Ece 312 power point

Embed Size (px)

Citation preview

  1. 1. ELECTRONIC CIRCUIT ANALYSIS AND DESIGN ECE 312 Alipar, Emmanuel B. BSECE - 3
  2. 2. C O N T E N T S I. Large Signal Amplifier II. Types of Amplifier Class A Class AB Class B Class C Class D Class E Class F Class G and H Differential Efficiency III. Field Effect Transistor (FET)
  3. 3. LARGE SIGNAL AMPLIFIER In small signal amplifiers, the main factors are usually amplification linearity and magnitude of gain , since signal voltage and current are small in a small-signal amplifier, the amount of power- handling capacity and power efficiency are of little concern. primarily provide sufficient power to an output load to drive a speaker or other power device, typically a few watts to tens of watts. The main features of a large-signal amplifier are the circuit's power efficiency, the maximum amount of power that the circuit is capable of handling, and the impedance matching to the output device.
  4. 4. Amplifiers are classified by different class ratings (A, AB, D, etc.) and categorized by the number of channels they provide (mono, 2-, 4- etc). The class of an amplifier refers to the amplifier's internal circuitry. Class A amplifiers have the highest sound quality, but are the least efficient and do not dissipate heat very effectively. Class AB amplifiers run more efficiently and dissipate heat better than Class A amplifiers. This is why Class AB amps are more reliable and produce lower distortion in comparison to Class A amps. In terms of the angle of flow for the input signal, Class A and Class AB amplifiers have analog designs, while Class D amplifiers have switching designs. TYPES OF AMPLIFIER
  5. 5. A. Class A and its Characteristics The output signal varies for full 360 of the cycle. Figure 15.1 a shows that this requires the Q-point to be biased at a level so that at least half the signal swing of the output may vary up and down without going to a high-enough voltage to be limited by the supply voltage level or too low to approach the lower supply level, or 0 V in this description. It is the highest sound quality, but are the least efficient and do not dissipate heat very effectively. TYPES OF AMPLIFIER
  6. 6. This is the most linear of the classes, meaning the outpu signal is a truer representation of what was imputed.
  7. 7. The output device (transistor) conducts electricity for the entire cycle of input signal. In other words, they reproduce the entire waveform in its entirety. These amps run hot, as the transistors in the power amp are on and running at full power all the time. There is no condition where the transistor(s) is/are turned off. That doesn't mean that the amplifier is never or can never be turned off; it means the transistors doing the work inside the amplifier have a constant flow of electricity through them. This constant signal is called "bias". Class A is the most inefficient of all power amplifier designs, averaging only around 20. Class A Characteristics
  8. 8. Because of these factors, Class A amplifiers are very inefficient: for every watt of output power, they usually waste at least 4-5 watts as heat. They are usually very large, heavy and because of the 4-5 watts of heat energy released per watt of output, they run very hot, needing lots of ventilation (not at all ideal for a car, and rarely acceptable in a home). All this is due to the amplifier constantly operating at full power.
  9. 9. Class A Circuit
  10. 10. The upside is that these amps are the most enjoyed of all amplifiers. These amps dig out musical detail, since the transistor reproduces the entire audio waveform without ever cutting off. As a result the sound is cleaner and more linear; that is, it contains much lower levels of distortion. They are the most accurate of all amps available, but at significant cost to manufacture, because of tight tolerances, and the additional components for cooling and heat regulation.
  11. 11. B. Class AB and its Characteristics An amplifier may be biased at a dc level above the zero base current level of class B and above one-half the supply voltage level of class A; this bias condition is class AB. Class AB operation still requires a push-pull connection to achieve a full output cycle, but the dc bias level is usually closer to the zero base current level for better power efficiency, as described shortly. For class AB operation, the output signal swing occurs between 1800 and 3600 and is neither class A nor class B operation.
  12. 12. There are many implementations of the Class AB design. A benefit is that the inherent non- linearity of Class B designs is almost totally eliminated, while avoiding the heat-generating and wasteful inefficiencies of the Class A design. And as stated before, at some output levels, Class AB amps operate in Class A. It is this combination of good efficiency (around 50) with excellent linearity that makes class AB the most popular audio amplifier design.
  13. 13. Class AB Characteristics In fact, many Class AB amps operate in Class A at lower output levels, again giving the best of both worlds. The output bias is set so that current flows in a specific output device for more than a half the signal cycle but less than the entire cycle. There is enough current flowing through each device to keep it operating so they respond instantly to input voltage demands. In the push-pull output stage, there is some overlap as each output device assists the other during the short transition, or crossover period from the positive to the negative half of the signal.
