49
Design, Modeling and Control of Modular Multilevel Converter Based HVDC Systems Ghazal Falahi December 2014

Design, Modeling and control of modular multilevel converters (MMC) based hvdc systems ghazal falahi

Embed Size (px)

Citation preview

Page 1: Design, Modeling and control of modular multilevel converters (MMC) based hvdc systems ghazal falahi

Design, Modeling and Control of Modular Multilevel Converter Based HVDC Systems

Ghazal Falahi December 2014

Page 2: Design, Modeling and control of modular multilevel converters (MMC) based hvdc systems ghazal falahi

Outline

2

Page 3: Design, Modeling and control of modular multilevel converters (MMC) based hvdc systems ghazal falahi

Background

3

Udc/2

Udc/2

Vconv

2

 n

 (n+1)

(n+2)

1

(2n)

Ud Uac

Desired voltage Achieved voltage

Achieved voltage Desired voltage

V.S.

ü  Modular arrangement with identical power modules

ü  Low level of harmonics

ü  Lower switching losses compared with 2level converters

ü  low component count and compact size X  More complex control algorithms X  High losses

X  High harmonics X  No redundancy

ü  Simple control

Page 4: Design, Modeling and control of modular multilevel converters (MMC) based hvdc systems ghazal falahi

State of the Art

4

[1] M. Davies, M. Dommaschk, J. Dorn, J. Lang, D. Retzmann, D. Soerangr , „HVDC PLUS –Basics and Principle of Operation, Siemens Technical Article”

Majority of HVDC manufacturers use IGBT

2. high losses

Switching Frequency

(modulation)

Semiconductor Devices

1. Low power capacity

Issues:

Page 5: Design, Modeling and control of modular multilevel converters (MMC) based hvdc systems ghazal falahi

MMC-HVDC loss (state of the art)

5

•  Candidate devices for high power levels

IGCT ETO

•  MMC-HVDC systems are operated at much lower switching frequencies

[1] Buschendorf, Martin, Jens Weber, and Steffen Bernet. "Comparison of IGCT and IGBT for the use in the modular multilevel converter for HVDC applications." Systems, Signals and Devices (SSD), 2012 9th International Multi-Conference on. IEEE, 2012. [2] M. Davies, M. Dommaschk, J. Dorn, J. Lang, D. Retzmann, D. Soerangr , „HVDC PLUS –Basics and Principle of Operation, Siemens Technical Article”

Station losses close to 1% (designs with IGBT)

•  Losses are still higher than thryistor based HVDC systems •  Power rating is still lower

1.  Possible power

2.  Losses

Lower losses than IGBT 4% less losses compared

to IGBT [1] = 0.96% per station

Page 6: Design, Modeling and control of modular multilevel converters (MMC) based hvdc systems ghazal falahi

Design procedure

6

1 •  Analyze ETO based MMC losses and potential power

2 •  MMC operation and control

3 •  Modulation

4 •  Thermal analysis

5 •  Design of MMC sub-module with ETO

Page 7: Design, Modeling and control of modular multilevel converters (MMC) based hvdc systems ghazal falahi

Modular Multilevel Converter (MMC)

7

State S1 S2 Vsm

1 ON OFF Vc

2 OFF ON 0

q  MMC mathematical model:

q  MMC grid connection dynamic:

icirc =ip + in2

varm = vSMi=0

n

∑ + Larmdiarmdt

+ RarmiarmSM  2

SM  n

SM  (n+1)

SM  (n+2)

SM  1

SM  (2n)

DC  link

vavb

vc

u0

ipa

Udc/2

Udc/2

iaib

ic

Larm

LaLbLc

ipb ipc

uaub

uc

Rarm

D1

D2

S1

S2

ipa Vc

incinbina

Larm Larm

RarmRarm

Larm

Rarm

Larm Larm

RarmRarm

uk −u0 = varm

uk − (vk +u0 ) = varm K= a, b, c

uk (t) =Udc

2mk (t)

Page 8: Design, Modeling and control of modular multilevel converters (MMC) based hvdc systems ghazal falahi

8

vavbvc

u0

ia-­‐up

ia-­‐low

Udc/2

Udc/2

iaib

ic

Larm

LaLbLc

ib-­‐up ic-­‐up

ib-­‐low ic-­‐low

ua

ub

uc

Rar

m

Larm Larm

Larm Larm Larm

Rar

m

Rarm

Rarm Rarm Rarm

Innervoltage

Innervoltage

Innervoltage

Innervoltage

Innervoltage

Innervoltage

Required number of sub-modules in each arm

N ≥320KV2.5KV

=128

§  Number of sub-modules

MMC sub-module devices used in power stage design : •  Switches (S1 & S2): 4.5KV,4KA Gen-4 ETO

•  Antiparallel diodes (D1 & D2): ABB fast

recovery diode 5SDF 16L4503

§  Semiconductor device

VAC 138KV

VDC-link 320KV

Nominal frequency 60HZ

Modular Multilevel Converter operation

Page 9: Design, Modeling and control of modular multilevel converters (MMC) based hvdc systems ghazal falahi

iarm>0

S1 or D2

S1

D2

iarm<0

S2 or D1

D1

S2

Sub-module operation principal in MMC

9

•  Operation principal of MMC Varm,ref

iarm

)cos(22

)(,_ tVmVtV dcdcrefkarm ω−=

)cos(23

)( ϕω −+= tIIti adcarm

•  Logic of operation

Upper arm reference voltage

Arm current

The arm current flowing out of the sub-module is considered as positive (a) and the current flowing into sub-module is considered as negative

