70
Instituto tecnológico de cd. Altamirano Lic. En biología Unidad IV “Química del carbono” Alumno: Jorge Iván Sotelo Rodríguez Profesora: Q.F.B. Erika Oropeza Bruno Noviembre 2012

química del carbono

Embed Size (px)

Citation preview

Page 1: química del carbono

Instituto tecnológico de cd. Altamirano

Lic. En biología

Unidad IV“Química del carbono”

Alumno:Jorge Iván Sotelo Rodríguez

Profesora:Q.F.B. Erika Oropeza Bruno

Noviembre 2012

Page 2: química del carbono

Química orgánica

La Química Orgánica o Química del carbono es la rama de la química que estudia una clase numerosa de moléculas que contienen carbono formando enlaces covalentes carbono-carbono o carbono-hidrógeno y otros heteroátomos, también conocidos como compuestos orgánicos.

Friedrich Wöhler y Archibald Scott Couper son conocidos como los "padres" de la química orgánica.

Page 3: química del carbono

Su origen en México está ligado a la institucionalización de la enseñanza y a la investigación química en la otrora Universidad Nacional, desde donde se dispersó hacia todo el país. México inició su camino por la senda de la metalurgia y la farmacia. Durante el largo periodo de administración española, la extracción de la plata, el oro y el aprovechamiento de algunas especies vegetales fueron parte esencial de la economía novohispana. Ante la creciente importancia de la ciencia y la tecnología en Europa, la monarquía española fundó el Real Seminario de Minería en 1792, como una alternativa para formar a los técnicos e ingenieros que modernizarían la industria minera.

http://es.wikipedia.org/wiki/Qu%C3%ADmica_org%C3%A1nicahttp://www.izt.uam.mx/cosmosecm/QUIMICA_ORGANICA.html

Page 4: química del carbono

Nomenclatura de química orgánica

Grupo funcional Prefijo IUPAC Familia

F Fluoro fluoroalcano

Cl Cloro cloroalqueno

Br Bromo bromoalqueno

I Iodo iodoalqueno

NO2 Nitro nitroalqueno

N3 Azido azidoalcano

OR* Alcoxi alcoxialcano

La mayoría de los grupos funcionales se nombran usando ya sea un sufijo o un prefijo Sin embargo algunos grupos funcionales se nombran solo como prefijos, y se aplican las

mismas reglas que para otros prefijos. La siguiente tabla muestra una serie de grupos funcionales y su prefijo correspondiente.

Grupos funcionales expresados solo como prefijos..* En esta función R representa un grupo alquilo

Page 5: química del carbono

Diferencia entre compuestos orgánicos e inorgánicos

Los compuestos orgánicos ofrecen una serie de características que los distinguen de los compuestos inorgánicos, de manera general se puede afirmar que los compuestos inorgánicos son en su mayoría de carácter iónico, solubles sobre todo en agua y con altos puntos de ebullición y fusión; en tanto, en los cuerpos orgánicos predomina el carácter covalente, sus puntos de ebullición y fusión son bajos, se disuelven en disolventes orgánicos no polares (cómo éter, alcohol, cloroformo y benceno), son generalmente líquidos volátiles o sólidos y sus densidades se aproximan a la unidad.Los compuestos inorgánicos también se diferencian de los orgánicos en la forma como reaccionan, las reacciones inorgánicas son casi siempre instantáneas, iónicas y sencillas, rápidas y con un alto rendimiento cuantitativo, en tanto las reacciones orgánicas son no iónicas, complejas y lentas, y de rendimiento limitado, realizándose generalmente con el auxilio de elevadas temperaturas y el empleo de catalizadores.

Page 6: química del carbono

Diferencias mas representativasCompuestos Orgánicos Compuestos Inorgánicos

Elementos constituyentes C, H, O, N, S, P y Halógenos 103 elementos

Estado Físico Líquidos y gaseosos Sólido, líquido o gaseoso

Volatilidad Volátiles No volátiles

Solubilidad en agua Solubles Insolubles

Densidades Aproximadas a la unidad, bajas Mayor que la unidad, altas

Velocidad de reacción a temperatura ambiente Lentas con rendimiento limitado

Rápidas con alto rendimiento cualitativo

Temperatura superior Desde moderadamente rápidas hasta explosivas Muy rápidas

Necesidad de catalizadores Sí, con frecuencia Generalmente no

Tipo de enlace Covalente Electrovalente, electrocovalente, valente, covalente

Page 7: química del carbono

Entre las diferencias más importantes se encuentran:-Todos los compuestos orgánicos utilizan como base de construcción al átomo de carbono y unos pocos elementos más, mientras que en los compuestos inorgánicos participan a la gran mayoría de los elementos conocidos.-En su origen los compuestos inorgánicos se forman ordinariamente por la acción de las fuerzas fisicoquímicas: fusión, sublimación, difusión, electrolisis y reacciones químicas a diversas temperaturas. La energía solar, el oxígeno, el agua y el silicio han sido los principales agentes en la formación de estas sustancias.-Las sustancias orgánicas se forman naturalmente en los vegetales y animales pero principalmente en los primeros, mediante la acción de los rayos ultravioleta durante el proceso de la fotosíntesis: el gas carbónico y el oxígeno tomados de la atmósfera y el agua, el amoníaco, los nitratos, los nitritos y fosfatos absorbidos del suelo se transforman en azúcares, alcoholes, ácidos, ésteres, grasas, aminoácidos, proteínas, etc., que luego por reacciones de combinación, hidrólisis y polimerización entre otras, dan lugar a estructuras más complicadas y variadas.-La totalidad de los compuestos orgánicos están formados por enlace covalentes, mientras que los inorgánicos lo hacen mediante enlaces iónicos y covalentes.-La mayoría de los compuesto orgánicos presentan isómeros (sustancias que poseen la misma fórmula molecular pero difieren en sus propiedades físicas y químicas); los inorgánicos generalmente no presentan isómeros.-Los compuestos orgánicos encontrados en la naturaleza, tienen origen vegetal o animal, muy pocos son de origen mineral; un buen número de los compuestos inorgánicos son encontrados en la naturaleza en forma de sales, óxidos, etc.-Los compuestos orgánicos forman cadenas o uniones del carbono consigo mismo y otros elementos; los compuestos inorgánicos con excepción de algunos silicatos no forman cadenas.-El número de los compuestos orgánicos es muy grande comparado con el de los compuestos inorgánicos.

