60
Introduction to Refrigeration and Air - Conditioning S. Y. B. Tech. Prod Engg. Introduction to Refrigeration & Air Conditioning ME0223 SEM- IV Applied Thermodynamics & Heat Engines Applied Thermodynamics & Heat Engines S.Y. B. Tech. ME0223 SEM - IV Production Engineering

Se prod thermo_chapter_5_refrigeration

Embed Size (px)

Citation preview

Page 1: Se prod thermo_chapter_5_refrigeration

Introduction to Refrigeration and Air - Conditioning

S. Y. B. Tech. Prod Engg.

Introduction to

Refrigeration & Air Conditioning

ME0223 SEM-IV Applied Thermodynamics & Heat Engines

Applied Thermodynamics & Heat Engines

S.Y. B. Tech.

ME0223 SEM - IV

Production Engineering

Page 2: Se prod thermo_chapter_5_refrigeration

Introduction to Refrigeration and Air - Conditioning

S. Y. B. Tech. Prod Engg.ME0223 SEM-IV Applied Thermodynamics & Heat Engines

Outline

• Applications of Refrigeration.

• Bell – Coleman Cycle.

• COP and Power Calculations

• Vapour – Compression Refrigeration System.

• Presentation on T-S and P-h diagram.

• Vapour – Absorption System.

Page 3: Se prod thermo_chapter_5_refrigeration

Introduction to Refrigeration and Air - Conditioning

S. Y. B. Tech. Prod Engg.ME0223 SEM-IV Applied Thermodynamics & Heat Engines

Refrigeration

REFRIGERATION – Science of producing and maintaining temperature below that of

surrounding / atmosphere.

REFRIGERATION – Cooling of or removal of heat from a system.

Refrigerating System – Equipment employed to maintain the system at a low temperature.

Refrigerated System – System which is kept at lower temperature.

Refrigeration – 1) By melting of a solid,

2) By sublimation of a solid,

3) By evaporation of a liquid.

Most of the commercial refrigeration production : Evaporation of liquid.

This liquid is known as Refrigerant.

Page 4: Se prod thermo_chapter_5_refrigeration

Introduction to Refrigeration and Air - Conditioning

S. Y. B. Tech. Prod Engg.

Refrigeration Circuit

Refrigeration Circuit

ME0223 SEM-IV Applied Thermodynamics & Heat Engines

EvaporatorCompressor

CondenserExpansion Valve

Page 5: Se prod thermo_chapter_5_refrigeration

Introduction to Refrigeration and Air - Conditioning

S. Y. B. Tech. Prod Engg.ME0223 SEM-IV Applied Thermodynamics & Heat Engines

Refrigeration - Elements

Compressor

Condenser

Evaporator

Expansion Valve

Wnet, in

Surrounding Air

Refrigerated Space

QH

QL

High Temp Source

Low TempSink

QH

QL

Wnet, in

Page 6: Se prod thermo_chapter_5_refrigeration

Introduction to Refrigeration and Air - Conditioning

S. Y. B. Tech. Prod Engg.ME0223 SEM-IV Applied Thermodynamics & Heat Engines

Refrigeration - Applications1. Ice making.

2. Transportation of food items above and below freezing.

2. Industrial Air – Conditioning.

4. Comfort Air – Conditioning.

5. Chemical and related industries.

6. Medical and Surgical instruments.

7. Processing food products and beverages.

8. Oil Refining.

9. Synthetic Rubber Manufacturing.

10. Manufacture and treatment of metals.

11. Freezing food products.

12. Manufacturing Solid Carbon Dioxide.

13. Production of extremely low temperatures (Cryogenics)

14. Plumbing.

15. Building Construction.

Applications :

Page 7: Se prod thermo_chapter_5_refrigeration

Introduction to Refrigeration and Air - Conditioning

S. Y. B. Tech. Prod Engg.ME0223 SEM-IV Applied Thermodynamics & Heat Engines

Refrigeration Systems

1. Ice Refrigeration System.

2. Air Refrigeration System.

2. Vapour Compression Refrigeration System.

4. Vapour Absorption Refrigeration System.

5. Adsorption Refrigeration System.

6. Cascade Refrigeration System.

7. Mixed Refrigeration System.

8. Thermoelectric Refrigeration System.

9. Steam Jet Refrigeration System.

10. Vortex Tube Refrigeration System.

Refrigeration Systems :

Page 8: Se prod thermo_chapter_5_refrigeration

Introduction to Refrigeration and Air - Conditioning

S. Y. B. Tech. Prod Engg.ME0223 SEM-IV Applied Thermodynamics & Heat Engines

Performance - COP

COP – Ratio of Heat absorbed by the Refrigerant while passing through the

Evaporator

to the Work Input required to compress the Refrigerant in the Compressor.

Performance of Refrigeration System :

- Measured in terms of COP (Coefficient of Performance).

If; Rn = Net Refrigerating Effect. W = Work required by the machine.

Then; W

RCOP n

COPlTheoretica

COPActualCOPlative Re

Actual COP = Ratio of Rn and W actually measured.

Theoretical COP = Ratio of Theoretical values of Rn and W obtained by applying

Laws of Thermodynamics to the Refrigerating Cycle.

Page 9: Se prod thermo_chapter_5_refrigeration

Introduction to Refrigeration and Air - Conditioning

S. Y. B. Tech. Prod Engg.ME0223 SEM-IV Applied Thermodynamics & Heat Engines

Performance - Rating

Rating of Refrigeration System :

- Refrigeration Effect / Amount of Heat extracted from a body in a given time.

Unit :

- Standard commercial Tonne of Refrigeration / TR Capacity

Definition :

- Refrigeration Effect produced by melting 1 tonne of ice from and at 0 ºC in 24 hours.

Latent Heat of ice = 336 kJ/kg.

Page 10: Se prod thermo_chapter_5_refrigeration

Introduction to Refrigeration and Air - Conditioning

S. Y. B. Tech. Prod Engg.ME0223 SEM-IV Applied Thermodynamics & Heat Engines

Air Refrigeration SystemOne of the earliest method.

Obsolete due to low COP and high operating cost.