D1

D2

S1

S2

ipaVc

D1

D2

S1

S2

ipaVc

D1

D2

S1

S2

ipaVc

D1

D2

S1

S2

ipaVc

(a) iarm>0

(b) iarm<0

0, >dt

dV refarm

0, <dt

dV refarm

0, >dt

dV refarm

0, <dt

dV refarm

Page 10: Design, Modeling and control of modular multilevel converters (MMC) based hvdc systems ghazal falahi

Modular Multilevel Converter Control [1]

10

1.  An individual capacitor voltage controller

2.  The averaging controller

3.  The system controller

4.  Modulation reference generation

PI PI

1/2

Vc*

Vcu

Ik-­‐low

Ik-­‐up

Icir*

Icir

VAu*

Total DC voltage controller

PIVc*

Vcju  

(j=1-­‐2n)

±

-1 :-Ik-up , Ik-low ≥ 0+1 :-Ik-up , Ik-low ≤ 0

VBju*

Individual DC voltage controller

Vmk(k=a,b,c)

PIi*dref

Vod

iod

PIi*qref

ω0Leq

ω0Leqioq

Voq

3dq/abc

System controller ![1] Hagiwara, Makoto, and Hirofumi Akagi. "Control and experiment of pulsewidth-modulated modular multilevel converters." Power electronics, IEEE Transactions on 24.7 (2009): 1737-1746.

VAu*

VBju* Vi/n E/(2n)

Vju*  (j=1-­‐n)

dAnegVAu*

VBju* Vi/n E/(2n)

Vju*  (j=n+1-­‐2n)

dAneg

Modulation reference generation

Page 11: Design, Modeling and control of modular multilevel converters (MMC) based hvdc systems ghazal falahi

Multilevel Modulation

Fundamental switching frequency

High switching frequency

Space vector PWM

Sinusoidal PWM

Level shifted PWM

Phase shifted PWM

Space vector control SHE NLM

Modified NLM

MMC modulation methods

11

[1] Wang, Jun, Rolando Burgos, and Dushan Boroyevich. "A survey on the modular multilevel converters—Modeling, modulation and controls." Energy Conversion Congress and Exposition (ECCE), 2013 IEEE. IEEE, 2013.

Choosing modulation method for the proposed structure

Advantages ü  Fundamental frequency switching

ü  Lower losses

ü  Online calculation of switching angles

Issues

× High losses

× Complex vector calculation and selection

× Relying on look up tables (offline calculation

of switching angles

Page 12: Design, Modeling and control of modular multilevel converters (MMC) based hvdc systems ghazal falahi

Proposed 60Hz modulation for MMC-HVDC

12

VdcN

2VdcN

3VdcN

0

t a t b

Varm_ k,ref (t)Varm_ AV (t)

Switching angle calculation in each discrete step:

(ωt +φarm_ k ) = arccosn.VdcN−Vdc2

mVdc2

"

#

$$$

%

&

'''

Varm_ k,ref (t) =Vdc2+mVdc

2cos(ωt +φarm_ k )

Varm_ k,High =Varm_ k,Low +Vdcn

n = round(Varm_ k,refUSM _ave

)

N : number of sub-modules in arm n : number of active sub-modules USM_ave: average SM voltage

A piece of MMC reference arm voltage Each level is Vdc/n more than the previous level

Switching instants

ωti = arccosn.VdcN−Vdc2

mVdc2

"

#

"""

$

%

$$$−φarm_ k

ωti+1 = arccosn.VdcN−Vdc2

mVdc2

"

#

###

$

%

%%%−φarm_ k

Page 13: Design, Modeling and control of modular multilevel converters (MMC) based hvdc systems ghazal falahi

Implementation of 60Hz modulation

13

0 0.5 1 1.5 2 2.50.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

time (secs)

Sub

mod

ule

capa

cito

r vo

ltage

s(pu

)

Capacitor Voltage balancing

Nearest level modulation

MMC system controller 1.  Active/reactive power 2.  Individual capacitor voltage 3.  Circulating current 4.  Negative/zero sequence and LVRT, etc.

Vmodulation_arm three phases a, b, c

Switching angles θ1, θ2,.., θi

Switching pulses P1, P2,.., Pi

Switching pulses

Switching index

?

Sub-module capacitor voltages are unbalanced

Page 14: Design, Modeling and control of modular multilevel converters (MMC) based hvdc systems ghazal falahi

Capacitor voltage sorting and balancing

14

D1

D2

S1

S2

ipaVc

D1

D2

S1

S2

ipaVc

D1

D2

S1

S2

ipaVc

D1

D2

S1

S2

ipaVc

iarm>0

iarm<0

Capacitor bypassed

Capacitor bypassed

Capacitor discharge

Capacitor charge

Modifications:

1.  Only remaining Sub-modules are considered to reduce equivalent switching frequency

2.  Circulating current error is added to the modulation reference to make balancing faster

3.  Number of active sub-modules calculated by using average measured capacitor voltages to

increase accuracy

Iarm>0 Iarm<0

Sub-modules with maximum

capacitor voltages turn on first

Sub-modules with

minimum capacitor voltages

turn on first

Vdc1

Vdcn Sorting

Vdc_ sorted = Vdc_max • • • Vdc_max!