Page 8: química del carbono

En general las diferencias son:

Compuestos Orgánicos Compuestos inorgánicos

Se utilizan como base de construcción al átomo de carbono y unos pocos elementos más.

Participan a la gran mayoría de los elementos conocidos

Se forman naturalmente en los vegetales y animales pero principalmente en los primeros, mediante la acción de los rayos ultravioleta durante el proceso de la fotosíntesis: el gas carbónico y el oxígeno tomados de la atmósfera y el agua, el amoníaco, los nitratos, los nitritos y fosfatos absorbidos del suelo se transforman en azúcares, alcoholes, ácidos, ésteres, grasas, aminoácidos, proteínas, etc., que luego por reacciones de combinación, hidrólisis y polimerización entre otras, dan lugar a estructuras más complicadas y variadas

En su origen se forman ordinariamente por la acción de las fuerzas fisicoquímicas: fusión, sublimación, difusión, electrolisis y reacciones químicas a diversas temperaturas. La energía solar, el oxígeno, el agua y el silicio han sido los principales agentes en la formación de estas sustancias.

La totalidad de estos compuestos están formados por enlace covalentes Estos compuestos están formados por enlaces

iónicos y covalentes.

Page 9: química del carbono

La mayoría presentan isómeros (sustancias que poseen la misma fórmula molecular pero difieren en sus propiedades físicas y químicas)Generalmente no presentan isómeros.

Los encontrados en la naturaleza, tienen origen vegetal o animal, muy pocos son de origen mineralUn buen número son encontrados en la naturaleza en forma de sales, óxidos, etc.

Forman cadenas o uniones del carbono consigo mismo y otros elementos Con excepción de algunos silicatos no forman cadenas.

El número de estos compuestos es muy grande comparado con el de los compuestos inorgánicos.El número de estos compuestos es menor comparado con el de los compuestos orgánicos.

http://www.monografias.com/trabajos44/compuestos-organicos/compuestos-organicos2.shtmlhttp://tutoriales.conalepqro.edu.mx/yesy/Templates/DIFERENCIA%20ENTRE%20COMPUESTOS%20ORGANICOS%20E%20INORGANICOS.html

Page 10: química del carbono

Estructura y propiedades del carbono

Es el pilar básico de la química orgánica; se conocen cerca de 16 millones de compuestos de carbono, aumentando este número en unos 500.000 compuestos por año, y forma parte de todos los seres vivos conocidos. Forma el 0,2 % de la corteza terrestre.

El carbono es un elemento químico de número atómico 6 y símbolo C. Es sólido a temperatura ambiente. Dependiendo de las condiciones de formación, puede encontrarse en la naturaleza en distintas formas alotrópicas, carbono amorfo y cristalino en forma de grafito o diamante respectivamente.

Page 11: química del carbono

Características del carbono

El carbono es un elemento notable por varias razones. Sus formas alotrópicas incluyen, sorprendentemente, una de las sustancias más blandas (el grafito) y la más dura (el diamante) y, desde el punto de vista económico, uno de los materiales más baratos (carbón) y uno de los más caros (diamante). Más aún, presenta una gran afinidad para enlazarse químicamente con otros átomos pequeños, incluyendo otros átomos de carbono con los que puede formar largas cadenas, y su pequeño radio atómico le permite formar enlaces múltiples. Así, con el oxígeno forma el dióxido de carbono, vital para el crecimiento de las plantas (ver ciclo del carbono); con el hidrógeno forma numerosos compuestos denominados genéricamente hidrocarburos, esenciales para la industria y el transporte en la forma de combustibles fósiles; y combinado con oxígeno e hidrógeno forma gran variedad de compuestos como, por ejemplo, los ácidos grasos, esenciales para la vida, y los ésteres que dan sabor a las frutas; además es vector, a través del ciclo carbono-nitrógeno, de parte de la energía producida por el Sol.

Page 12: química del carbono

Se conocen cinco formas alotrópicas del carbono, además del amorfo: grafito, diamante, fullerenos, nanotubos y carbinos.

Aplicaciones

El principal uso industrial del carbono es como componente de hidrocarburos, especialmente los combustibles fósiles (petróleo y gas natural). Del primero se obtienen, por destilación en las refinerías, gasolinas, queroseno y aceites, siendo además la materia prima empleada en la obtención de plásticos. El segundo se está imponiendo como fuente de energía por su combustión más limpia. Otros usos son:El isótopo radiactivo carbono-14, descubierto el 27 de febrero de 1940, se usa en la datación radiométrica.El grafito se combina con arcilla para fabricar las minas de los lápices. Además se utiliza como aditivo en lubricantes. Las pinturas anti-radar utilizadas en el camuflaje de vehículos y aviones militares están basadas igualmente en el grafito, intercalando otros compuestos químicos entre sus capas. Es negro y blando. Sus átomos están distribuidos en capas paralelas muy separadas entre sí. Se forma a menos presión que el diamante. Aunque parezca difícil de creer, un diamante y la mina de un lapicero tienen la misma composición química: carbono.