Preferred in Aircraft Refrigeration due to its low weight.

Characteristic :

- Throughout the cycle, Refrigerant remains in gaseous state.

Air Refrigeration

Closed System Open System

• Air refrigerant contained within

piping or components of system.

• Pressures above atm. Pr.

• Refrigerator space is actual room to be cooled.

• Air expansion to atm. Pr. And then

compressed to cooler pressure.

• Pressures limited to near atm. Pr. levels..

Page 11: Se prod thermo_chapter_5_refrigeration

Introduction to Refrigeration and Air - Conditioning

S. Y. B. Tech. Prod Engg.ME0223 SEM-IV Applied Thermodynamics & Heat Engines

Air Refrigeration System

1. Suction to compressor in Closed System may be at high pressures. Hence,

the size of Expander and Compressor can be kept small.

Closed System Vs. Open System :

2. In Open Systems, air picks up the moisture from refrigeration chamber. This

moisture freezes and chokes the valves.

3. Expansion in Open System is limited to atm. Pr. Level only. No such restriction

to Closed System.

Page 12: Se prod thermo_chapter_5_refrigeration

Introduction to Refrigeration and Air - Conditioning

S. Y. B. Tech. Prod Engg.ME0223 SEM-IV Applied Thermodynamics & Heat Engines

Reverse Carnot Cycle

32

14

Isotherms

Adiabatic

T2

Expansion

Compression

T1

Pre

ssur

e

Volume

P –V Diagram

3 2

14T1

Expansion Compression

T2

Tem

pera

ture

Entropy

1’4’

T –s Diagram

Page 13: Se prod thermo_chapter_5_refrigeration

Introduction to Refrigeration and Air - Conditioning

S. Y. B. Tech. Prod Engg.ME0223 SEM-IV Applied Thermodynamics & Heat Engines

3 2

14T1

Expansion Compression

T2

Tem

pera

ture

Entropy

1’4’

Operation :

3 – 4 : Adiabatic Expansion.

Temp. falls from T2 to T1.

Cylinder in contact with Cold Body at T1.

4 – 1 : Isothermal Expansion.

Heat Extraction from Cold Body.

1 – 2 : Adiabatic Compression.

Requires external power.

Temp. rises from T1 to T2.

Cylinder in contact with Hot Body at T2

2 – 3 : Isothermal Compression.

Heat Rejection to Hot Body.

Reverse Carnot Cycle

Page 14: Se prod thermo_chapter_5_refrigeration

Introduction to Refrigeration and Air - Conditioning

S. Y. B. Tech. Prod Engg.ME0223 SEM-IV Applied Thermodynamics & Heat Engines

3 2

14T1

Expansion Compression

T2

Tem

pera

ture

Entropy

1’4’

Heat extracted from cold Body : Area 1-1’-4’-4

= T1 X 1-4

Work done per cycle : Area 1-2-3-4

= (T2 – T1) X 1-4

12

1

12

1

)41()(

)41(

4321

4'4'11

TT

T

XTT

XT

Area

Area

DoneWork

ExtractedHeatCOP

Reverse Carnot Cycle

Page 15: Se prod thermo_chapter_5_refrigeration

Introduction to Refrigeration and Air - Conditioning

S. Y. B. Tech. Prod Engg.ME0223 SEM-IV Applied Thermodynamics & Heat Engines

Example 1A Carnot Refrigerator requires 1.3 kW per tonne of refrigeration to maintain a region at low temperature of -38 ºC. Determine:i)COP of Carnot Refrigerator.ii)Higher temperature of the cycle.iii)Heat delivered and COP, if the same device is used Heat Pump.

99.2)sec/3600()3.1(

/000,14

3.1

1

hrkW

hrkJ

kW

tonne

doneWork

absorbedHeatCOPrefrig ….ANS

KTKT

K

TT

TCOPrefrig 6.313

235

23599.2 1

212

1

….ANS

Heat Delivered as Heat Pump ;

sec/189.53.13600

/000,143.11 kJ

hrkJkWtonne

doneWorkabsorbedHeat

….ANS

99.33.1

sec/189.5

kW

kJ

doneWork

deliveredHeatCOPHP ….ANS

Page 16: Se prod thermo_chapter_5_refrigeration

Introduction to Refrigeration and Air - Conditioning

S. Y. B. Tech. Prod Engg.ME0223 SEM-IV Applied Thermodynamics & Heat Engines

Example 2A refrigerating system works on reverse Carnot cycle. The higher temperature in the system is 35 ºC and the lower temperature is -15 ºC. The capacity is to be 12 tonnes. Determine :i)COP of Carnot Refrigerator.ii)Heat rejected from the system per hour.iii)Power required.

18.5258308

258

12

1

KK

K

TT

TCOPrefrig ….ANS

hrkJInputWork

InputWork

hrkJX

InputWork

tonne

InputWork

EffectfrigCOPrefrig

/32558

/000,14121216.5

.Re

….ANSkWhrkJhrInputWork

Power 04.93600

/32558

3600

/

Heat Rejected / hr = Refrig. Effect / hr + Work Input / hr

= 12 x 14,000 (kJ/hr) + 32,558 (kJ/hr) = 2,00,558 kJ/hr. ….ANS

Page 17: Se prod thermo_chapter_5_refrigeration

Introduction to Refrigeration and Air - Conditioning

S. Y. B. Tech. Prod Engg.ME0223 SEM-IV Applied Thermodynamics & Heat Engines

Example 3Ice is formed at 0 ºC from water at 20 ºC. The temperature of the brine is -8 ºC. Find out the kg of ice per kWh. Assume that the system operates on reversed Carnot cycle. Take latent heat of ice as 335 kJ/kg.

46.9265293

265

12

1

KK

K

TT

TCOPrefrig

Heat to be extracted per kg of water ( to from ice at 0 ºC)

Rn = 1 (kg) x Cpw (kJ/kg.K) x (293– 273) (K) + Latent Heat (kJ/kg) of ice

= 1 (kg) x 4.18 (kJ/kg.K) x 20 (K) + 335 (kJ/kg)

= 418.6 kJ/kg.