"#$

%&

Vdc_ index = ni_ vdc_max • • • ni_ vdc_max!

"#$

%&

Page 15: Design, Modeling and control of modular multilevel converters (MMC) based hvdc systems ghazal falahi

Semiconductor loss calculation for a 500MW MMC-HVDC system

15

Gen-4 ETO power loss characteristics

ETO : EOFF (I) = a × I + b = 0.0041× I + 0.21 VON(I) = c× I + d = 0.0014× I +1.1 Diode: Eswitching(I)=e× I + f=0.00018×I+0.8 Von(I)=g × I + h=0.79×10-3×I+1.9

[1] Li, J., A.Q. Huang, and W. Jing. 7MVA ETO Light NPC converter for multi-MW direct-driven wind turbine application. in Power Electronics and Machines in Wind Applications, 2009. PEMWA 2009. IEEE. 2009. IEEE.

Ploss−Switch = (PcondS1 +PcondS2 +PSwitchingS1 +PSwitchingS2 )

Ploss−Diode = (PcondD1 +PcondD2 +PSwitchingD1 +PSwitchingD2 )

EOFF (reverse recovery loss)

EOFF+EON (snubber loss)

1. Switch losses

2. Switch losses

Page 16: Design, Modeling and control of modular multilevel converters (MMC) based hvdc systems ghazal falahi

Proposed loss estimation method for 60Hz modulation

16

Diode D2 Switch S1 Diode D1 Switch S2

t1 t2 t3

0

Varm

iarm

m=1 φ=0

!

   

Losses=[0 0 0 0 0 0 0 0] Losses=[0 X 0 0 0 0 0 0]

Losses=[0 X 0 0 0 X 0 0]

Losses=[0 X 0 X 0 X 0 0]

Losses=[X X X X X X X X]

ti! ti+1! !

Pcond =1T

nPD_ cond (−ipa )+ (N − n)PSwitch_ cond (−ipa )"# $%t2

t1∫ dt + nPSwitch_ cond (ipa )+ (N − n)PD_ cond (ipa )"# $%t3

t2∫ dt

Number of small intervals (sampling rate)

ni =Varm,refVsm_ave

!

"!

#

$#t=tup

−Varm,refVsm_ave

!

"!

#

$#t=tlow

Page 17: Design, Modeling and control of modular multilevel converters (MMC) based hvdc systems ghazal falahi

Loss calculations

17

n× PD_ cond (−ipa )( )dt + PD_ cond (−ipa )( )dt + PD_ cond (−ipa )( )dt +...+ PD_ cond (−ipa )( )dttk+i

t1

∫tk+1

tk+2

∫tk

t k+1

∫t2

tk

∫$

%&&

'

())

+(N − n) PSwitch_ cond (−ipa )( )t2

tk

∫ dt + PSwitch_ cond (−ipa )( )tk

tk+1

∫ dt +...+ PSwitch_ cond (−ipa )( )tk+i

t1

∫ dt$

%&&

'

())

Esw (i) = Esw (θi )tlow<t<tup∑

n.PD_ cond (−ipa )+ (N − n)PSwitch_ cond (−ipa )( )dtt2

t1

∫#

$%%

&

'((

n

n≤N

∑ = n. PD_ cond (−ipa )( )dtt2

t1

∫ + (N − n) PSwitch_ cond (−ipa )( )t2

t1

∫ dt

Esw_ total = ESW (i)× fsw

System Controller

1. Number of ON sub-modules 1. Sub-module capacitor voltage sorting 2. Sub-module selection based on sorted Vdc vector

Vdc1

Vdcn

nactive P1

Pn

P2

2. Switching angle calculation

Vmod,ref

nactive = round(Varm,refVsm

)

θi =

2VarmVdc

−1

m−φarm

Loss calculations Individual

device losses

iarm

PS11

PS18

PD11

PD18

Proposed modulation and loss calculation diagram

Page 18: Design, Modeling and control of modular multilevel converters (MMC) based hvdc systems ghazal falahi

Individual device losses – S1 in sub-modules (1- 4)

18

0 10 20 30 40 50 60 70 80 90 100 110-1000

0

1000

2000

3000

4000

5000

6000

0 10 20 30 40 50 60 70 80 90 100 110-1000

0

1000

2000

3000

4000

5000

60000 10 20 30 40 50 60 70 80 90 100 110

-1000

0

1000

2000

3000

4000

5000

6000

0 10 20 30 40 50 60 70 80 90 100 110-1000

0

1000

2000

3000

4000

5000

6000

Is loss balancing an issue?