Page 13: química del carbono

Como elemento de aleación principal de los aceros.En varillas de protección de reactores nucleares.Las pastillas de carbón se emplean en medicina para absorber las toxinas del sistema digestivo y como remedio de la flatulencia.El carbón activado se emplea en sistemas de filtrado y purificación de agua.El carbón amorfo ("hollín") se añade a la goma para mejorar sus propiedades mecánicas. Además se emplea en la formación de electrodos (p. ej. de las baterías). Obtenido por sublimación del grafito, es fuente de los fulerenos que pueden ser extraídos con disolventes orgánicos.La fibra de carbono (obtenido generalmente por termólisis de fibras de poliacrilato) se añade a resinas de poliéster, donde mejoran mucho la resistencia mecánica sin aumentar el peso, obteniéndose los materiales denominados fibras de carbono.Las propiedades químicas y estructurales de los fulerenos, en la forma de nanotubos, prometen usos futuros en el incipiente campo de la nanotecnología.

El diamante Es transparente y muy duro. En su formación, cada átomo de carbono está unido de forma compacta a otros cuatro átomos. Se originan con temperaturas y presiones altas en el interior de la tierra. Se emplea para la construcción de joyas y como material de corte aprovechando su dureza.

Page 14: química del carbono

Información general

Nombre, símbolo, número Carbono, C, 6

Serie química No metales

Grupo, período, bloque 14, 2, p

Masa atómica 12,0107(8) u

Configuración electrónica [He]2s22p2

Dureza Mohs 1-2 (grafito)10 (diamante)

Electrones por nivel 2, 4

6 C

Page 15: química del carbono

Propiedades atómicas

Radio medio 70 pm

Electronegatividad 2,55 (Pauling)

Radio atómico (calc) 67 pm (Radio de Bohr)

Radio covalente 77 pm

Radio de van der Waals 170 pm

Estado(s) de oxidación 4, 2

Óxido Ácido débil

1.ª Energía de ionización 1086,5 kJ/mol

2.ª Energía de ionización 2352,6 kJ/mol

3.ª Energía de ionización 4620,5 kJ/mol

4.ª Energía de ionización 6222,7 kJ/mol

5.ª Energía de ionización 37 831,1 kJ/mol

6.ª Energía de ionización 47 277,1 kJ/mol

Page 16: química del carbono

Propiedades físicas

Estado ordinario Sólido (no magnético)

Densidad 2267 kg/m3

Punto de fusión Diamante: 3823 KGrafito: 3800

Punto de ebullición Grafito: 5100

Entalpía de vaporización Grafito; sublima: 711 kJ/mol

Entalpía de fusión Grafito; sublima: 105 kJ/mol

Page 17: química del carbono

Varios

Estructura cristalina Hexagonal

N° CAS 7444-04-0

N° EINECS 231-153-3

Calor específico 710 J/(K·kg)

Conductividad eléctrica 61×103 S/m

Conductividad térmica 129 W/(K·m)

Velocidad del sonido Diamante: 18.350 m/s a 293,15 K (20 °C)

http://www.profesorenlinea.cl/Quimica/Carbono01.htmhttp://es.wikipedia.org/wiki/Carbonohttp://www.lenntech.com/espanol/tabla-peiodica/C.htmhttp://www.lafacu.com/apuntes/quimica/comp_carb/default.htm

Page 18: química del carbono

ESTRUCTURA E IMPORTANCIA DE LOS GRUPOS FUNCIONALES.

Alcoholes, aldehídos, cetonas, esteres, ácidos carboxílicos, éteres, amidas y aminas.importancia Los grupos funcionales le dan a las moléculas la capacidad de reaccionar químicamente y por distintos mecanismos.Los aminoácidos forman las proteínas mediante uniones peptídicas. Estas uniones son posibles gracias a los grupos amino y carboxilo presentes en los aminoácidos.Los grupos funcionales son estructuras submoleculares, caracterizadas por una conectividad y composición elemental específica que confiere reactividad a la molécula que los contiene.

Page 19: química del carbono

Grupos funcionales más importantes

Clase Grupo funcional Ejemplo

alcanos ninguno CH3-CH3 Etano

alquenos

CH3CH=CH2 Propeno

(homo) aromáticos

Tolueno

(hetero) aromáticos

3-Metilpiridina

Page 20: química del carbono

alquinos

CH3-CC-CH3 2-Butino

haluros de alquilo -halógeno CH3-CH2-Br Bromuro de etilo

alcoholes fenoles

-OH CH3-CH2-OH Etanol

Ph-OH Fenol

éteres -O- CH3-CH2-O-CH2-CH3 Dietiléter

aminas primarias -NH2 CH3-NH2

Metilamina

aminas secundarias

-NH- (CH3)2NH Dimetilamina

http://www.buenastareas.com/materias/importancia-y-estructura-de-grupos-funcionales/0

Page 21: química del carbono

Alcanos Los alcanos son hidrocarburos, es decir, que tienen solo átomos de carbono e hidrógeno. La fórmula general para alcanos alifáticos (de cadena lineal) es CnH2n+2 y para ciclo alcanos es CnH2n. También reciben el nombre de hidrocarburos saturados.Los alcanos son compuestos formados solo por átomos de carbono e hidrógeno, no presentan funcionalización alguna, es decir, sin la presencia de grupos funcionales como el carbonilo (-CO), carboxilo (-COOH), amida (-CON=), etc. La relación C/H es de CnH2n+2 siendo n el número de átomos de carbono de la molécula, (como se verá después esto es válido para alcanos de cadena lineal y cadena ramificada pero no para alcanos cíclicos). Esto hace que su reactividad sea muy reducida en comparación con otros compuestos orgánicos, y es la causa de su nombre no sistemático: parafinas (del latín, poca afinidad). Todos los enlaces dentro de las moléculas de alcano son de tipo simple o sigma, es decir, covalentes por compartición de un par de electrones en un orbital s.