  14. 14. ` C. Class B and its Characteristics A class B circuit provides an output signal varying over one-half input signal cycle, or for180 of signal, as in Fig. 15.1 b. The dc bias point for class B is therefore at 0 V, with the output then varying from this bias point for a half-cycle. Obviously, the output is not a faithful reproduction of the input if only one half-cycle is present.
  15. 15. ` Two class B operations-one to provide output on the positive output half-cycle and another to provide operation on the negative-output half- cycle are necessary. The combined half-cycles then provide an output for a full 360 of operation. This type of connection is referred to as push-pull operation, which is discussed later in this chapter. Note that class B operation by itself creates a very distorted output signal since reproduction of the input takes place for only 180 of the output signal swing.
  16. 16. Class B Characteristics The input signal has to be a lot larger in order to drive the transistor appropriately. This is almost the opposite of Class A operation There have to be at least two output devices with this type of amp. This output stage employs two output devices so that each side amplifies each half of the waveform. [li Either both output devices are never allowed to be on at the same time, or the bias (remember, that trickle of electricity?) for each device is set so that current flow in one output device is zero when not presented with an input signal. Each output device is on for exactly one half of a complete signal cycle.
  17. 17. D. Class C and its Characteristics It is an amplifier is biased for operation for less than 180 of the input signal cycle and will operate only with a tuned or resonant circuit which provides a full cycle of operation for the tuned or resonant frequency. Such power amplifiers are, therefore, employed in special areas of tuned circuits, such as radio or communications.
  18. 18. ` E. Class D and its characteristics It is an amplifier that is similar to a switchable power supply, but with audio signals controlling, or modulating, the switching action. To do this, you use a technology called Pulse Width Modulation. According to experts, audio signals can be used to modulate a PWM system to create a high power audio amplifier at fairly low voltages using very small components.
  19. 19. Class D Characteristics While some Class D amps do run in true digital mode, using coherent binary data, most do not. They are better termed "switching" amplifiers, because here the output devices are rapidly switched on and off at least twice for each cycle. Depending on their switching frequency, they may be "switched on" or "off" millions of times a second. Class D operation is theoretically 100% efficient, but in practice, they are closer to 80-90% efficiency. This efficiency gain is at the cost of high-fidelity.
  20. 20. F. Class E and its Characteristics The class-E/F amplifier is a highly efficient switching power amplifier, typically used at such high frequencies that the switching time becomes comparable to the duty time. As said in the class-D amplifier, the transistor is connected via a serial LC circuit to the load, and connected via a large L (inductor) to the supply voltage. The supply voltage is connected to ground via a large capacitor to prevent any RF signals leaking into the supply. The class-E amplifier adds a C (capacitor) between the transistor and ground and uses a defined L1 to connect to the supply voltage.
  21. 21. ` The following description ignores DC, which can be added easily afterwards. The above mentioned C and L are in effect a parallel LC circuit to ground. When the transistor is on, it pushes through the serial LC circuit into the load and some current begins to flow to the parallel LC circuit to ground. Then the serial LC circuit swings back and compensates the current into the parallel LC circuit. At this point the current through the transistor is zero and it is switched off. Both LC circuits are now filled with energy in C and L0.
  22. 22. ` The whole circuit performs a damped oscillation. The damping by the load has been adjusted so that some time later the energy from the Ls is gone into the load, but the energy in both C0 peaks at the original value to in turn restore the original voltage so that the voltage across the transistor is zero again and it can be switched on.
  23. 23. ` Class E Amplifier
  24. 24. Class E Characteristics Class E uses a significant amount of second-harmonic voltage. The second harmonic can be used to reduce the overlap with edges with finite sharpness. For this to work, energy on the second harmonic has to flow from the load into the transistor, and no source for this is visible in the circuit diagram. In reality, the impedance is mostly reactive and the only reason for it is that class E is a class F (see below) amplifier with a much simplified load network and thus has to deal with imperfections. In many amateur simulations of class-E amplifiers, sharp current edges are assumed nullifying the very motivation for class E and measurements near the transit frequency of the transistors show very symmetric curves, which look much similar to class-F simulations.
  25. 25. G. Class F and its Characteristics In pushpull amplifiers and in CMOS, the even harmonics of both transistors just cancel. Experiment shows that a square wave can be generated by those amplifiers. Theoretically square waves consist of odd harmonics only. In a class-D amplifier, the output filter blocks all harmonics; i.e., the harmonics see an open load. So even small currents in the harmonics suffice to generate a voltage square wave. The current is in phase with the voltage applied to the filter, but the voltage across the transistors is out of phase. Therefore, there is a minimal overlap between current through the transistors and voltage across the transistors. The sharper the edges, the lower the overlap.