Page 19: Design, Modeling and control of modular multilevel converters (MMC) based hvdc systems ghazal falahi

19

0 10 20 30 40 50 60 70 80 90 100 110-1000

0

1000

2000

3000

4000

5000

6000

0 10 20 30 40 50 60 70 80 90 100 110-1000

0

1000

2000

3000

4000

5000

60000 10 20 30 40 50 60 70 80 90 100 110

-1000

0

1000

2000

3000

4000

5000

6000

0 10 20 30 40 50 60 70 80 90 100 110-1000

0

1000

2000

3000

4000

5000

6000

Individual device losses – S1 in sub-modules (5- 8)

Sorting and swapping sub-modules eventually makes device losses balanced

Page 20: Design, Modeling and control of modular multilevel converters (MMC) based hvdc systems ghazal falahi

Averaged device losses over 200 cycles

20

Device Loss (PF= -0.95) Loss (PF= 1) Loss(PF=+0.95)

D1 799 812 839

D2 1598 1587 1366

S1 1975 1960 2219

S2 1259 1156 1184

Each sub-module losses 5631 5515 5608

Total MMC loss (per station) 4.32 MW 4.2 MW 4.3 MW

Total MMC losses per station in design with IGBT [1] 4.6 MW

0

2000

4000

6000

D1 D2 S1 S2 SM loss

PF=-0.95

PF=+0.95

PF=1

[1] Yang, Liu, Chengyong Zhao, and Xiaodong Yang. "Loss calculation method of modular multilevel HVDC converters." Electrical Power and Energy Conference (EPEC), 2011 IEEE. IEEE, 2011.

9% lower losses compared to design in [1]

Conventional MMC-HVDC system semiconductor loss per station = more than 1% ETO based MMC-HVDC semiconductor loss per station = 0.84 %

16% less losses

Around 1% efficiency improvement

Page 21: Design, Modeling and control of modular multilevel converters (MMC) based hvdc systems ghazal falahi

Thermal Analysis of ETO based sub-module

21

Heat pipe based cooling

Junction temperature of ETOs and diodes much lower than 110°

Device Junction temperature (°C)

D2 61.9

S2 67.4

S1 81.6

D1 54.4

ETO can be used for higher power ratings

Power capacity of ETO based MMC-HVDC system can reach more than 1000MW

Device Junction temperature (°C) D2 82.9

S2 90.6

S1 109.2 D1 70.1

500MW operation

Potential power =1000MW

Device temperature for designed ETO based MMC-HVDC

[1] Li, Yuxin, Alex Q. Huang, and Kevin Motto. "Experimental and numerical study of the emitter turn-off thyristor (ETO)." Power Electronics, IEEE Transactions on 15.3 (2000): 561-574. [2] Li, Jun, et al. "ETO light multilevel converters for large electric vehicle and hybrid electric vehicle drives." Vehicle Power and Propulsion Conference, 2009. VPPC'09. IEEE. IEEE, 2009.

Page 22: Design, Modeling and control of modular multilevel converters (MMC) based hvdc systems ghazal falahi

Proposed ETO based MMC-HVDC

22

Characteristic ETO IGCT IGBT GTO Conduction loss Low Low High Low Switching time Fast Fast Medium Slow Turn-off capability High High Low Low Self-power function Yes No No No Built-in sensor Yes No No No Positive temperature Coefficient Best Poor Good Poor

Semiconductor device selection [1]

[1] Li, Yuxin, Alex Q. Huang, and Kevin Motto. "Experimental and numerical study of the emitter turn-off thyristor (ETO)." Power Electronics, IEEE Transactions on 15.3 (2000): 561-574.

0.1 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.2

0

0.05

0.1

0.15

0.2

0.25

0.3

time (secs)

Circ

uatin

g cur

rent

(pu)

Cdc

S1

S2

iaarm

VSM

D1Rclamp

Cclamp

Lclamp

Cdc

RclampS1

S2 Cclamp

iaarmD1

Lclamp

cc

A

cc

c

B

Cdc

L

R D S1

S2C

𝑑𝑖𝑑𝑡=𝑉𝐷𝐶 − 𝑉𝐶𝑐𝑙𝑎𝑚𝑝

𝐿

𝑃𝑐𝑙𝑎𝑚𝑝 =12𝐿𝑖𝑝𝑒𝑎𝑘2 .

𝑉𝐶𝑐𝑙𝑎𝑚𝑝𝑉𝐷𝐶 − 𝑉𝐶𝑐𝑙𝑎𝑚𝑝

. 𝑓𝑠

𝐶𝑐𝑙𝑎𝑚𝑝 =𝑉𝐶𝑐𝑙𝑎𝑚𝑝

∆𝑉𝐶𝑐𝑙𝑎𝑚𝑝 . 𝑅. 𝑓𝑠

𝑅 =𝑣𝑐𝑙𝑎𝑚𝑝2

𝑃𝑐𝑙𝑎𝑚𝑝

Leq = nactive.Lclamp ≥128× Lclamp

Page 23: Design, Modeling and control of modular multilevel converters (MMC) based hvdc systems ghazal falahi

Outline

23

Page 24: Design, Modeling and control of modular multilevel converters (MMC) based hvdc systems ghazal falahi

24

Simulated MMC-HVDC system System is controlled in two different scenarios (1) (2) Side 1: DC link voltage control, AC voltage control

Side 2: active and reactive power control

Side 1: DC link voltage control, reactive power control Side 2: active and reactive power control

VAC 138KV

VDC-link 320KV

Fundamental frequency 60HZ

Number of SMs 16

Fsw 60Hz

Page 25: Design, Modeling and control of modular multilevel converters (MMC) based hvdc systems ghazal falahi

MMC equations under fault operating condition

25

The system mathematical equations can be decomposed to positive, negative and zero components[1]:

! !!!"#!(!)