Also, 1 kWh = 1 (kJ) x 3600 (sec/hr) = 3600 kJ.

kgmkJ

kgkJXkgm

kJdoneWork

kJEffectfrig

W

RCOP

iceice

nrefrig

35.813600

)/(6.418)(46.9

)(

)(.Re

….ANS

Page 18: Se prod thermo_chapter_5_refrigeration

Introduction to Refrigeration and Air - Conditioning

S. Y. B. Tech. Prod Engg.ME0223 SEM-IV Applied Thermodynamics & Heat Engines

Bell – Coleman / Reverse Bryaton Cycle

Elements of this system :

1. Compressor.

2. Heat Exchanger.

3. Expander.

4. Refrigerator.

Work gained from Expander is used

to drive Compressor.

Hence, less external work is required.

Heat ExchangerCooling Water

Refrigerator

CompressorExpander

Cold Air

Very Cold Air Warm Air

Hot Air

Page 19: Se prod thermo_chapter_5_refrigeration

Introduction to Refrigeration and Air - Conditioning

S. Y. B. Tech. Prod Engg.ME0223 SEM-IV Applied Thermodynamics & Heat Engines

Bell – Coleman / Reverse Bryaton Cycle

3 2

14

Isobars

Adiabatic

Expansion

Compression

Pre

ssur

e

Volume

P –V Diagram

3

2

14

Expansion

Compression

Tem

pera

ture

Entropy

Isobars

Adiabatic

T –s Diagram

Page 20: Se prod thermo_chapter_5_refrigeration

Introduction to Refrigeration and Air - Conditioning

S. Y. B. Tech. Prod Engg.ME0223 SEM-IV Applied Thermodynamics & Heat Engines

Bell – Coleman / Reverse Bryaton Cycle

3

2

14

Expansion

Compression

Tem

pera

ture

Entropy

Isobars

Adiabatic

Heat Absorbed in Refrigerator :

)( 41 TTCmQ Padded Heat Rejected in Heat Exchanger :

)( 32 TTCmQ Prejected

If process changes from Adiabatic to Polytropic;

11221VPVP

n

nQcomp

4433exp 1VPVP

n

nQ n

We know,

1

PCR

Page 21: Se prod thermo_chapter_5_refrigeration

Introduction to Refrigeration and Air - Conditioning

S. Y. B. Tech. Prod Engg.ME0223 SEM-IV Applied Thermodynamics & Heat Engines

Bell – Coleman / Reverse Bryaton Cycle

Net Work Done :

1234

4312

44331122

exp

1

1

1

1

TTTTCmn

n

TTTTRmn

n

VPVPVPVPn

n

WWW

P

ncomp

For Isentropic Process :

1234

exp

TTTTCm

WWW

P

ncomp

Page 22: Se prod thermo_chapter_5_refrigeration

Introduction to Refrigeration and Air - Conditioning

S. Y. B. Tech. Prod Engg.ME0223 SEM-IV Applied Thermodynamics & Heat Engines

Bell – Coleman / Reverse Bryaton Cycle

COP :

1234

41

11

)(

TTTTCmnn

TTCm

W

Q

QQ

AddedWorkCOP

P

P

net

added

addedrejected

1234

41

11

)(

TTTTnn

TTCOP

Page 23: Se prod thermo_chapter_5_refrigeration

Introduction to Refrigeration and Air - Conditioning

S. Y. B. Tech. Prod Engg.ME0223 SEM-IV Applied Thermodynamics & Heat Engines

Air Refrigeration Cycle - Merits / Demerits

Merits :

1. No risk of fire (as in case of NH3); as air is non – flammable.

2. Cheaper (than other systems); as air is easily available.

3. Weight per tonne of refrigeration is quite low (compared to other systems).

Demerits :

1. Low COP (compared with other systems).

2. Weight of air (as Refrigerant) is more (compared to other systems).

Page 24: Se prod thermo_chapter_5_refrigeration

Introduction to Refrigeration and Air - Conditioning

S. Y. B. Tech. Prod Engg.ME0223 SEM-IV Applied Thermodynamics & Heat Engines

Example 4A Bell – Coleman refrigerator operates between pressure limits of 1 bar and 8 bar. Air is drawn from the cold chamber at 9 ºC, compressed and then cooled to 29 ºC before entering the expansion cylinder. Expansion and compression follow the law PV1.35 = Const. Calculate the theoretical COP.For air, take γ = 1.4 and Cp = 1.003 kJ/kg.

Polytropic Compression 1-2 :

Kbar

barK

P

PTT

n

n

2.4821

8)282(

35.1

135.11

1

212

Polytropic Expansion 3-4 :

KT

bar

barTK

P

PTT

n

n

6.176

1

8)302(

4

35.1

135.1

4

1

4

343

3 2

14

PV1.35=C

Pre

ssur

e

Volume

P2

= 8 bar

P1

= 1 bar282 K

302 K

Page 25: Se prod thermo_chapter_5_refrigeration

Introduction to Refrigeration and Air - Conditioning

S. Y. B. Tech. Prod Engg.ME0223 SEM-IV Applied Thermodynamics & Heat Engines

Heat Extracted from Cold Chamber :

kgkJKKXkgkJTTCP /7.105)6.176282()/(003.1)( 41

Example 4….contd

Heat Rejected to Heat Exchanger :

kgkJKKXkgkJTTCP /7.180)3022.482()/(003.1)( 32

Net Work Done :

kgkJW

KKKKkgkJW

TTTTCmn

nW

net

net

Pnet

/8.82

2822.4823026.176)/003.1(4.1

14.1

135.1

35.1

1

1 1234

27.1/8.82

/7.105

kgkJ

kgkJ

doneWork

absorbedHeatCOPrefrig ….ANS

Page 26: Se prod thermo_chapter_5_refrigeration

Introduction to Refrigeration and Air - Conditioning

S. Y. B. Tech. Prod Engg.ME0223 SEM-IV Applied Thermodynamics & Heat Engines

Example 5An air refrigeration open system operating between 1 MPa and 100 kPa is required to produce a cooling effect of 2000 kJ/min. temperature of the air leaving the cold chamber is -5 ºC, and at leaving the cooler is 30 ºC. Neglect losses and clearance in the compressor and expander. Determine :i)Mass of air circulated per min. ii) Compressor Work, Expander Work, Cycle Work.ii)COP and Power in kW required.