Page 22: química del carbono

forma general de los alcanos:

Donde cada línea representa un enlace covalente. El alcano más sencillo es el metano con un solo átomo de carbono. Otros alcanos conocidos son el etano, propano y el butano con dos, tres y cuatro átomos de carbono respectivamente. A partir de cinco carbonos, los nombres se derivan de numerales griegos: pentano, hexano, heptano...

Page 23: química del carbono

Isómeros conformacionalesLos alcanos no son rígidos debido al giro alrededor del enlace C-C. Se llaman conformaciones a las múltiples formas creadas por estas rotaciones.

Nomenclatura de alcanosLos alcanos se nombran terminando en -ano el prefijo que indica el número de carbonos de la molécula (metano, etano, propano...)Propiedades físicas de los alcanosLos puntos de fusión y ebullición de alcanos son bajos y aumentan a medida que crece el número de carbonos debido a interacciones entre moléculas por fuerzas de London. Los alcanos lineales tienen puntos de ebullición más elevados que sus isómeros ramificados.

http://es.wikipedia.org/wiki/Alcanohttp://www.quimicaorganica.net/alcanos.html

Page 24: química del carbono

ALQUENOS

Son compuestos hidrocarbonados con uno o más dobles enlaces entre átomos de carbono. Los alquenos con sólo un doble enlace tienen como fórmula molecular CnH2n, con n ≥ 2. Se nombran con los mismos prefijos que los alcanos, cambiando la terminación -ano por -eno, (eteno, propeno, 1-buteno). Para nombrar los alquenos se toma como cadena principal la de mayor longitud que contenga el doble enlace y se termina en -eno. La posición del doble enlace se indica mediante un número localizador. La numeración parte del extremo que permite asignar los localizadores más bajos al doble enlace.

Page 25: química del carbono

El alqueno más simple de todos es el eteno o etileno.

Al igual que ocurre con otros compuestos orgánicos, algunos alquenos se conocen todavía por sus nombres no sistemáticos, en cuyo caso se sustituye la terminación -eno sistemática por -ileno, como es el caso del eteno que en ocasiones se llama etileno, o propeno por propileno.

Page 26: química del carbono

Utilizaremos el eteno como ejemplo de compuesto con doble enlace C=C. El doble enlace tiene dos componentes: el enlace tipo σ y el enlace tipo π. Los dos átomos de carbono que comparten el enlace tienen una hibridación sp2, hibridación resultante de la mezcla de un orbital 2s y dos orbitales 2p, lo cual conduce a la formación de tres orbitales sp2 de geometría trigonal plana. Al combinarse estos orbitales sp2 los electrones compartidos forman un enlace σ, situado entre ambos carbonos.

Page 27: química del carbono

En la primera figura puede observarse el radical metilo, con un orbital sp2 que enlaza a un átomo de hidrógeno al carbono. En la segunda figura se aprecia la formación del enlace π (línea de puntos); que se forma mediante el solapamiento de los dos orbitales 2pperpendiculares al plano de la molécula. En este tipo de enlace los electrones están deslocalizados alrededor de los carbonos, por encima y por debajo del plano molecular.Energéticamente, el doble enlace se forma mediante la edición de dos tipos de enlace, el σ y el π

http://es.wikipedia.org/wiki/Alquenohttp://www.educaplus.org/moleculas3d/alquenos.html

Page 28: química del carbono

ALQUINOS

Nombre derivado de alcano con la terminación ilo, es un grupo funcional orgánico monovalente, formado por la separación de un átomo de hidrógeno de un hidrocarburo saturado o alcano, para que así pueda enlazarse a otro átomo o grupo de átomos.Se puede suponer que un grupo alquilo puede formarse a partir de un alcano, pero estos grupos no existen por separado o sea, los grupos alquilo no son compuestos en sí mismos, sino partes de compuestos mayores. Los grupos alquilo siempre se encuentran unidos a otro átomo o grupo de átomos.

Page 29: química del carbono

Hay que distinguir entre grupos alquilo de cadena recta y de cadena ramificada según la geometría de la cadena alquílica, es decir, la ausencia de ramificaciones (como en el grupo propil), o la presencia de las mismas (en el grupo isopropil).

podemos distinguir entre grupos alquino primarios, secundarios y terciarios, ya que dicho átomo de H que falta definirá el carbono de unión entre el grupo alquilo y el resto de la molécula.

Page 30: química del carbono

Grupo alquilo

Estructura Fórmula Cadena y Tipo de alquilo

Ejemplo

Butil o butilo

Tambien hay que tener en cuennta que los alquilos no son INESTABLES sino que por sus compuestos de etanol metano alcohol etc ellos se fusionan o mezclan con hidrogenopor eso su atomo es asi M3H

CH3-CH2-CH2-CH2-

Cadena lineal Alquilo primario

sec-butil

CH3-CH-CH2-CH3

Cadena lineal Alquilo secundario

2-metilpropil ó Isobutil

CH3-CH(CH3)-CH2-

Cadena ramificada Alquilo primario

ter-butil

CH3-C(CH3)-CH3

Cadena ramificada Alquilo Terciario

http://es.wikipedia.org/wiki/Alquino

http://www.alonsoformula.com/organica/alquinos.htm

Page 31: química del carbono

Es una propiedad de ciertos compuestos químicos que con igual fórmula molecular es decir, iguales proporciones relativas de los átomos que conforman su molécula, presentan estructuras moleculares distintas y, por ello, diferentes propiedades. Dichos compuestos reciben la denominación de isómeros. Por ejemplo, el alcohol etílico o etanol y el éter dimetílico son isómeros cuya fórmula molecular es C2H6O.

