNorm, VectorScalarMultiply , ZeroMatrix, ZeroVector , Zip A d 1 K 2 1 2 4 1 3 K 2 5 A := 1 K 2 1 2 4 1 3 K 2 5 B d 1 9 K 1 5 8 K 2 6 4 K 1 B := 1 9 K 1 5 8 K 2 6 4 K 1

Nelson maple pdf

Embed Size (px)

Citation preview

Page 1: Nelson maple pdf

> >

> >

(2)(2)

> >

(3)(3)

> >

(1)(1)

Ejercicios Numero 1. Dadas las siguientes matrices:with LinearAlgebra ;

&x, Add, Adjoint, BackwardSubstitute, BandMatrix, Basis, BezoutMatrix, BidiagonalForm,BilinearForm, CARE, CharacteristicMatrix, CharacteristicPolynomial, Column,ColumnDimension, ColumnOperation, ColumnSpace, CompanionMatrix,ConditionNumber, ConstantMatrix, ConstantVector, Copy, CreatePermutation,CrossProduct, DARE, DeleteColumn, DeleteRow, Determinant, Diagonal, DiagonalMatrix,Dimension, Dimensions, DotProduct, EigenConditionNumbers, Eigenvalues, Eigenvectors,Equal, ForwardSubstitute, FrobeniusForm, GaussianElimination, GenerateEquations,GenerateMatrix, Generic, GetResultDataType, GetResultShape, GivensRotationMatrix,GramSchmidt, HankelMatrix, HermiteForm, HermitianTranspose, HessenbergForm,HilbertMatrix, HouseholderMatrix, IdentityMatrix, IntersectionBasis, IsDefinite,IsOrthogonal, IsSimilar, IsUnitary, JordanBlockMatrix, JordanForm, KroneckerProduct,LA_Main, LUDecomposition, LeastSquares, LinearSolve, LyapunovSolve, Map, Map2,MatrixAdd, MatrixExponential, MatrixFunction, MatrixInverse, MatrixMatrixMultiply,MatrixNorm, MatrixPower, MatrixScalarMultiply, MatrixVectorMultiply,MinimalPolynomial, Minor, Modular, Multiply, NoUserValue, Norm, Normalize,NullSpace, OuterProductMatrix, Permanent, Pivot, PopovForm, QRDecomposition,RandomMatrix, RandomVector, Rank, RationalCanonicalForm, ReducedRowEchelonForm,Row, RowDimension, RowOperation, RowSpace, ScalarMatrix, ScalarMultiply,ScalarVector, SchurForm, SingularValues, SmithForm, StronglyConnectedBlocks,SubMatrix, SubVector, SumBasis, SylvesterMatrix, SylvesterSolve, ToeplitzMatrix, Trace,Transpose, TridiagonalForm, UnitVector, VandermondeMatrix, VectorAdd, VectorAngle,VectorMatrixMultiply, VectorNorm, VectorScalarMultiply, ZeroMatrix, ZeroVector, Zip

A d

1 K2 1

2 4 1

3 K2 5

A :=

1 K2 1

2 4 1

3 K2 5

B d

1 9 K1

5 8 K2

6 4 K1

B :=

1 9 K1

5 8 K2

6 4 K1

Page 2: Nelson maple pdf

(9)(9)

> >

(5)(5)

(4)(4)

> >

> >

> >

(8)(8)

> >

(6)(6)

(7)(7)

> >

> >

> >

> >

C d

1 2 1

0 0 4

1 3 7

C :=

1 2 1

0 0 4

1 3 7

Realizar las siguientes operaciones:ACBCC

3 9 1

7 12 3

10 5 11

AKBC2. C

2. K7. 4.

K3. K4. 11.

K1. 0. 20.

A.B

K3 K3 2

28 54 K11

23 31 K4

A.CK3. C

K1. K1. K3.

3. 7. 13.

5. 12. 9.

A^3C2. A

K10. K60. 10.