3 2

14

PVγ=C

Pre

ssur

e

Volume

P2

= 1 MPa

P1

= 100 kPa268 K

303 K

Polytropic Expansion 3-4 :

KT

MPa

MPaTK

P

PTT

9.156

1.0

1)302(

4

4.1

14.1

4

1

4

343

Refrig. Effect per kg :

kgkJ

KKXkgkJ

TTCP

/66.111

)9.156268()/(003.1

)( 41

Page 27: Se prod thermo_chapter_5_refrigeration

Introduction to Refrigeration and Air - Conditioning

S. Y. B. Tech. Prod Engg.ME0223 SEM-IV Applied Thermodynamics & Heat Engines

Example 5….contd

min/91.17/66.111

min/2000

.Re

.Rekg

kgkJ

kJ

kgperEffectfrig

Effectfrig

Mass of air circulated per min :

….ANS

Polytropic Compression 1-2 : KkPa

kPaK

P

PTT 4.517

100

1000)268(

4.1

14.11

1

212

….ANS

Compressor Work :

min/85.4486

2684.517)/287.0(min)/91.17(14.1

4.1

1 12

kJW

KKkgkJkgW

TTRmW

comp

comp

comp

….ANS

Page 28: Se prod thermo_chapter_5_refrigeration

Introduction to Refrigeration and Air - Conditioning

S. Y. B. Tech. Prod Engg.ME0223 SEM-IV Applied Thermodynamics & Heat Engines

Expander Work :

min/42.2628

9.156303)/287.0(min)/91.17(14.1

4.1

1 43exp

kJW

KKkgkJkgW

TTRmW

comp

comp

….ANS

Example 5….contd

Cycle Work = Wcycle = Wcomp – Wexp

= 4486.85 kJ/min – 2628.42 kJ/min = 1858.43 kJ/min…ANS

076.1min/43.1858

min/2000.Re

kJ

kJ

requiredWork

EffectfrigCOPrefrig ….ANS

Power required :

kWkJ

time

WP cycle 97.30

minsec/60

min/43.1858 ….ANS

Page 29: Se prod thermo_chapter_5_refrigeration

Introduction to Refrigeration and Air - Conditioning

S. Y. B. Tech. Prod Engg.ME0223 SEM-IV Applied Thermodynamics & Heat Engines

Vapour Compression SystemElements of this system :

1. Compressor.

2. Condenser.

3. Expansion Valve.

4. Evaporator.

Vapour @ ↓ Pr. and ↓ Temp. (State 1)

Isentropic Compression :

↑ Pr. and ↑ Temp. (State 2)

Condenser : ↑ Pr. Liquid (State 3)

Throttling : ↓ Pr. ↓ Temp. (State 4)

Evaporator : Heat Extraction from surrounding;

↓ Pr. vapour (State 1).

1

2

3

4

1

23

4

Page 30: Se prod thermo_chapter_5_refrigeration

Introduction to Refrigeration and Air - Conditioning

S. Y. B. Tech. Prod Engg.ME0223 SEM-IV Applied Thermodynamics & Heat Engines

Vapour Compression System

Merits :

1. High COP; as very close to Reverse Carnot Cycle.

2. Running Cost is 1/5th of that of Air Refrigeration Cycle.

3. Size of Evaporator is small; for same Refrigeration Effect.

Demerits :

1. Initial cost is high.

2. Inflammability.

4. Evaporator temperature adjustment is simple; by adjusting Throttle Valve.

3. Leakage.

4. Toxicity.

Page 31: Se prod thermo_chapter_5_refrigeration

Introduction to Refrigeration and Air - Conditioning

S. Y. B. Tech. Prod Engg.ME0223 SEM-IV Applied Thermodynamics & Heat Engines

Vapour Compression System : T-s Diagram

Case A. Dry and Saturated Vapour after Compression :

Work done by Compressor

= W = Area 1-2-3-4-1

Heat Absorbed

= W = Area 1-4-g-f-1

Entropy, s

Tem

per

atur

e, T Condensation

Compression

Evaporation

Expansion

T2

T1

3

4

2

1

Compressor Work, (W)

Net Refrig. Effect, (Rn)

Sat. Vapour Line

Sat. Liq. Line

fg

12

41

14321

141

hh

hh

Area

fgArea

DoneWork

AbsorbedHeatCOP

Page 32: Se prod thermo_chapter_5_refrigeration

Introduction to Refrigeration and Air - Conditioning

S. Y. B. Tech. Prod Engg.ME0223 SEM-IV Applied Thermodynamics & Heat Engines

Vapour Compression System : T-s Diagram

Case B. Superheated Vapour after Compression :

Work done by Compressor

= W = Area 1-2-2’-3-4-1

Heat Absorbed

= W = Area 1-4-g-f-1

12

41

143'221

141

hh

hh

Area

fgArea

DoneWork

AbsorbedHeatCOP

Entropy, s

Tem

per

atur

e, T Condensation

Compression

Evaporation

Expansion

T2

T1

3

4

2

1

Compressor Work, (W)

Net Refrig. Effect, (Rn)

Sat. Vapour Line

Sat. Liq. Line

fg

2’

NOTE : h2 = h2’ + Cp (Tsup – Tsat)

Page 33: Se prod thermo_chapter_5_refrigeration

Introduction to Refrigeration and Air - Conditioning

S. Y. B. Tech. Prod Engg.ME0223 SEM-IV Applied Thermodynamics & Heat Engines

Vapour Compression System : T-s Diagram

Case C. Wet Vapour after Compression :

Work done by Compressor

= W = Area 1-2-3-4-1

Heat Absorbed

= W = Area 1-4-g-f-1

Entropy, s

Tem

per

atur

e, T Condensation

Compression

Evaporation

Expansion

T2

T1

3

4

2

1

Compressor Work, (W)

Net Refrig. Effect, (Rn)

Sat. Vapour Line

Sat. Liq. Line

fg

12

41

14321

141

hh

hh

Area

fgArea

DoneWork

AbsorbedHeatCOP

NOTE : h2 = (hf + x.hfg)2

Page 34: Se prod thermo_chapter_5_refrigeration

Introduction to Refrigeration and Air - Conditioning

S. Y. B. Tech. Prod Engg.ME0223 SEM-IV Applied Thermodynamics & Heat Engines

Vapour Compression System : P-h Diagram

Enthalpy, h

Pre

ssur

e, P

r

Sat

. Liq

. Lin

eIs

oth

erm

al,

T =

Co

nst

Isen

thal

pic

,h

= C

on

st.