ISOMERIA DE COMPUESTOS ORGANICOS

Page 32: química del carbono

Isomería constitucionalForma de isomería, donde las moléculas con la misma fórmula molecular, tienen una diferente distribución de los enlaces entre sus átomos. Los isómeros constitucionales son sustancias que poseen la misma fórmula molecular pero difieren en la secuencia en la que están enlazados sus átomos.

http://www.quiral.es/estereoisomeria-L2.htm

Page 33: química del carbono

Isomería constitucional

Isomería de cadena

Isomería de posición

Isomería de grupo funcional

Page 34: química del carbono

Isomería de cadena

Los isómeros de este tipo tienen componentes de la cadena acomodados en diferentes lugares, es decir las cadenas carbonadas son diferentes, presentan distinto esqueleto o estructura.

Page 35: química del carbono

Isomería de posición

Es la de aquellos compuestos en los que sus grupos funcionales o sus grupos sustituyentes están unidos en diferentes posiciones.Un ejemplo simple de este tipo de isomería es la del pentanol, donde existen tres isómeros de posición: pentan-1-ol, pentan-2-ol y pentan-3-ol.

Page 36: química del carbono

Isomería de grupo funcional

Aquí, la diferente conectividad de los átomos, puede generar diferentes grupos funcionales en la cadena. Un ejemplo es el ciclohexano y el 1-hexeno, que tienen la misma fórmula molecular (C6H12), pero el ciclohexano es un alcano cíclico o cicloalcano y el 1-hexeno es un alqueno. Hay varios ejemplos de isomeria como la de ionización, coordinación, enlace, geometría y óptica.

Page 37: química del carbono

isomería estereoisomería

Presentan estereoisomería aquellos compuestos que tienen fórmulas moleculares idénticas y sus átomos presentan la misma distribución (la misma forma de la cadena; los mismos grupos funcionales y sustituyentes; situados en la misma posición), pero su disposición en el espacio es distinta, o sea, difieren en la orientación espacial de sus átomos.Otra clasificación los divide en enantiómeros (son imágenes especulares) y diastereoisómeros (no son imágenes especulares). Entre los diastereoisómeros se encuentran los isómeros cis-trans (antes conocido como isómeros geométricos), los confórmeros o isómeros conformacionales y, en las moléculas con varios centros quirales, los isómeros que pertenecen a distintas parejas de enantiómeros.

Page 38: química del carbono

EnantiomeríaCuando un compuesto tiene al menos un átomo de Carbono asimétrico o quiral, es decir, un átomo de carbono con cuatro sustituyentes diferentes Los isómeros ópticos no se pueden superponer y uno es como la imagen especular del otro, como ocurre con las manos derecha e izquierda. Presentan las mismas propiedades físicas y químicas pero se diferencian en que desvían el plano de la luz polarizada en diferente dirección.• un isómero desvía la luz polarizada hacia la derecha (en orientación

con las manecillas del reloj) y se representa con el signo (+): es el isómero dextrógiro o forma dextro;

• el otro isómero óptico la desvía hacia la izquierda (en orientación contraria con las manecillas del reloj) y se representa con el signo (-)(isómero levógiro o forma levo).

Page 39: química del carbono

Diasteroisómeros

Cuando un compuesto tiene más de un carbono asimétrico podemos encontrar formas enatiómeras (que son imagen especular una de la otra) y otras formas que no son exactamente copias espaculares, por no tener todos sus carbonos invertidos. A estas formas se les llama diasteroisómeros. Por ejemplo, el 3-bromo-butan-2-ol posee dos carbonos asimétricos por lo que tiene 4 formas posibles. De ellas, algunas son enantiomorfas (formas especulares), como (2S,3S)-3-bromo-butan-2-ol y (2R,3R)-3-bromo-butan-2-ol.

http://es.wikipedia.org/wiki/Isomer%C3%ADahttp://www.profesorenlinea.cl/Quimica/Estereoquimica_e_isomeria.htmlhttp://www.gobiernodecanarias.org/educacion/3/usrn/lentiscal/1-cdquimica-tic/DIR-Q/Organica-2/estereoquimica/teoriaestereoisomeria.htm

Page 40: química del carbono

Los grupos funcionales son estructuras submoleculares, caracterizadas por una conectividad y composición elemental específica que confiere reactividad a la molécula que los contiene. Estas estructuras reemplazan a los átomos de hidrógeno perdidos por las cadenas hidrocarbonadas saturadas. Los grupos alifáticos, o de cadena abierta, suelen ser representados genéricamente por R (radicales alquílicos), mientras que los aromáticos, o derivados del benceno, son representados por Ar (radicales arílicos). Los grupos funcionales confieren una reactividad química específica a las moléculas en las que están presentes.

IMPORTANCIA Y NOMENCLATURA DE GRUPOS FUNCIONALES ORGANICOS

Page 41: química del carbono

Nomenclatura química orgánica

Es la parte de la nomenclatura que se encarga de nombrar los compuestos de la química orgánica, es decir, nombra a las moléculas que se encuentran compuestas principalmente por carbono e hidrógeno, con enlaces de elementos como el oxígeno, el azufre, fósforo, nitrógeno y halógenos.

Page 42: química del carbono

GRUPOS FUNCIONALESCH3 -X metil

CH3-CH2 –X etil

CH3-CH2-CH2 –X propil

CH3-CH2-CH2-CH2 –X butil

CH3-CH2-CH2-CH2-CH2 –X pentil

CH3-CH2-CH2-CH2-CH2-CH2 –X hexil

CH3-CH2-CH2-CH2-CH2-CH2-CH2 –X heptil

CH3-CH2-CH2-CH2-CH2-CH2-CH2-CH2 -X octil

CH3-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2 –X nonil

http://organica1.org/nomencla/nomen5.htmhttp://quimica.laguia2000.com/quimica-organica/nomenclatura-quimica#ixzz2Ch4lx4Bt

Page 43: química del carbono

Los alcoholes son compuesto orgánicos que contienen el grupo hidroxilo (-OH). El metanol es el alcohol más sencillo, se obtiene por reducción del monóxido de carbono con hidrógeno.