70. 0. 80.

50. K180. 130.

Ejercicio Numero 2. Dadas las siguientes matrices calcule su determinante y su matriz inversa en caso de ser posible

Page 3: Nelson maple pdf

(11)(11)

(12)(12)

(13)(13)

> >

> >

> >

> >

> >

(10)(10)

> >

> >

A d

1 K1 2 3

0 1 0 4

2 0 6 3

5 2 1 2

A :=

1 K1 2 3

0 1 0 4

2 0 6 3

5 2 1 2

Student LinearAlgebra InverseTutor A ;A^ K1

39181

K33

181K

19181

36181

K112181

53181

36181

8181

K27

181K

5181

41181

K11

181

28181

32181

K9

181K

2181

B d

1 2 1

2 1 0

1 3 1

B :=

1 2 1

2 1 0

1 3 1

Student LinearAlgebra InverseTutor B ;B^ K1

12

12

K12

K1 0 1

52

K12

K32

d d

1 2 1 3

0 1 0 4

2 0 0 0

1 0 1 2

Page 4: Nelson maple pdf

(15)(15)

> >

(19)(19)

> >

(17)(17)

(16)(16)

> >

> >

(18)(18)

> >

> >

(14)(14)

> >

> >

d :=

1 2 1 3

0 1 0 4

2 0 0 0

1 0 1 2

Student LinearAlgebra InverseTutor d ;d^ K1

0 012

0

47

K17

0 K47

27

K47

K12

57

K17

27

017

E dK1 2

2 3

E :=K1 2

2 3

Student LinearAlgebra InverseTutor E ;E^ K1

K37

27

27

17

K d

2 2 2

2 K1 3

4 5 K10

K :=

2 2 2

2 K1 3

4 5 K10

Student LinearAlgebra InverseTutor K ;K^ K1

Page 5: Nelson maple pdf

> >

> >

(22)(22)

(19)(19)

> >

> >

> >

(21)(21)

> >

(20)(20)

> >

> >

K5

821541

441

1641

K1441

K1

41

741

K1

41K

341

T d

1 1 1

1 2 3

1 2 4

T :=

1 1 1

1 2 3

1 2 4

Student LinearAlgebra InverseTutor T ;T^ K1

2 K2 1

K1 3 K2

0 K1 1

Ejercicio numero 3. resolver las siguietes ecuaciones lineales

A d

2 K3 1 K2 6

2 5 K2 1 3

K1 1 K2 3 K1

K3 K4 3 K3 0

A :=

2 K3 1 K2 6

2 5 K2 1 3

K1 1 K2 3 K1

K3 K4 3 K3 0

Student LinearAlgebra LinearSolveTutor A ;