Isobaric, P = Const

Sat

. V

ap. L

ine

Co

nst

. D

ryn

ess

Fra

ctio

n

Isochoric,

v = Const.

Isen

tropi

c,

S = C

onst

.Sub-cooled Liq. region

2 – phaseregion

Superheated region

Page 35: Se prod thermo_chapter_5_refrigeration

Introduction to Refrigeration and Air - Conditioning

S. Y. B. Tech. Prod Engg.ME0223 SEM-IV Applied Thermodynamics & Heat Engines

Vapour Compression System : P-h Diagram

Enthalpy, h

Pre

ssur

e, P

r

1

23

4

Evaporation

Condensation

Com

pres

sion

Com

pre

ssio

n

12

41

hhW

hhRn

12

41

hh

hh

W

RCOP n

Page 36: Se prod thermo_chapter_5_refrigeration

Introduction to Refrigeration and Air - Conditioning

S. Y. B. Tech. Prod Engg.ME0223 SEM-IV Applied Thermodynamics & Heat Engines

Factors Affecting Vapour Compression System

A. Effect of Suction Pressure :

Enthalpy, h

Pre

ssur

e, P

r

1

23

4

1’4’

2’

P1

P2

12

41

hh

hh

W

RCOP n

COP of Original Cycle :

COP when Suction Pr. decreased :

2'2'1112

'1141

'1'2

'4'1

hhhhhh

hhhh

hh

hh

W

RCOP n

Thus,

Refrig. Effect ↓Work Input ↑

COP ↓

Page 37: Se prod thermo_chapter_5_refrigeration

Introduction to Refrigeration and Air - Conditioning

S. Y. B. Tech. Prod Engg.ME0223 SEM-IV Applied Thermodynamics & Heat Engines

Factors Affecting Vapour Compression System

B. Effect of Delivery Pressure :

12

41

hh

hh

W

RCOP n

COP of Original Cycle :

COP when Delivery Pr. increased :

2'212

4'441

1'2

'41

hhhh

hhhh

hh

hh

W

RCOP n

Thus,

Refrig. Effect ↓Work Input ↑

COP ↓

Enthalpy, h

Pre

ssur

e, P

r

1

2

3

4

3’

4’

2’

P1

P2

Page 38: Se prod thermo_chapter_5_refrigeration

Introduction to Refrigeration and Air - Conditioning

S. Y. B. Tech. Prod Engg.

Factors Affecting Vapour Compression System

C. Effect of Superheating :

12

41

hh

hh

W

RCOP n

COP of Original Cycle :

Thus,

Refrig. Effect ↑Work Input ↑ or ↓

COP ↓ or ↑

Enthalpy, h

Pre

ssur

e, P

r

1

23

4

1’

2’

P1

P2

1'12'212

1'141

'1'2

4'1

hhhhhh

hhhh

hh

hh

W

RCOP n

COP when Delivery Pr. increased :

ME0223 SEM-IV Applied Thermodynamics & Heat Engines

Page 39: Se prod thermo_chapter_5_refrigeration

Introduction to Refrigeration and Air - Conditioning

S. Y. B. Tech. Prod Engg.

Factors Affecting Vapour Compression System

D. Effect of Sub-cooling :

12

41

hh

hh

W

RCOP n

COP of Original Cycle :

Thus,

Refrig. Effect ↑Work Input : SAME

COP ↑

12

'4441

12

'41

hh

hhhh

hh

hh

W

RCOP n

COP when Delivery Pr. increased :

Enthalpy, h

Pre

ssur

e, P

r

1

23

4

1’

3’

P1

P2

4’

ME0223 SEM-IV Applied Thermodynamics & Heat Engines

Page 40: Se prod thermo_chapter_5_refrigeration

Introduction to Refrigeration and Air - Conditioning

S. Y. B. Tech. Prod Engg.

Factors Affecting Vapour Compression System

E. Effect of Suction & Condenser Temperatures :

ME0223 SEM-IV Applied Thermodynamics & Heat Engines

Now, Condenser Temp. ↓Evaporator Temp. ↑

12

41

'1'4'3'2'1

1'44'11

hh

hh

Area

fgArea

DoneWork

AbsorbedHeatCOP

COP of Modified Cycle :

COP of Original Cycle :

12

41

14321

141

hh

hh

Area

fgArea

DoneWork

AbsorbedHeatCOP

COP ↑

Entropy, s

Tem

per

atur

e, T Condensation

CompressionEvaporation

Expansion

T2

T1

3

4

2

1’

fg

1

4’

2’3’

Page 41: Se prod thermo_chapter_5_refrigeration

Introduction to Refrigeration and Air - Conditioning

S. Y. B. Tech. Prod Engg.ME0223 SEM-IV Applied Thermodynamics & Heat Engines

Vapour Compression System – Mathematical Analysis

A. Refrigerating Effect :

)/(41 kgkJHeatdSuperheateHeatLatenthhQevap = Amount of Heat absorbed in Evaporator.

B. Mass of Refrigerant :

= Amount of Heat absorbed / Refrigerating Effect.

)sec/(3600

000,14

41

tonnekghh

m

1 TR = 14,000 kJ/hr

C. Theoretical Piston Displacement :

= Mass of Refrigerant X Sp. Vol. of Refrigerant Gas (vg)1.

