1
Prasenjit Roy, Gilles A. de Wijs, Robert A. de Groot Electronic Structure of Material, Radboud University Nijmegen Backgrounds Most magnets realign the moments at the Curie temperature, and the net moment becomes zero. They are called strong magnets, like Fe, Ni etc. Very few magnets loose the local moments at T c . They are called weak magnets. Viz: ZrZn 2 and TiBe 2 . Recently, MnFeSiP series of materials were discovered, with very high efficiency of MCE near room temperature and stability of structure with doping. CalculaDons Most of the calculaJons were done by using pseudopotenJal method implemented in VASP as a primary tool; and WIEN2K, incorporaJng LAPW method for more precise calculaJon. In both cases we used GGAPBE funcJonal. For MnFeSiP the space group number is 189 and the unitcell is hexagonal. The density of states for MnFeSiP shows that Mn at the 3g posiJon serves as a strong magnet which conserve its moment at Curie temperature while Fe at the 3f plane looses half of its moment (weak magnet). This kind of arrangement is called MIXED MAGNETISM and holds the key of GMCE at room temperature. | Local moment | Mn Fe Si P FerromagneDc 2.8 1.5 0.1 0.1 AnDferromagneDc 2.8 0.8 0.1 0.1 If we compare the difference electron density of Codoped, Crdoped and Mn rich MnFeSiP based materials; we see: The electron density is moving from Fe to Si, suggesJng a possible covalent bonding. From the picture and the parJal occupaJon of delectrons we can also argue, 3d xy and 3d x2y2 orbitals are responsible in these materials for change in Curie temperature and adiabaJc latent heat. The trend from the periodic table is also visible. OpDmizaDon Using the acquired knowledge we further extended our research. The UTX materials also showed Mixed MagneJsm. The successful explanaJon of the GMCE in near future will represent an understanding of controlling the Curie temperature and the local moment by means of different chemical composiJon and structures. References 1. Anders Smith, Chris1an R.H. Bahl, Rasmus Bjork, Kurt Engelbrecht, Kasper K Nielson, Nini Pryds, Adv. Energy Material, 2012, 2, 12881318. 2. N.H. Dung, Z. Qu. Ou, L. Caron, L. Zhang, D. T. Cam Thanh, G. A. de Wijs, R. A. de Groot, K. H. J. Buschow, E. Bruck, Adv. Energy Material, 2011, 1, 1215. Strong layer Weak layer Strong layer Weak layer Spin Up Spin Down AnJferromagnet Forces on atoms At Curie Temp. AnJferromagneJc arrangement in z direcJon. FerromagneJc pDOS AnJferromagneJc pDOS The QuesDon The Giant Magnetocaloric effect (GMCE) is important for refrigeraJon. But the mechanism of it sJll remains unknown. First principle electronic structure calculaJon elucidates the microscopic origin of giant MCE. IntroducDon Historically the discovery of Magnetocaloric Effect is conferred to Weiss and Piccard (1918) for an experiment on Nickel. They proved that the effect is reversible and most effecJve near the Curie temperature. In 1997 Pecharsky and Gschneider discovered “Giant Magnetocaloric Effect (GMCE)” in Gd 5 Si 2 Ge 2 . Successful implementaJon of GMCE can reduce the world’s energy consumpJon by 8% within 2030 : as proposed by the UN.

Roy-document-1

Embed Size (px)

DESCRIPTION

 

Citation preview

Page 1: Roy-document-1

Prasenjit  Roy,  Gilles  A.  de  Wijs,  Robert  A.  de  Groot  Electronic  Structure  of  Material,  Radboud  University  Nijmegen  

Backgrounds  Most  magnets  realign  the  moments  at  the  Curie  temperature,  and  the  net  moment  becomes  zero.  They  are  called  strong  magnets,  like  Fe,  Ni  etc.  Very  few  magnets  loose  the  local  moments  at  Tc.  They  are  called  weak  magnets.  Viz:    ZrZn2  and  TiBe2.  Recently,  MnFeSiP  series  of  materials  were  discovered,    with   very   high   efficiency   of   MCE   near   room   temperature   and   stability   of  structure  with  doping.    