ALCOHOLES

Page 44: química del carbono

El metanol es un líquido incoloro, su punto de ebullición es  65ºC,

miscible en agua en todas las proporciones y venenoso (35 ml

pueden matar una persona) La mitad del metanol producido se oxida

a metanal (formaldehído), material de partida para la fabricación de

resinas y plásticos. El etanol se obtiene por fermentación de materia

vegetal, obteniéndose una concentración máxima de 15% en etanol. 

Por destilación se puede aumentar esta concentración hasta el 98%.

También se puede obtener etanol por hidratación del etileno (eteno)

que se obtiene a partir del petróleo.El etanol es un líquido incoloro, miscible en agua en todas proporciones, con punto de ebullición de 78ºC.  Es fácilmente metabolizado por nuestros organismos, aunque su abuso causa alcoholismo.

Page 45: química del carbono

Regla 1. Se elige como cadena principal la de mayor longitud que contenga el grupo -OH.

Regla 2.  Se numera la cadena principal para que el grupo -OH tome el

localizador más bajo.  El grupo hidroxilo tiene preferencia sobre cadenas

carbonadas, halógenos, dobles y triples enlaces.

Regla 3. El nombre del alcohol se construye cambiando la terminación -o del

alcano con igual número de carbonos por -ol

 

Page 46: química del carbono

• Regla 4. Cuando en la molécula hay grupos grupos funcionales de mayor prioridad, el alcohol pasa a ser un mero sustituyente y se llama hidroxi-. Son prioritarios frente a los alcoholes: ácidos carboxílicos, anhídridos, ésteres, haluros de alcanoilo, amidas, nitrilos, aldehídos y cetonas.

• Regla 5. El grupo -OH es prioritario frente a los alquenos y alquinos.

La numeración otorga el localizador más bajo al -OH y el nombre de

la molécula termina en -ol.

http://www.quimicaorganica.org/alcoholes/415-sintesis-de-alcoholes-por-hidratacion-de-alquenos.html

Page 47: química del carbono

Es un grupo funcional del tipo R-O-R', en donde R y R' son grupos alquilo, estando el átomo de oxígeno unido y se emplean pasos intermedios: ROH + HOR' → ROR' + H2OLos éteres suelen ser utilizados como disolventes orgánicos.Suelen ser bastante estables, no reaccionan fácilmente, y es difícil que se rompa el enlace carbono-oxígeno.

ETERES

Page 48: química del carbono

NOMENCLATURA DE ETERES

Los éteres sencillos de cadena alifática o lineal pueden nombrarse al final de la palabra éter el sufijo -ílico luego de los prefijos met, et, but, según lo indique el número de carbonos. Un ejemplo ilustrativo sería el siguiente:

Page 49: química del carbono

Aplicaciones de los éteres

• Medio para extractar para concentrar ácido acético y otros ácidos.

• Medio de arrastre para la deshidratación de alcoholes etílicos e isopropílicos.

• Disolvente de sustancias orgánicas (aceites, grasas, resinas, nitrocelulosa, perfumes y alcaloides).

• Combustible inicial de motores Diésel.• Fuertes pegamentos• Antinflamatorio abdominal para después del parto,

exclusivamente uso externo.• Vaselina de los preservativos

Page 50: química del carbono

EJEMPLOS DE ETERES

http://es.wikipedia.org/wiki/%C3%89ter_(qu%C3%ADmica)

http://www.sabelotodo.org/quimica/eteres.html

Page 51: química del carbono

Son compuestos orgánicos caracterizados por poseer el grupo funcional -CHO. Se denominan como los alcoholes correspondientes, cambiando la terminación -ol por –al.

Es decir, el grupo carbonilo C=O está unido a un solo radical orgánico.

ALDEHIDOS

Page 52: química del carbono

PROPIEDADES DE LOS ALDEHIDOS

• La doble unión del grupo carbonilo son en parte covalentes y en parte iónicas dado que el grupo carbonilo está polarizado debido al fenómeno de resonancia.

• Los aldehídos con hidrógeno sobre un carbono sp³ en posición alfa al grupo carbonilo presentan isomería tautomérica. Los aldehídos se obtienen de la deshidratación de un alcohol primario, se deshidratan con permanganato de potasio, la reacción tiene que ser débil , las cetonas también se obtienen de la deshidratación de un alcohol , pero estas se obtienen de un alcohol secundario e igualmente son deshidratados como permanganato de potasio y se obtienen con una reacción débil , si la reacción del alcohol es fuerte el resultado será un ácido carboxílico.

• Se comportan como reductor, por oxidación el aldehído de ácidos con igual número de átomos de carbono.

http://www.alonsoformula.com/organica/aldehidos.htm

Page 53: química del carbono

usos principales de los aldehídos

• La fabricación de

resinas• Plásticos• Solventes• Pinturas• Perfumes• Esencias

Los aldehídos están presentes en numerosos productos naturales y grandes variedades de ellos son de la propia vida cotidiana. La glucosa por ejemplo existe en una forma abierta que presenta un grupo aldehído. El acetaldehído formado como intermedio en la metabolización se cree responsable en gran medida de los síntomas de la resaca tras la ingesta de bebidas alcohólicas.