)sec/(3600

000,14.. 3

141

tonnemvhh

DisplPistonTh g

Page 42: Se prod thermo_chapter_5_refrigeration

Introduction to Refrigeration and Air - Conditioning

S. Y. B. Tech. Prod Engg.ME0223 SEM-IV Applied Thermodynamics & Heat Engines

Vapour Compression System – Mathematical Analysis

)(

)/(

12

12

kWhhmP

kgkJhhW

theor

comp

a) Isentropic Compression :

D. Theoretical Power Required :

)(1

)/(1

1122

1122

kWVPVPn

nmP

kgkJVPVPn

nW

theor

comp

a) Polytropic Compression :

E. Heat removed through Condenser :

)/(32 kgkJhhmQcond

Page 43: Se prod thermo_chapter_5_refrigeration

Introduction to Refrigeration and Air - Conditioning

S. Y. B. Tech. Prod Engg.ME0223 SEM-IV Applied Thermodynamics & Heat Engines

Example 7Example 6A refrigeration machine is required to produce ice at 0º C from water at 20 ºC. The machine has a condenser temperature of 298 K while the evaporator temperature is 268 K. The relative efficiency of the machine is 50 % and 6 kg of Freon-12 refrigerant is circulated through the system per minute. The refrigerant enters the compressor with a dryness fraction of 0.6. Specific heat of water is 4.187 kJ/kg.K and the latent heat of ice is 335 kJ/kg. Calculate the amount of ice produced on 24 hours. The table of properties if Freon-12 is given below:

Temperature (K)

Liquid Heat (kJ/kg)

Latent Heat (kJ/kg)

Entropy of Liquid (kJ/kg)

298 59.7 138.0 0.2232

268 31.4 154.0 0.1251

hf1 = 31.4 kJ/kg

hfg1 = 154.0 kJ/kg

hf2 = 59.7 kJ/kg

hfg2 = 138.0 kJ/kg

hf3 = h4 = 59.7 kJ/kg

m = 6 kg/min

ηrel = 50 %

x2 = 0.6

Cpw = 4.187 kJ/kg.K

Latent Heat of ice = 335.7 kJ/kg

Given :

Page 44: Se prod thermo_chapter_5_refrigeration

Introduction to Refrigeration and Air - Conditioning

S. Y. B. Tech. Prod Engg.

Example 6….contd

Entropy, s

Tem

per

atur

e, T 298 K

268 K

3

4

2

1

Sat. Vapour Line

Sat. Liq. Line

fg

kgkJhxhh fgf /8.1230.154)6.0(4.31111

kgkJhxhh fgf /2.1330.138)5325.0(7.5922 22

5325.0

268

0.1546.01251.0

298

0.1382232.0

2

2

1

111

2

222

111222

12

x

x

T

hxs

T

hxs

sxssxs

ss

fgf

fgf

fgffgf

Isentropic Compression : 1-2

kgkJhh f /7.5934

COP of Original Cycle : 82.6

/8.1232.133

/7.598.123

12

41

kgkJ

kgkJ

hh

hh

W

RCOP n

ME0223 SEM-IV Applied Thermodynamics & Heat Engines

Page 45: Se prod thermo_chapter_5_refrigeration

Introduction to Refrigeration and Air - Conditioning

S. Y. B. Tech. Prod Engg.

Example 6….contdActual COP = ηrel X COPtheor = 0.5 X 6.82 = 3.41

Heat extracted from 1 kg of water at 20 ºC to form 1 kg of ice at 0 ºC :

kgkJ

kgkJ

CXKkgkJXkg

/74.418

)/(335

)()020()./(187.4)(1

Entropy, s

Tem

per

atur

e, T 298 K

268 K

3

4

2

1

Sat. Vapour Line

Sat. Liq. Line

fg

Now;

….ANS

hrsintonneXX

kg

kgkJ

kgkJXkgm

hhm

Xm

W

RCOP

ice

iceactualnactual

24661.01000

2460459.0

min/459.0

41.3/74.418

)/(8.1232.133)(6

74.41841.3

12

)(

ME0223 SEM-IV Applied Thermodynamics & Heat Engines

Page 46: Se prod thermo_chapter_5_refrigeration

Introduction to Refrigeration and Air - Conditioning

S. Y. B. Tech. Prod Engg.

Example 728 tonnes of ice from and at 0 ºC is produced per day in an ammonia refrigerator. The temperature range in the compressor is from 25 ºC to -15oC. The vapour is dry and saturated at the end of compression and an expansion valve is used. Assuming a co-efficient of performance of 62% of the theoretical, calculate the power required to drive the compressor. Take latent heat of ice = 335 kJ/kg.

Temp (ºC)

Enthalpy (kJ/kg) Entropy of Liquid

(kJ/kg.K)

Entropy of Vapour(kJ/kg.K)Liquid Vapour

25 100.04 1319.22 0.3473 4.4852

-15 -54.56 1304.99 -2.1338 5.0585

ME0223 SEM-IV Applied Thermodynamics & Heat Engines

hf1 = -54.56 kJ/kg

hg1 = 1304.99kJ/kg

hf2 = 100.04 kJ/kg

hg2 = 1319.22 kJ/kg

hf3 = h4 = 100.04 kJ/kg

Tcond = 25 ºC

Tevap = -15 ºC

x2 = 1….dry saturated vapour

COPactual = 0.62 (COPtheor)

Latent Heat of ice = 335.7 kJ/kg

Given :

Page 47: Se prod thermo_chapter_5_refrigeration

Introduction to Refrigeration and Air - Conditioning

S. Y. B. Tech. Prod Engg.

91.8

23.119622.1319

04.10023.1196

12

41

hh

hhCOP ltheoreticaCOP of the Cycle :