!" + !!!"#!(!) = !!"#!(!)− !!"#!(!)

! !!!"#!(!)

!" + !!!"#!(!) = !!"#!(!)− !!"#!(!)

! !"!(!)!" + !!! ! = !! ! − (!! ! + !!(!))

!!! + !!! + !!!3 = !!

Zero-sequence component extraction

!!!!(!)!" = −!! !!

! + !!!! +1! !!

!− 1! !!

!

!!!!(!)!" = −!! !!

! − !!!! +1! !!

!− 1! !!

!

!!!!(!)!" = −!! !!

! − !!!! +1! !!

!− 1! !!

!

!!!!(!)!" = −!! !!

! + !!!! +1! !!

!− 1! !!

!

Active and reactive powers at PCC

Three-phase positive and negative sequence subsystems in synchronous reference frame

! = !! + !!! sin 2!" + !!! cos 2!" + 3!!!!

! = !! + !!! sin 2!" + !!! cos 2!"

!!!!!!!!!!!!!!!!

= 32

!!! !!!!!! −!!!!!! −!!!

!!! !!!!!! −!!!−!!! !!!

!!! !!!−!!! −!!!!!! −!!!

!!! !!!!!! !!!!!! −!!!

!!!!!!!!!!!!

! = 1.5!!!!!!

! = −1.5!!!!!!

Cell  2

Cell  n

Cell  (n+1)

Cell  (n+2)

Cell  1

Cell  (2n)

DC  link

va

vb

vcDC  link

u0

ia-­‐up

ia-­‐low

Udc/2

Udc/2

ia

ib

ic

2L

2L

2L 2L

2L 2L

La

Lb

Lc

ib-­‐up ic-­‐up

ib-­‐low ic-­‐low

ua

ub

uc

S1

S2 VS

M

Vc

2R 2R 2R

2R2R2R

[1] Guan, Minyuan, and Zheng Xu. "Modeling and control of a modular multilevel converter-based HVDC system under unbalanced grid conditions." Power Electronics, IEEE Transactions on 27.12 (2012): 4858-4867.

Page 26: Design, Modeling and control of modular multilevel converters (MMC) based hvdc systems ghazal falahi

Operation of the simulated MMC-HVDC system

26

Dynamic response of the system to step change in active power

PSCAD simulation results

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8-3

-2

-1

0

1

2

3

time (sec)

P1 &

P2 (

pu)

p1p2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8-1

-0.5

0

0.5

1

time (sec)

Q1 &

Q2 (

pu)

Q1Q2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8-1

-0.5

0

0.5

1

time (sec)

Q1 &

Q2 (

pu)

Q1Q2

Dynamic response of the system to step change in reactive power

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8-3

-2

-1

0

1

2

3

time (sec)

P1 &

P2 (

pu)

P1 P2

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.62

2.5

3

3.5

4

time (sec)

Vdc (pu

)

Vdc

Page 27: Design, Modeling and control of modular multilevel converters (MMC) based hvdc systems ghazal falahi

Operation of the simulated MMC-HVDC system

27

0 0.1 0.2 0.3 0.4 0.5 0.6-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

time (sec)

Q1

& Q

2 (p

u)

Q1Q2

Dynamic response of the system to active and reactive power reversal at t=0.3sec and t=0.5sec respectively Dynamic response of the system to

AC voltage change from 1pu to 1.1

PSCAD simulation results

0.2 0.25 0.3 0.35 0.4 0.45 0.5-1

-0.5

0

0.5

time (sec)

Q1

& Q

2 (p

u)

Q1Q2

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

Time (sec)

Act

ive

and

reac

tive

pow

er

reve

rsal

sid

e 1&

2 (p

u)

0.2 0.25 0.3 0.35 0.4 0.45 0.5-3

-2

-1

0

1

2

3

time (sec)

P1 &

P2

(pu)

P1P2

0.2 0.25 0.3 0.35 0.4 0.45 0.5-1.5

-1

-0.5

0

0.5

1

1.5

time (secs)

Vabc

(pu)

Page 28: Design, Modeling and control of modular multilevel converters (MMC) based hvdc systems ghazal falahi

28

Operation of the simulated MMC-HVDC system

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1-1

0

1

2

3

4

5

Time (secs)

Vdc (

pu)

Vdc refVdc

Dynamic response of the step change in DC voltage

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

3Pha

se cu

rrents

side

2 (pu

)

iaibic

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8-3

-2

-1

0

1

2

3

time (sec)

Iabc s

ide 1 (

pu)

iaibic

Page 29: Design, Modeling and control of modular multilevel converters (MMC) based hvdc systems ghazal falahi

Single line to ground (SLG) fault on AC line side 2

29

Issues: 1. Negative and zero sequence terms are present in currents

2. Active and reactive powers oscillate at double fundamental frequency

3. DC link has ripples with double fundamental frequency

0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6-3

-2

-1

0

1

2

3

time (sec)

P1 &

P2 (p

u)

P1P2

0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6-2

-1

0

1

2

time (sec)

Iabc s

ide 2 (

pu)

iaibic

0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6-2

-1

0

1

2

time (sec)

Iabc s

ide 1 (

pu)

iaibic

Fault

0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6-0.5

0

0.5

1

time (sec)

Idq ne

g (pu

)

id negiq neg

0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6-0.4

-0.2

0

0.2

0.4

time (sec)

Zero

seque

nce c

urren

t (pu)

i zero

0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.552.5

3

3.5

time (sec)

Vdc (

pu)

Vdc

Fault

Page 30: Design, Modeling and control of modular multilevel converters (MMC) based hvdc systems ghazal falahi

State of the art 1.  Calculation of reference positive and negative sequences

2.  Using additional PI and PR controllers to eliminate positive, negative and zero sequences 3. Using both positive and negative phase locked loop (PLL)

30

[1] Timofejevs, Artjoms, et al. "Control of transformerless MMC-HVDC during asymmetric grid faults." Industrial Electronics Society, IECON 2013-39th Annual Conference of the IEEE. IEEE, 2013.