El formaldehído es un conservante que se encuentra en algunas composiciones de productos cosméticos. Sin embargo esta aplicación debe ser vista con cautela ya que en experimentos con animales el compuesto ha demostrado un poder cancerígeno. También se utiliza en la fabricación de numerosos compuestos químicos como la baquelita, la melanina etc.http://es.wikipedia.org/w/index.php?title=Aldehído&oldid=60945651

http://lema.rae.es/drae/?val=aldeh%C3%ADdo

Page 54: química del carbono

Es un compuesto orgánico caracterizado por poseer un grupo funcional carbonilo unido a dos átomos de carbono. Cuando el grupo funcional carbonilo es el de mayor relevancia en dicho compuesto orgánico, las cetonas se nombran agregando el sufijo -ona al hidrocarburo del cual provienen hexano, hexanona; heptano, heptanona, etc. También se puede nombrar posponiendo cetona a los radicales a los cuales está unido (por ejemplo: metilfenil cetona). Cuando el grupo carbonilo no es el grupo prioritario, se utiliza el prefijo oxo- (ejemplo: 2-oxopropanal).

CETONAS

Page 55: química del carbono

PROPIEDADES

• Los compuestos carbonílicos presentan puntos de ebullición más bajos que los alcoholes de su mismo peso molecular.

• Los compuestos carbonílicos de cadena corta son solubles en agua y a medida que aumenta la longitud de la cadena disminuye la solubilidad.

• Al hallarse el grupo carbonilo en un carbono secundario son menos reactivas que los aldehídos.

• Solo pueden ser oxidadas por oxidantes fuertes como el permanganato de potasio dando como productos dos ácidos con menor número de átomos de carbono.

• Por reducción dan alcoholes secundarios. • No reaccionan con el reactivo de Tollens para dar el espejo de

plata como los aldehídos, lo que se utiliza para diferenciarlos. • Tampoco reaccionan con los reactivos de Fehling y Schiff.

Page 56: química del carbono

CLASIFICACION

• Cetonas alifáticas: Resultan de la oxidación moderada de los alcoholes secundarios. Si los radicales alquilo R son iguales la cetona se denomina simétrica, de lo contrario será asimétrica.

• Cetonas aromáticas: Se destacan las quinonas, derivadas del benceno.

• Cetonas mixtas: Cuando el grupo carbonil se acopla a un radical arilico y un alquilico, como el fenilmetilbutanona.

Page 57: química del carbono

NOMENCLATURA DE CETONAS

En la nomenclatura de cetonas para nombrarlas se toma en cuenta el número de átomos de carbono y se cambia la terminación por ONA, indicando el carbono que lleva el grupo carbonilo (CO). Además se debe tomar como cadena principal la de mayor longitud que contenga el grupo carbonilo y luego se enumera de tal manera que éste tome el localizador más bajo.

Page 58: química del carbono

http://www.inchem.org/documents/sids/sids/67641.pdfhttp://www.the-innovation-group.com/ChemProfiles/Acetone.htm

La aplicación más importante de la acetona se encuentra en la fabricación de Metil metacrilato (MMA), mercado que experimenta una demanda creciente (3% anual) desde el 2002 por el incremento en los usos del Polimetilmetacrilato (PMMA), un material antifragmentación alternativo al vidrio en la industria de la construcción.La demanda de Bisfenol-A y de resinas de policarbonato se ha duplicado en la década de los 1990, convirtiéndose en la segunda aplicación importante de la acetona (7% incremento anual), demandada por la industria del automóvil y de microelectrónica (fabricación de discos CD y DVD).

Page 59: química del carbono

Son compuestos químicos orgánicos que se consideran como derivados del amoníaco y resultan de la sustitución de los hidrógenos de la molécula por los radicales alquilo. Según se sustituyan uno, dos o tres hidrógenos, las aminas serán primarias, secundarias o terciarias, respectivamente.

Amoníaco Amina primaria Amina secundaria Amina terciaria

AMIDAS

Page 60: química del carbono

Nomenclatura de aminasCuando se usan los prefijos di, tri, se indica si es una amina secundaria y terciaria, respectivamente, con grupos o radicales iguales. Cuando se trata de grupos diferentes a estos se nombran empezando por los más pequeños y terminando con el mayor al que se le agrega la terminación amina. Algunas veces se indica el prefijo amino indicando la posición, más el nombre del hidrocarburo.

Compuesto Nombres CH3-NH2 Metilamina o aminometano.

CH3-NH-CH3 Dimetilamina o metilaminometano.

CH3-CH2-NH-CH2-CH2-CH3

Etilpropilamina o etilaminopropano.

CH3 | N-CH3 | CH3

Trimetilamina o dimetilaminometano.

CH3 | N-CH2-CH2-CH3 | CH2-CH3

Etilmetilpropilamina o metiletilaminopropano. N-etil,N-metilpropanoamina

Page 61: química del carbono

Reglas para Nombrar Aminas

1. Se identifica la cadena principal que tenga el grupo amino y se enumera por el carbono al cual se encuentra unido el grupo amino. Si existe 2 grupos aminos ver la menor posición de los sustituyentes y nombrarlos en orden alfabético con la palabra amina.2. Cuando hay radicales sustituyendo al hidrógeno del grupo amino, se utiliza la letra N (mayúscula) por cada sustituyente y se procede a nombrar al compuesto.3. Si el grupo amino se encuentra como sustituyente de otro grupo funcional más importante y en el caso de existir varios en una cadena se utiliza los prefijos como (amino, metilamino, aminometil). El grupo amino debe quedar en la menor posición.http://es.wikipedia.org/wiki/Amina

http://www.quimicaorganica.org/aminas.html

Page 62: química del carbono

Los ácidos carboxílicos constituyen un grupo de compuestos que se caracterizan porque poseen un grupo funcional llamado grupo carboxilo o grupo carboxi (–COOH); se produce cuando coinciden sobre el mismo carbono un grupo hidroxilo (-OH) y carbonilo (C=O). Se puede representar como COOH ó CO2H.