Entropy, s

Tem

per

atur

e, T 298 K

258 K

3

4

2

1

Sat. Vapour Line

Sat. Liq. Line

fg

Example 7….contd

processcIsenthalpikgkJhh ...../04.10043

kgkJ

hxhh fgf

/23.1196

)56.54(99.1304)92.0()56.54(

)( 1111

92.0

1338.20585.5)1338.2(4852.4

2

1

1112

12

x

x

sxss

ss

fgfg

Isentropic Compression : 1-2

kgkJhh g /22.131922

Page 48: Se prod thermo_chapter_5_refrigeration

Introduction to Refrigeration and Air - Conditioning

S. Y. B. Tech. Prod Engg.

Example 7….contd

ME0223 SEM-IV Applied Thermodynamics & Heat Engines

Actual COP = ηrel X COPtheor

= 0.62 X 8.91

= 5.52

Entropy, s

Tem

per

atur

e, T 298 K

258 K

3

4

2

1

Sat. Vapour Line

Sat. Liq. Line

fg

Actual Rn = COPactual X Work done

= 5.52 X (h2 – h1)

= 5.52 X (1319.22 – 1196.23)

= 678.9 kJ/kg

Heat extracted from 28 tonnes of water at 0 ºC to form ice at 0 ºC :

)(sec/56.108

)(sec/3600)(24

)/(335)/(1000)(28

kWkJ

hrXhr

kgkJXtonnekgXkg

Mass of refrigerant : kgkgkJ

kJ1599.0

)/(9.678

sec)/(56.108

Total Work done by Compressor :

)(sec/67.19

/)23.119622.1319()(1599.012

kWkJ

kgkJXkghhXmrefrig

….ANS

Page 49: Se prod thermo_chapter_5_refrigeration

Introduction to Refrigeration and Air - Conditioning

S. Y. B. Tech. Prod Engg.

Example 8In a standard vapour compression refrigeration cycle, operating between an evaporator temperature of -10 ºC and a condenser temperature of 40 ºC, the enthalpy of the refrigerant, Freon-12, at the end of compression is 220 kJ/kg. Show the cycle diagram on T-s plane. Calculate:

1. The C.O.P. of the cycle.2. The refrigerating capacity and the compressor power assuming a refrigerant

flow rate of 1 kg/min.You may use the extract of Freon-12 property table given below:

Temp (ºC) Pr (MPa) hf (kJ/kg) hg (kJ/kg)

-10 0.2191 26.85 183.1

40 0.9607 74.53 203.1

ME0223 SEM-IV Applied Thermodynamics & Heat Engines

hf1 = 26.85 kJ/kg

hg1 = h1 = 183.1 kJ/kg

hf2 = 74.53 kJ/kg

hg2 = 203.1 kJ/kg

hf3 = h4 = 74.53 kJ/kg

Tcond = 40 ºC

Tevap = -10 ºC

x1 = 1….dry saturated vapour

h2 = 220 kJ/kg

Given :

Page 50: Se prod thermo_chapter_5_refrigeration

Introduction to Refrigeration and Air - Conditioning

S. Y. B. Tech. Prod Engg.

Example 8….contd

COP of Original Cycle :

94.2

/1.1830.220

/53.741.18312

41

kgkJ

kgkJ

hh

hh

W

RCOP n

….ANS

Refrigerating Capacity :

min/57.108

/53.741.183)(141

kJ

kgkJXkghhm

….ANS

Compressor Power :

kW

kJ

kgkJXkghhm

615.0

min/9.36

/1.1830.220)(112

….ANS

Entropy, s

Tem

per

atur

e, T

40 ºC

-10 ºC

3

4

2

1

Sat. Vapour Line

Sat. Liq. Line

fg

2’

Page 51: Se prod thermo_chapter_5_refrigeration

Introduction to Refrigeration and Air - Conditioning

S. Y. B. Tech. Prod Engg.

Example 9A Freon-12 refrigerator producing a cooling effect of 20 kJ/sec operates on a simple cycle with pressure limits of 1.509 bar and 9.607 bar. The vapour leaves the evaporator dry saturated and there is no undercooling. Determine the power required by the machine. If the compressor operates at 300 rpm and has a clearance volume of 3% of stroke volume, determine the piston displacement of the compressor. For compressor assume that the expansion following the law PV1.3 = Constant.

ME0223 SEM-IV Applied Thermodynamics & Heat Engines

Temp (oC)

Ps

(bar) vg

(m3/kg) Enthalpy

hf

(kJ/kg)

Enthalpy hg

(kJ/kg)

Entropy sf

(kJ/kg)

Entropy sg

(kJ/kg)

Specific heat

(kJ/kg.K)

-20 1.509 0.1088 17.8 178.61 0.073 0.7082 ---

40 9.607 --- 74.53 203.05 0.2716 0.682 0.747

hf1 = 17.8 kJ/kg

hg1 = h1 = 178.61 kJ/kg

hf2 = 74.53 kJ/kg

hg2’ = 203.05 kJ/kg

hf3 = h4 = 74.53 kJ/kg

Tcond = 40 ºC

Tevap = -20 ºC

x1 = 1….dry saturated vapour

h2 = 220 kJ/kg

Given :

Page 52: Se prod thermo_chapter_5_refrigeration

Introduction to Refrigeration and Air - Conditioning

S. Y. B. Tech. Prod Engg.

Example 9….contd

Refrigerating Capacity :

sec/192.0

/53.7461.1782041

kgm

kgkJXmkWhhm

KT

T

T

TCss

ss

P

2.324

313ln747.0682.07082.0

ln

2

2

'2

2'21

21

Isentropic Compression : 1-2

kgkJ

KKkgkJkgkJ

TTChh P

/4.211

0.3132.324./747.0)/(05.203'22'22

ME0223 SEM-IV Applied Thermodynamics & Heat Engines

Entropy, s

Tem

per

atur

e, T

313 K

253 K

3

4

2

1

Sat. Vapour Line

Sat. Liq. Line

fg

2’

Page 53: Se prod thermo_chapter_5_refrigeration

Introduction to Refrigeration and Air - Conditioning

S. Y. B. Tech. Prod Engg.

Example 9

….ANS

Power Required : kW

kgkJXkghhm

29.6

/61.1784.211sec)/(192.012

Vol. Efficiency :