Issues: Makes the MMC control more complicated Slow response time (50ms)

Page 31: Design, Modeling and control of modular multilevel converters (MMC) based hvdc systems ghazal falahi

Proposed control structure

31

dazero

Zero  sequence  calculation dbzero

dczero

n

n

n

Ea

Eb

Ec

Ea0

Eb0

Ec0

danegVcju

Eliminating  zero  

sequence

Eliminating  positive  sequence

Vcjv

Vcjw

dbneg

dcneg

n

n

n

Step1. Real-time calculation of zero and negative sequence components based on Analytical Equations

!!!!!!!!!

= !!!!!!!!

!!"!!"!!"

=!!!!!!

− !!!!!!!!!!

!!= !!2 −1 −1−1 2 −1−1 −1 2

!!=

!!

!!!! !

!!! !

−1 0 −1!!!! !

!!! !

!!

Page 32: Design, Modeling and control of modular multilevel converters (MMC) based hvdc systems ghazal falahi

Negative and zero sequence voltage components calculated from PCC voltages –controller references

32

Step2. Updating the modulation to eliminate the effect of

zero and negative sequence components in the system

VAu*

VBju* Vi/n E/(2n)

Vju*  (j=1-­‐n)

dAneg dAzero

VAu*

VBju* Vi/n E/(2n)

Vju*  (j=n+1-­‐2n)

dAneg dAzero

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Nega

tive s

eque

nce v

oltag

es (pu

)

EaEbEc

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Zero s

equenc

e volt

ages (p

u)

E0aE0bE0c

Page 33: Design, Modeling and control of modular multilevel converters (MMC) based hvdc systems ghazal falahi

MMC-HVDC system response to SLG fault with proposed controller

33

Negative sequence currents in dq frame when SLG fault is applied

Zero sequence currents when SLG fault is applied

Fault with conventional controller Suppressed negative and zero components with proposed controller

0.1 0.2 0.3 0.4 0.5 0.6-0.1

0

0.1

0.2

0.3

0.4

0.5

time (sec)

Idq

neg

(pu)

id negiq neg

0.1 0.2 0.3 0.4 0.5 0.6-0.05

-0.025

0

0.025

0.05

Id &

Iq n

egat

ive

sequ

ence

(pu)

Idneg refIdneg

0.1 0.2 0.3 0.4 0.5 0.6-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

time (sec)

Zero

seq

uenc

e cu

rren

t (pu

)

i zero

0.1 0.2 0.3 0.4 0.5 0.6-0.05

-0.025

0

0.025

0.05

Zero

-seq

uenc

e cu

rren

t (pu

)

izero

Fault Fault

Page 34: Design, Modeling and control of modular multilevel converters (MMC) based hvdc systems ghazal falahi

34

MMC-HVDC system response to SLG fault with proposed controller- arm circulating current

Conventional controller

Proposed controller

Before fault Fault

0.2 0.25 0.3 0.35 0.4 0.45 0.5

0

0.2

0.4

0.6

0.8

1

time(secs)

icirc

(pu)

0.2 0.25 0.3 0.35 0.4 0.45 0.5-0.2

0

0.2

0.4

0.6

0.8

time (secs)

icirc

(pu)

Page 35: Design, Modeling and control of modular multilevel converters (MMC) based hvdc systems ghazal falahi

35

MMC-HVDC system response to SLG fault with proposed controller- sub-module capacitor voltages

Conventional controller

Proposed controller

0.3 0.4 0.5 0.6 0.7 0.8 0.9 10.34

0.35

0.36

0.37

0.38

0.39

0.4

time (secs)

Sub-

modu

le ca

pacit

or vo

ltage

s (pu

)

0.3 0.4 0.5 0.6 0.7 0.8 0.9 10.34

0.35

0.36

0.37

0.38

0.39

0.4

time (secs)

Sub-

modu

le ca

pacit

or vo

ltage

s (pu

)

Before fault Fault

Page 36: Design, Modeling and control of modular multilevel converters (MMC) based hvdc systems ghazal falahi

36

MMC-HVDC system response to unbalance condition with proposed controller

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8-1.5

-1

-0.5

0

0.5

1

1.5

time (secs)

3phase

voltag

se (pu

)

VaVbVc

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

time (secs)

3phase

curren

ts (pu)

iaibic

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

time (secs)

DC cu

rrent (

pu)

idc

Before fault Fault Fault with proposed controller

Page 37: Design, Modeling and control of modular multilevel converters (MMC) based hvdc systems ghazal falahi