Estructura de un ácido carboxílico, donde R es un hidrógeno o un grupo orgánico.

ACIDOS CARBOXILICOS

Page 63: química del carbono

PROPIEDADES DE LOS ACIDOS CARBOXILICOS

Los derivados de los ácidos carboxílicos tienen como fórmula general R-COOH. Tiene propiedades ácidas; los dos átomos de oxígeno son electronegativos y tienden a atraer a los electrones del átomo de hidrógeno del grupo hidroxilo con lo que se debilita el enlace, produciéndose en ciertas condiciones, una ruptura heterolítica cediendo el correspondiente protón o hidrón, H+, y quedando el resto de la molécula con carga -1 debido al electrón que ha perdido el átomo de hidrógeno, por lo que la molécula queda como R-COO-.

En este anión, la carga negativa se distribuye (se deslocaliza) simétricamente entre los dos átomos de oxígeno, de forma que los enlaces carbono-oxígeno adquieren un carácter de enlace parcialmente doble. El ácido carboxilico es una mezcla de hidrogeno y gas metano que forman FOX un estado gaseoso.

Generalmente los ácidos carboxílicos son ácidos débiles, con sólo un 1% de sus moléculas disociadas para dar los correspondientes iones, a temperatura ambiente y en disolución acuosa.

Page 64: química del carbono

Nombres de los ácidos carboxílicos

Nombre trivial Nombre IUPAC Estructura Número de carbonos Ácido fórmico Ácido metanoico HCOOH C1:0

Ácido acético Ácido etanoico CH3COOH C2:0

Ácido propiónico Ácido propanoico CH3CH2COOH C3:0

Ácido butírico Ácido butanoico CH3(CH2)2COOH C4:0

Ácido valérico Ácido pentanoico CH3(CH2)3COOH C5:0

Ácido caproico Ácido hexanoico CH3(CH2)4COOH C6:0

Ácido enántico Ácido heptanoico CH3(CH2)5)COOH C7:0

Ácido caprílico Ácido octanoico CH3(CH2)6COOH C8:0

Ácido pelargónico Ácido nonanoico CH3(CH2)7COOH C9:0

Ácido cáprico Ácido decanoico CH3(CH2)8COOH C10:0

Ácido undecílico Ácido undecanoico CH3(CH2)9COOH C11:0

Ácido láurico Ácido dodecanoico CH3(CH2)10COOH C12:0

Ácido tridecílico Ácido tridecanoico CH3(CH2)11COOH C13:0

NOMENCLATURA DE ACIDOS CARBOXILICOS

http://es.wikipedia.org/wiki/%C3%81cido_carbox%C3%ADlico

Page 65: química del carbono

Los derivados carboxílicos son compuestos que presentan el grupo acilo en los ácidos alifáticos o aromáticos. Entre los derivados de los ácidos carboxílicos se encuentran: las sales de ácido, los ésteres, los haluros de ácidos, anhídridos de ácidos, amidas.

DERIVADOS DE LOS ACIDOS CARBOXILICOS

Page 66: química del carbono

Propiedades físicas de los derivados de ácidos carboxílicos

Los ésteres no presentan puentes de hidrógeno intermolecular por lo que sus puntos de ebullición son similares a los de los alcanos de pero molecular similar. A partir de los tres átomos de carbono, su solubilidad en agua disminuye. Se disuelven bien en solventes orgánicos. Los más volátiles tienen olores agradables. Se usan en perfumería y para preparar condimientos artificiales.Haluros de ácido: La mayor importancia la tienen los cloruros de ácido. El primer miembro de la serie alifática es el cloruro de metanoilo o cloruro de formilo, el cual es un compuesto inestable. La mayoría son líquidos de bajo punto de fusión y olores irritantes. No presentan puente de hidrógeno intermolecular, por lo que sus puntos de ebullición son más bajos que los de los ácidos de los que se derivan. Anhídridos de ácido: En este grupo sólo tiene importancia el anhídrido etanóico, que es un compuesto polar, no presenta puente de hidrógeno intermolecular por ser el producto de la deshidratación de dos moles de ácido carboxílico. Sus puntos de ebullición son similares a los de los aldehídos y cetonas de peso molecular semejante.

Page 67: química del carbono

ESTERES

DERIVADOS DE ÁCIDOS CARBOXÍLICOS

Anhidridos

Haluros de ácido

Amidas

Nitrilos

Page 68: química del carbono

NOMENCLATURA DE ACIDOS CARBOXILICOS

Cuando el grupo carboxilo es la función principal se antepone la palabra ácido al nombre del hidrocarburo correspondiente acabado en -oico.

Cuando en un compuesto hay tres o más grupos COOH y en caso de ácidos cíclicos se utiliza el sufijo -carboxílico

Page 69: química del carbono

Sales.Se sustituye la terminación -ico del ácido por la terminación -ato.En caso de que se haya utilizado el sufijo -carboxílico para nombrar el ácido se sustituye por -carboxilato.A continuación el nombre del metal correspondiente.

Ésteres.Se utiliza el mismo procedimiento que para las sales poniendo el nombre del radical correspondiente en vez del metal.

Cuando el grupo característico, es sustituyente frente a otro grupo principal, o frente a otros grupos carboxilato, se emplean los prefijos alcoxicarbonil-, ariloxicarbonil-, o en su caso se utiliza el prefijo aciloxi-.

Page 70: química del carbono

Anhidridos de ácido.Se antepone la palabra anhidrido al nombre del ácido del que provienen.

Amidas.Las amidas con un grupo -NH2 no sustituido se denominan

eliminando la palabra ácido y reemplazando la terminación -ico por -amida o la terminación -carboxílico por -carboxamida.

http://www.salonhogar.net/quimica/nomenclatura_quimica/Propiedades_acidos_carboxilicos.htm