%6.87

509.1

607.903.003.01

1

13.1/1

/1

bar

bar

P

Pkk

n

S

dvol

Vol of Refrigerant at Intake :

sec/02089.0

)/(1088.0sec)/(192.03

3

m

kgmXkg

vm g

Piston Displ. Vol. : 3

3

00477.0)(300876.0

min)(sec/60sec)/(02089.0

)(

.m

rpm

m

rpm

VolActual

vol

….ANS

ME0223 SEM-IV Applied Thermodynamics & Heat Engines

Entropy, s

Tem

per

atur

e, T

313 K

253 K

3

4

2

1Sat. Vapour Line

Sat. Liq. Line

fg

2’

Page 54: Se prod thermo_chapter_5_refrigeration

Introduction to Refrigeration and Air - Conditioning

S. Y. B. Tech. Prod Engg.

Example 10A food storage locker requires a refrigeration capacity of 50 kW. It works between a condenser temperature of 35 ºC and an evaporator temperature of -10 ºC. The refrigerator is ammonia. It is sub-cooled by 5 ºC before entering the expansion valve. By the dry saturated vapour leaving the evaporator. Assuming a single-cylinder, single-acting compressor operating at 1000 rpm with stroke equal to 1.2 times the bore, determine : 1. The power required.2. The cylinder dimensions.Properties of ammonia are :

Sat.Temp.

(oC)

Pr.(bar)

Enthalpy (kJ/kg)

Entropy (kJ/kg)

Sp. Vol. (m3/kg)

Sp. Heat (kJ/kg.K)

Liquid Vapour Liquid Vapour

Liquid Vapour Liquid Vapour

-10 2.9157 154.056 1450.22 0.82965 5.7550 --- 0.417477 --- 2.492

35 13.522 366.072 1488.57 1.56605 5.2086 1.7023 0.095629 4.556 2.903

ME0223 SEM-IV Applied Thermodynamics & Heat Engines

h1 = 1450.22 kJ/kg h2’ = 1488.57 kJ/kghf3 = 366.072 kJ/kg

Tcond = 35 ºC Tevap = -10 ºCx1 = 1….dry saturated vapourState 3 = Sub-cooled by 5 ºC

Given :

Page 55: Se prod thermo_chapter_5_refrigeration

Introduction to Refrigeration and Air - Conditioning

S. Y. B. Tech. Prod Engg.ME0223 SEM-IV Applied Thermodynamics & Heat Engines

Example 10….contd

kgkJ

kgkJkgkJ

TTChhh subcoolsatliqPf

/29.343

)/(30330856.405)/(07.366

34'3

KT

T

T

TCssss P

8.371

308ln903.22086.5755.5

ln

2

2

'2

2'2121

Isentropic Compression : 1-2

kgkJ

KKkgkJkgkJ

TTChh P

/8.1673

0.3088.371./903.2)/(57.1488'22'22

Entropy, s

Tem

per

atur

e, T

308 K

263 K

3

4

2

1Sat. Vapour Line

Sat. Liq. Line

fg

2’

3’303 K

Page 56: Se prod thermo_chapter_5_refrigeration

Introduction to Refrigeration and Air - Conditioning

S. Y. B. Tech. Prod Engg.ME0223 SEM-IV Applied Thermodynamics & Heat Engines

Example 10….contd

sec/04517.0

/29.34322.1450

)(50

/

)(50

41

kg

kgkJ

kW

kgkJhh

kWm

Mass of Refrigerant :

Compressor Power :

kW

kgkJXkg

hhm

1.10

/22.14508.1673)(04517.012

….ANS

Cylinder Dimensions :

mmL

mD

kgm

rpmDD

v

NLD

kgmg

228.0)19.0(2.1

19.0

/417477.060

)(1000)2.1(

4604sec)/(04517.0

3

22

….ANS

….ANS

Entropy, s

Tem

per

atur

e, T

308 K

263 K

3

4

2

1Sat. Vapour Line

Sat. Liq. Line

fg

2’

3’303 K

Page 57: Se prod thermo_chapter_5_refrigeration

Introduction to Refrigeration and Air - Conditioning

S. Y. B. Tech. Prod Engg.ME0223 SEM-IV Applied Thermodynamics & Heat Engines

Vapour Absorption System

1

2

4

3

Solubility of NH3 in water @ ↓ Temp and Pr. is MORE than that @ ↑ Temp. and Pr.

NH3 vapour from Evaporator (State 1) is readily absorbed in Absorber. Heat Rejection

This solution is then pumped to ↑ Temp. and Pr. @ Generator.

Reduction in stability of solution Vapour removed from Solution.

Vapour passes to Condenser.

Weak Solution returns to Absorber.

Page 58: Se prod thermo_chapter_5_refrigeration

Introduction to Refrigeration and Air - Conditioning

S. Y. B. Tech. Prod Engg.ME0223 SEM-IV Applied Thermodynamics & Heat Engines

Vapour Absorption System

Merits :

2. Work done on Compression is LESS.

1. Pumping work is much less than work for Compressing vapour.

Demerits :

2. Low COP.

1. Heat input to the Generator is required.

COP :

PumpLiquidondoneWorkGeneratorinpliedHeat

EvaporatorinextractedHeatCOP

sup

Page 59: Se prod thermo_chapter_5_refrigeration

Introduction to Refrigeration and Air - Conditioning

S. Y. B. Tech. Prod Engg.ME0223 SEM-IV Applied Thermodynamics & Heat Engines

Vapour Compression Vs. Vapour Absorption

Sr. No.

Particulars Vapour Compression Systems

Vapour Absorption Systems

1. Type of Energy Supplied Mechanical – High Grade Heat – Low Grade

2. Energy Supply Rate Low High

3. Wear & Tear More Less

4. Performance of Part Load

Poor Not affected at Part Load

5. Suitability Used where High Grade Mechanical Energy is available

Can be used at Remote Places, as can be used with

simple Kerosene lamp

6. Charging of Refrigerant Simple Difficult

7. Leakage More chances No chances, as no Compressor or Reciprocating

Part

8. Damage Liquid traces in Suction Line may damage Compressor

No danger

Page 60: Se prod thermo_chapter_5_refrigeration

Introduction to Refrigeration and Air - Conditioning

S. Y. B. Tech. Prod Engg.ME0223 SEM-IV Applied Thermodynamics & Heat Engines

Thank You !