2 -3 1 -2 6

2 5 -2 1 3

-1 1 -2 3 -1

-3 -4 3 -3 0

/

Page 6: Nelson maple pdf

1-32

12

-1 3

2 5 -2 1 3

-1 1 -2 3 -1

-3 -4 3 -3 0

/

1-32

12

-1 3

0 8 -3 3 -3

-1 1 -2 3 -1

-3 -4 3 -3 0

/

1-32

12

-1 3

0 8 -3 3 -3

0-12

-32

2 2

-3 -4 3 -3 0

/

1-32

12

-1 3

0 8 -3 3 -3

0-12

-32

2 2

0-172

92

-6 9

/

1-32

12

-1 3

0 1-38

38

-38

0-12

-32

2 2

0-172

92

-6 9

/

Page 7: Nelson maple pdf

1 0-116

-716

3916

0 1-38

38

-38

0-12

-32

2 2

0-172

92

-6 9

/

1 0-116

-716

3916

0 1-38

38

-38

0 0-2716

3516

2916

0-172

92

-6 9

/

1 0-116

-716

3916

0 1-38

38

-38

0 0-2716

3516

2916

0 02116

-4516

9316

/

1 0-116

-716

3916

0 1-38

38

-38

0 0 1-3527

-2927

0 02116

-4516

9316

/

Page 8: Nelson maple pdf

1 0 0-1427

6427

0 1-38

38

-38

0 0 1-3527

-2927

0 02116

-4516

9316

/

1 0 0-1427

6427

0 1 0-19

-79

0 0 1-3527

-2927

0 02116

-4516

9316

/

1 0 0-1427

6427

0 1 0-19

-79

0 0 1-3527

-2927

0 0 0-109

659

/

1 0 0-1427

6427

0 1 0-19

-79

0 0 1-3527

-2927

0 0 0 1-132

/

Page 9: Nelson maple pdf

(23)(23)

> >

> >

> >

> >

1 0 0 0 -1

0 1 0-19

-79

0 0 1-3527

-2927

0 0 0 1-132

/

1 0 0 0 -1

0 1 0 0-32

0 0 1-3527

-2927

0 0 0 1-132

/

1 0 0 0 -1

0 1 0 0-32

0 0 1 0-192

0 0 0 1-132

X=-1, Y=-3/2, Z= -19/2, T= -13/2

B d

1 1 K2 4

2 K1 4 4

2 K1 6 K1

B :=

1 1 K2 4

2 K1 4 4

2 K1 6 K1

Student LinearAlgebra LinearSolveTutor B ;

1 1 -2 4

2 -1 4 4

2 -1 6 -1

/

Page 10: Nelson maple pdf

1 1 -2 4

0 -3 8 -4

2 -1 6 -1

/

1 1 -2 4

0 -3 8 -4

0 -3 10 -9

/

1 1 -2 4

0 1-83

43

0 -3 10 -9

/

1 023

83

0 1-83

43

0 -3 10 -9

/

1 023

83

0 1-83

43

0 0 2 -5

/

1 023

83

0 1-83

43

0 0 1-52

/

1 0 0133

0 1-83

43

0 0 1-52

/

Page 11: Nelson maple pdf

> >

(24)(24)

> >

> >

> >

> >

1 0 0133

0 1 0-163

0 0 1-52

X = 6, Y =K2, Z =K52

C d

2 4 6 18

4 5 6 24

2 7 12 30

C :=

2 4 6 18

4 5 6 24

2 7 12 30

Student LinearAlgebra LinearSolveTutor C ;

2 4 6 18

4 5 6 24

2 7 12 30

/

1 2 3 9

4 5 6 24

2 7 12 30

/

1 2 3 9

0 -3 -6 -12

2 7 12 30

/

1 2 3 9

0 -3 -6 -12

0 3 6 12

/

1 2 3 9

0 1 2 4

0 3 6 12

/

1 0 -1 1

0 1 2 4

0 3 6 12

/

Page 12: Nelson maple pdf

> >

(28)(28)

> >

> >

> >

> >

> >

(27)(27)

> >

> >

> >

(26)(26)

> > (29)(29)

> >

(25)(25)

1 0 -1 1

0 1 2 4

0 0 0 0

el sistema tiene infinita soluciones, es decir, es inconsistente indetermindo

Ejercicio numero 4. dadas estas matrices , comprobr que det A .det B = det Ab

A d

1 3 1 2

0 K1 3 4

2 1 9 6

4 2 4 2

; B d

2 0 2 1

0 1 6 2

0 0 1 2

1 2 3 0

A :=

1 3 1 2

0 K1 3 4

2 1 9 6

4 2 4 2

B :=

2 0 2 1

0 1 6 2

0 0 1 2

1 2 3 0

Det A Det B = Det AB ;

Det

1 3 1 2

0 K1 3 4

2 1 9 6

4 2 4 2

Det

2 0 2 1

0 1 6 2

0 0 1 2

1 2 3 0

= Det AB

Determinant A Determinant B ;5332

Det A.B ;

Det

4 7 27 9

4 7 9 4

10 13 37 22

10 6 30 16

Determinant A.B ;5332