CalculaDons  Most   of   the   calculaJons   were   done   by   using   pseudopotenJal   method  implemented  in  VASP  as  a  primary  tool;  and  WIEN2K,   incorporaJng  LAPW  method   for   more   precise   calculaJon.   In   both   cases   we   used   GGA-­‐PBE  funcJonal.    For  MnFeSiP  the  space  group  number  is  189  and  the  unitcell  is  hexagonal.  

The    density  of  states  for  MnFeSiP  shows  that  Mn  at  the  3g  posiJon  serves  as  a  strong  magnet  which  conserve  its  moment  at  Curie  temperature  while  Fe   at   the   3f   plane   looses   half   of   its  moment   (weak  magnet).   This   kind   of  arrangement   is   called  MIXED  MAGNETISM   and   holds   the   key   of   GMCE   at  room  temperature.  

|  Local  moment  | Mn Fe Si P

FerromagneDc 2.8 1.5 0.1 0.1

AnDferromagneDc 2.8 0.8 0.1 0.1

If   we   compare   the   difference  electron   density   of   Co-­‐doped,  Cr-­‐doped  and  Mn  rich  MnFeSiP  based  materials;  we  see:-­‐  

The  electron  density  is  moving  from  Fe  to  Si,  suggesJng  a  possible  covalent  bonding.    From  the  picture  and  the  parJal  occupaJon  of  d-­‐electrons  we  can  also   argue,   3dxy  and   3d   x2-­‐y2  orbitals   are   responsible   in   these  materials   for  change  in  Curie  temperature  and  adiabaJc  latent  heat.  The  trend  from  the  periodic  table  is  also  visible.  

OpDmizaDon  Using  the  acquired  knowledge  we  further  extended  our  research.  The  UTX  materials  also  showed  Mixed  MagneJsm.  The  successful  explanaJon  of  the  GMCE   in   near   future   will   represent   an   understanding   of   controlling   the  Curie   temperature   and   the   local  moment   by  means   of   different   chemical  composiJon  and  structures.    

References            1.  Anders   Smith,  Chris1an  R.H.  Bahl,  Rasmus  Bjork,   Kurt   Engelbrecht,  Kasper  K  Nielson,  Nini  Pryds,  Adv.  Energy  Material,  2012,  2,  1288-­‐1318.              2.  N.H.  Dung,  Z.  Qu.  Ou,  L.  Caron,  L.  Zhang,  D.  T.  Cam  Thanh,  G.  A.  de  Wijs,  R.  A.  de  Groot,  K.  H.  J.  Buschow,  E.  Bruck,  Adv.  Energy  Material,  2011,  1,  1215.  

Strong  layer  

Weak  layer  

Strong  layer  

Weak  layer  

Spin  Up  

Spin  Down  

AnJferromagnet  

Forces  on  atoms  At  Curie  Temp.  

AnJferromagneJc  arrangement  in  z  direcJon.  

FerromagneJc  p-­‐DOS   AnJferromagneJc  p-­‐DOS  

The  QuesDon  The  Giant  Magnetocaloric  effect   (GMCE)   is   important   for   refrigeraJon.  But  the   mechanism   of   it   sJll   remains   unknown.   First   principle   electronic  structure  calculaJon  elucidates  the  microscopic  origin  of  giant  MCE.    

IntroducDon  Historically  the  discovery  of  Magnetocaloric  Effect  is  conferred  to  Weiss  and  Piccard  (1918)  for  an  experiment  on  Nickel.  They  proved  that  the  effect  is  

 reversible  and  most  effecJve  near  the  Curie  temperature.  In  1997  Pecharsky  and  Gschneider  discovered  “Giant  Magnetocaloric  Effect  (GMCE)”  in  Gd5Si2Ge2.    Successful  implementaJon  of  GMCE  can  reduce  the  world’s  energy  consumpJon  by  8%  within  2030  :  as  proposed  by  the  UN.