MMC-HVDC system dynamic response to three phase fault at inverter side- constant power control

37

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

time (sec)

Vabc

side

2 (pu

)

iaibic

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8-3

-2

-1

0

1

2

3

time (sec)

Iabc s

ide 1

(pu)

iaibic

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8-3

-2

-1

0

1

2

3

time (sec)

Iabc s

ide 2 (

pu)

iaibic

Fault at converter 2 side at t=0.3-0.4sec

Fault

Page 38: Design, Modeling and control of modular multilevel converters (MMC) based hvdc systems ghazal falahi

MMC-HVDC system dynamic response to three phase fault at inverter side

38

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Time (sec)

Vdc (

pu)

Vdc

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8-3

-2

-1

0

1

2

3

time (sec)

P1 &

P2 (

pu)

P1P2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8-1

-0.5

0

0.5

1

time (sec)

Q1&Q

2 (pu)

Q1Q2

Fault

Page 39: Design, Modeling and control of modular multilevel converters (MMC) based hvdc systems ghazal falahi

MMC-HVDC system response to 50% voltage sag on both sides

39

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

time (sec)

Iabc s

ide 2

(pu)

iaibic

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8-3

-2

-1

0

1

2

3

time (sec)

Iabc s

ide 1 (

pu)

iaibic

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8-4

-3

-2

-1

0

1

2

3

4

time (sec)

P1 &

P2 (

pu)

P1P2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

time (sec)

Q1 &

Q2 (

pu)

Q1Q2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.8

0.85

0.9

0.95

1

1.05

1.1

1.15

time (sec)

Sub-

modu

le ca

pacit

or vo

ltage

s (pu

)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80

1

2

3

4

5

time (sec)

Vdc (

pu)

Vdc

Dynamic response of the system to 50% for 0.1 sec (t=0.3-0.4) voltage sag on both rectifier and inverter sides

Issues: 1. AC currents increase

2. DC link voltage oscillates

Page 40: Design, Modeling and control of modular multilevel converters (MMC) based hvdc systems ghazal falahi

Proposed LVRT control

40

V*ac

Vmk(k=a,b,c)

PIi*odrefVod

iod

PIi*qref

ω0Leq

ω0Leqioq

Voq

3dq/abc

System controller

Normal  operationLVRT

Pref

Pref-­‐LVRT

PIV*dc

Vdc

Q*ref

PI

Vac Qref-­‐LVRT

!!"#$% = 0 vac >0.85 pu

!!"#$% = −2 !!"

!!"#$%&+ 2 0.5< vac ≤0.85pu

!!"#$% = 0 vac ≤0.5 pu

!!"#$% = 1− !!"#$%

2

3

4

Time

Voltage

Vmin

tmin t1 t20

V1

V2

Vnom

1

Low voltage ride through curve defined by grid code

Ireactive/Irated(%)

Voltage(%)

0.2pu

50 90

1pu

110

Normal  operationFault  operation

The required percentage of reactive current during LVRT

Changes in the system controller

[1] R.P.S. Leão1, J.B. Almada1, P.A. Souza2, R.J. Cardoso1, R.F. Sampaio1, F.K.A. Lima1, J.G. Silveira2 and L.E.P. Formiga , “The Implementation of the Low Voltage Ride-Through Curve on the Protection System of a Wind Power Plant” , International Conference on Renewable Energies and Power Quality (ICREPQ’11) Las Palmas de Gran Canaria (Spain), 13th to 15th April, 2010

Page 41: Design, Modeling and control of modular multilevel converters (MMC) based hvdc systems ghazal falahi

Fault performance with the proposed LVRT control

41

1. AC currents stay constant

2. Less increase in DC link voltage

3. Simple implementation

Solution advantages:

With proposed controller

Page 42: Design, Modeling and control of modular multilevel converters (MMC) based hvdc systems ghazal falahi

Applying LVRT profile

42

1. Active power reference

decreased to avoid instability

2. Reactive power is injected to

maintain voltage

Solution:

2

3

4

Time

Voltage

Vmin

tmin t1 t20

V1

V2

Vnom

1

Page 43: Design, Modeling and control of modular multilevel converters (MMC) based hvdc systems ghazal falahi

MMC-HVDC operation under DC fault

43

SMs

SMs

SMs SMs

SMs SMs

DC  link

ia-­‐up

ia-­‐low

Udcia

ibic

Larm

Larm

Larm Larm

Larm Larm

LaLbLc

ib-­‐up ic-­‐up

ib-­‐low ic-­‐low

uaub

uc

idcLcableRcable

ic

CBCB

CB

D1

D2

S1

S2

ipa Vc

Stage1. MMC operational and AC circuit breakers still closed

Stage2. MMC not operating (blocked), AC side CB still closed

Stage3. MMC not operating, AC circuit breaker closed

Stage1:

§  sub-module capacitors

discharge through S1 for a very

short time until MMC pulses are

blocked

§  The sub-module capacitor

discharge time is very short so

sum of sub-module voltages

stays close to Vdc

Page 44: Design, Modeling and control of modular multilevel converters (MMC) based hvdc systems ghazal falahi

0.19 0.195 0.2 0.205 0.21 0.215 0.220

2

4

6

8

10

12

time (secs)

Idc (K

A)