  26. 26. ` While in class D, transistors and the load exist as two separate modules, class F admits imperfections like the parasitics of the transistor and tries to optimise the global system to have a high impedance at the harmonics. Of course there has to be a finite voltage across the transistor to push the current across the on- state resistance. Because the combined current through both transistors is mostly in the first harmonic, it looks like a sine. That means that in the middle of the square the maximum of current has to flow, so it may make sense to have a dip in the square or in other words to allow some overswing of the voltage square wave. A class-F load network by definition has to transmit below a cutoff frequency and reflect above.
  27. 27. ` Any frequency lying below the cutoff and having its second harmonic above the cutoff can be amplified, that is an octave bandwidth. On the other hand, an inductive-capacitive series circuit with a large inductance and a tunable capacitance may be simpler to implement. By reducing the duty cycle below 0.5, the output amplitude can be modulated. The voltage square waveform degrades, but any overheating is compensated by the lower overall power flowing. Any load mismatch behind the filter can only act on the first harmonic current waveform, clearly only a purely resistive load makes sense, then the lower the resistance, the higher the current.
  28. 28. H. Class G & H and its Characteristics There are a variety of amplifier designs that enhance class-AB output stages with more efficient techniques to achieve greater efficiencies with low distortion. These designs are common in large audio amplifiers since the heatsinks and power transformers would be prohibitively large (and costly) without the efficiency increases. The terms "class G" and "class H" are used interchangeably to refer to different designs, varying in definition from one manufacturer or paper to another.
  29. 29. Class-G amplifiers (which use "rail switching" to decrease power consumption and increase efficiency) are more efficient than class-AB amplifiers. These amplifiers provide several power rails at different voltages and switch between them as the signal output approaches each level. Thus, the amplifier increases efficiency by reducing the wasted power at the output transistors. Class-G amplifiers are more efficient than class AB but less efficient when compared to class D, without the negative EMI effects of class D. Class-H amplifiers take the idea of class G one step further creating an infinitely variable supply rail. This is done by modulating the supply rails so that the rails are only a few volts larger than the output signal at any given time.
  30. 30. ` The output stage operates at its maximum efficiency all the time. Switched-mode power supplies can be used to create the tracking rails. Significant efficiency gains can be achieved but with the drawback of more complicated supply design and reduced THD performance. In common designs, a voltage drop of about 10V is maintained over the output transistors in Class H circuits. The picture above shows positive supply voltage of the output stage and the voltage at the speaker output. The boost of the supply voltage is shown for a real music signal. The voltage signal shown is thus a larger version of the input, but has been changed in sign (inverted) by the amplification. Other arrangements of amplifying device are possible, but that given (that is, common emitter, common source or common cathode) is the easiest to understand and employ in practice. If the amplifying element is linear, the output is a faithful copy of the input, only larger and inverted.
  31. 31. ` Class H Amplifier
  32. 32. In summary: Class G and H amplifiers add complexity to the signal and degrade it because of the need for switching depending on the input signal Class D amplifiers are models of efficiency, but with a loss of detail and fidelity Class B amplifiers generally introduce some crossover distortion, but move away from Class D, G, and H's extreme non-linearity. Class AB amplifiers may introduce some crossover distortion, but they get closer to the ideal of Class A for most of its operating regime. They are indeed the best compromise of performance versus cost. Class A amplifiers introduce no crossover distortion and are the most desirable amps to own, but they are expensive, run hot, and have to be very well-built.
  33. 33. Differential Efficiency Types or class of amplifier has a different and specific characteristics, basing on the meaning and the data that gathered. The power efficiency of an amplifier, defined as the ratio of power output to power input, improves (gets higher) going from class A to class D. In general terms, we see that a class A amplifier, with dc bias at one-half the supply voltage level, uses a good amount of power to maintain bias, even with no input signal applied. This results in very poor efficiency, especially with small input signals, when very little ac power is delivered to the load, In fact, the maximum efficiency of a class A circuit, occurring for the largest output voltage and current swing, is only 25% with a direct or series-fed load connection and 50% with a transformer connection to the load.
  34. 34. Class B operation, with no dc bias power for no input signal, can be shown to provide a maximum efficiency that reaches 78.5%. Class D operation can achieve power efficiency over 90% and provides the most efficient operation of all the operating classes. Since class AB falls between class A and class B in bias, it also falls between their efficiency ratings- between 25% (or 50%) and 78.5%. Table 15.1 summarizes the operation of the various amplifier classes. In class B operation, a push-pull connection is obtained using either a transformer coupling or by using complementary (or quasi- complementary) operation with npn and pnp transistors to provide operation on opposite polarity cycles. While transformer operation can provide opposite cycle signals, the transformer itself is quite large in many application. A transformer less circuit using complementary transistors provides the same operation in a much smaller package.
  35. 35. Calculate the input power, output power, and efficiency of the amplifier circuit in Fig. 15.5 for an input voltage that results in a base current of 10 mA peak.
  36. 36. P(DC) = Vcc Icq = (20 V)(0.48 A) = 9.6 W The amplifier's power efficiency can then be calculated using Eq. (15.8)
  37. 37. ` Field Effect Transistor (FET) The junction field-effect transistor,or JFET, is perhaps the simplest transistor available. It has some important characteristics, notably a very high input resistance. Unfortunately, however (for the JFET), the MOSFET has an even higher input resistance. This, together with the many other advantages of MOS transistors, has made the JFET virtually Obsolete. Currently, its applications are limited to discrete-circuit design, where it is used both as an amplifier and as a switch. Its integrated-circuit applications are limited to the design of the differential input stage of some operational amplifiers, where advantage is taken of its high input resistance (compared to the BJT). In this section,we briefly consider JFET operation and characteristics.
  38. 38. FET's come in five general types, but we will restrict ourselves to JFET's (for Junction FET) initially and our examples will only use n-channel JFET's. These have n channel doping and are similar to npn transistors. The p channel JFET requires the opposite voltage on the gate. They usually have poorer performance due to the lower mobility and shorter lifetimes of holes, as compared to electrons. As mentioned above, the source-drain current is the only current that flows through a FET. The source-drain current is labeled ID. The voltage applied to the gate terminal enables this current by creating an electric field inside the channel. There is no fundamental difference between the source and drain terminals of a JFET.
  39. 39. This minimum gate voltage, called VP, is a characteristic that varies from one model of JFET to the next. It is usually in the range from 3 V to 10 V. Even within the same type of FET this parameter varies significantly from one device to the next. For example, the range specified for a 2N5485 the range is between -0.3 V and -3.0 V. Lets summarize these properties: For VGS < Vp: ID = 0 (8.1) For VGS > 0.6 V: Device Fails! (8.2) When VGS is between these bounds ID depends on both VGS and VDS. A complete description of the device would require a two-dimensional plot showing how ID varies with both VGS and VDS.
  40. 40. nnnThe common transistor is called a junction transistor, and it was the key device which led to the solid state electronics revolution. In application, the junction transistor has the disadvantage of a low input impedance because the base of the transistor is the signal input and the base-emitter diode is forward biased. Another device achieved transistor action with the input diode junction reversed biased, and this device is called a "field effect transistor" or a "junction field effect transistor", JFET. With the reverse biased input junction, it has a very high input impedance. Having a high input impedance minimizes the interference with or "loading" of the signal source when a measurement is made. For an n-channel FET, the device is constructed from a bar of n-type material, with the shaded areas composed of a p-type material as a Gate. Between the Source and the Drain, the n-type material acts as a resistor. The current flow consists of the majority carriers (electrons for n-type material). Characteristic curves Common source amplifier Since the Gate junction is reverse biased and because there is no minority carrier contribution to the flow through the device, the input impedance is extremely high. The control element for the JFET comes from depletion of charge carriers from the n- channel. When the Gate is made more negative, it depletes the majority carriers from a larger depletion zone around the gate. This reduces the current flow for a given value of Source-to-Drain voltage. Modulating the Gate voltage modulates the current flow through the device.
  41. 41. Sample Problem
  42. 42. This makes it different from a normal transistor, since current can flow either from the drain to the source or from the source to the drain. Note that there is a maximum value and a minimum value for the gate voltage in order to keep the device operating. Since a JFET has a diode junction separating the gate from the channel, the gate must be held at a voltage of less than 0.6 V above the channel (usually the source terminal). If the gate voltage becomes greater than this, the junction will become conducting and the gate current will no longer be zero. Usually, we will not let the voltage between the gate and the source (VGS) get any greater than 0. If the gate is biased too negative then no current flows and the channel is said to be pinched off.
  43. 43. JFET Characteristic Curves Characteristic curves for the JFET are shown at left. You can see that for a given value of Gate voltage, the current is very nearly constant over a wide range of Source-to-Drain voltages. The control element for the JFET comes from depletion of charge carriers from the n-channel. When the Gate is made more negative, it depletes the majority carriers from a larger depletion zone around the gate. This reduces the current flow for a given value of Source-to-Drain voltage. Modulating the Gate voltage modulates the current flow through the device.
  44. 44. The transfer characteristic for the JTET is useful for visualizing the gain from the device and identifying the region of linearity. The gain is proportional to the slope of the transfer curve. The current value IDSS represents the value when the Gate is shorted to ground, the maximum current for the device. This value will be part of the data supplied by the manufacturer. The Gate voltage at which the current reaches zero is called the "pinch voltage", VP. Note that the dashed line representing the gain in the linear region of operation strikes the zero current line at about half the pinch voltage.