MMC-HVDC operation under DC fault

44

LcableRcable

2Larm/3

idc

ic

icable

Vsub-­‐module  caps  ~  Udc

Equivalent circuit during stage1 The Vdc oscillation frequency at each stage is found by

eqeqCL1

0 =ω3/2..3/22

0armcable

armcable

LLCLL +

0.19 0.195 0.2 0.205 0.21 0.215 0.22100

150

200

250

300

350

time (secs)

Vdc

(KV)

Fault Normal operation

Page 45: Design, Modeling and control of modular multilevel converters (MMC) based hvdc systems ghazal falahi

stage 2 : MMC PWM blocked, AC circuit breaker closed

45

Stage2. MMC blocked (pulses off) AC side circuit breakers closed, D2 conducts and passes AC current to the fault side ü  Some of the diodes turn off as the arm current reaches the

zero crossing point

eqeqCL1

0 =ωThe Vdc oscillation frequency

Leq depends on number of conducting diodes

Equivalent circuit during stage2

DC  link

ia-­‐up

ia-­‐low

Udcia

ibic

Larm

Larm

Larm Larm

Larm Larm

LaLbLc

ib-­‐up ic-­‐up

ib-­‐low ic-­‐low

uaub

uc

idcLcableRcable

ic

CBCB

CB

Fast AC breaker required!

Design consideration: D2 has to withstand 2pu current for around 5 cycles ABB fast recovery diode 5SDF 16L4503

Page 46: Design, Modeling and control of modular multilevel converters (MMC) based hvdc systems ghazal falahi

0.2 0.25 0.3 0.35 0.4 0.45 0.5-3

-2

-1

0

1

2

3

time (secs)

Idc

(pu)

stage 3 : MMC blocked, AC circuit breaker tripped

46

Stage3. MMC blocked (pulses off) and AC side circuit breakers open

Equivalent circuit during this stage3 LcableRcable

2Larm

idc

2Larm 2Larm

LcableRcable

2Larm/3

idc

tLL

R

dcdccable

cable

eIi)3/2

(

00+

=

Fault current

Fault applied AC CB tripped 5cycles

0.2 0.25 0.3 0.35 0.4 0.45 0.50

0.5

1

1.5

2

2.5

3

3.5

time (secs)

Vdc

(pu)

MMC blocked MMC controller blocks pulses when Idc>2pu

Page 47: Design, Modeling and control of modular multilevel converters (MMC) based hvdc systems ghazal falahi

Solutions to DC fault

47

2. ABB hybrid DC circuit breaker (operates in 5msec)

3. Alstom ultrafast mechatronic HVDC DC circuit breaker (operates in 5msec)

4. Alstom hybrid MMC structure uses FB sub-modules to suppress DC faults

1. A lot of designs use AC circuit breakers to suppress DC side faults

If the fast DC breaker is used fault current is suppressed in 5ms

Page 48: Design, Modeling and control of modular multilevel converters (MMC) based hvdc systems ghazal falahi

Proposed MMC with unequal DC values

48

time  (sec) 0.1 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18

-400

-300

-200

-100

0

100

200

300

400

time (sec)

Outp

ut v

oltag

e (v

olts)

Vo

Vdc/2S

3Vdc/2S

2Vdc/2S

time  (sec)

Vdc/2S

3Vdc/2S

2Vdc/2S

0.1 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18-400

-300

-200

-100

0

100

200

300

400

time (sec)

Out

put v

olta

ge (v

olts

)

Vo

Conventional MMC using

CSPWM

Conventional MMC using

minimal THD Modulation

MMC with unequal DC

sources using minimal THD modulation

15.4% 11.3%

7.3%

System Controller

Minimal THD modulation

(calculation of

switching angles)

m

ωt

θ1

θs

θ2

Target waveform generation

(Determine the number of required SM

and generation of firing pulses)

S1

S2

S2s

SM1

SM2

SMs

SM(s+1)

SM5

SM2s

Vdc/2s

2Vdc/2s

3Vdc/2s

Advantages of the proposed configuration ü  Lower THD

ü  60HZ modulation with small

number of sub-modules

Page 49: Design, Modeling and control of modular multilevel converters (MMC) based hvdc systems ghazal falahi

References

[1] Falahi, Ghazal. "Design, Modeling and Control of Modular Multilevel Converter based HVDC Systems." PhD Dissertation NCSU (2014). [2] Falahi, Ghazal, and Alex Q. Huang. "Design consideration of an MMC-HVDC system based on 4500V/4000A emitter turn-off (ETO) thyristor." Energy Conversion Congress and Exposition (ECCE), 2015 IEEE. IEEE, 2015. [3] Falahi, Ghazal, and Alex Huang. "Control of modular multilevel converter based HVDC systems during asymmetrical grid faults." Industrial Electronics Society, IECON 2014-40th Annual Conference of the IEEE. IEEE, 2014. [4] Falahi, Ghazal, Wensong Yu, and Alex Q. Huang. "THD minimization of modular multilevel converter with unequal DC values." Energy Conversion Congress and Exposition (ECCE), 2014 IEEE. IEEE, 2014. [5] Falahi, Ghazal, and Alex Huang. "Low voltage ride through control of modular multilevel converter based HVDC systems." Industrial Electronics Society, IECON 2014-40th Annual Conference of the IEEE. IEEE, 2014.

49