43
Generic Model Fitting of Passive RF Devices Tao-Yi Lee Advisor: Yu-Jiu Wang RFVLSI LAB @ NCTU 2014/4/18 Tao-Yi Lee @ RFVLSILAB 1

Generiic RF passive device modeling

Embed Size (px)

Citation preview

Page 1: Generiic RF passive device modeling

Generic Model Fitting of

Passive RF Devices

Tao-Yi Lee

Advisor: Yu-Jiu Wang

RFVLSI LAB @ NCTU

2014/4/18 Tao-Yi Lee @ RFVLSILAB 1

Page 2: Generiic RF passive device modeling

Outline

• The Model Fitting Design Flow

• Examples

– Model Fitting Of Inductors

– Model Fitting Of Center Tapped Inductors

– Model Fitting Of Transmission Lines

– Model Fitting Of Transformers

• Conclusion and Future Works

• References

2014/4/18 Tao-Yi Lee @ RFVLSILAB 2

Page 3: Generiic RF passive device modeling

Design Flow of Modeling Fitting

2014/4/18 Tao-Yi Lee @ RFVLSILAB 3

Start

Propose passive lumped equivalent model for an arbitrary high-frequency structure

Solve Y parameter matrix [Y] of the lumped equivalent network

Rum EM simulations of the desired structures, obtain [YEM]

Program the Ycost(R1, L1, C1)=[Y]-[YEM] matrix into MATLAB script as cost functions in numerical analysis

Solve values for lumped component, i.e. find R1, L1, C1,…, such that Ycost is minimized

Stop

Page 4: Generiic RF passive device modeling

Passive Lumped Equivalent Model For

Arbitrary High-frequency Structure

2014/4/18 Tao-Yi Lee @ RFVLSILAB 4

Propose passive lumped equivalent model for an arbitrary high-frequency structure

PORT1 PORT3

C13

C12 C23

C33C22C11

L12 L23R12 R23

Model #1

PORT2

Mi2i1

PORT1

PORT2

PORT3

Si Substrate

IMD

Cox Cox

• Main lumped elements• Skin effect• Loss

• Substrate• Eddy current

Page 5: Generiic RF passive device modeling

Modeling Skin Effect

• Skin effect: 𝑅𝑐𝑜𝑛𝑑 ∝ 𝑓; 𝐿𝑐𝑜𝑛𝑑 ≈ 𝑐𝑜𝑛𝑠𝑡.

– A non-linear effect

– Consider substrate coupling and proximity effect

2014/4/18 Tao-Yi Lee @ RFVLSILAB 5

• T. Kamgaing, T. Myers, M. Petras, And M. Miller, "Modeling Of Frequency Dependent Losses In Two-port And Three-port Inductors On Silicon," Radio Frequency Integrated Circuits Symposium, Pp. 307-310, 2002.

• C.-S. Yen, Z. Fazarinc, and R. L. Wheeler, “Time-Domain Skin-Effect Model for Transient Analysis of Lossy Transmission Lines,” Proceedings of the IEEE, vol. 70, pp. 750-757, 982• S. Kim and D. P..N eikirk, “Compact Equivalent Circuit Model for the Skin Effect”

Rm

Rf1

Lf1

Rf2

Lf2

Rf3

Lf3

Page 6: Generiic RF passive device modeling

Modeling Eddy Current

• Complex Image Method

2014/4/18 Tao-Yi Lee @ RFVLSILAB 6

• D. Melendy and A. Weisshaar, “A New Scalable Model for Spiral Inductors on Lossy Silicon Substrate,” in 2003 MTT-S Symposium, June 2003, pp. 1007 – 1010• Melendy, D.; Francis, P.; Pichler, C.; Kyuwoon Hwang; Srinivasan, G.; Weisshaar, A.; , "A new wideband compact model for spiral inductors in RFICs," Electron Device Letters,

IEEE , vol.23, no.5, pp.273-275, May 2002• Kai Kang; Jinglin Shi; Wen-Yan Yin; Le-Wei Li; Zouhdi, S.; Rustagi, S.C.; Mouthaan, K.; , "Analysis of Frequency- and Temperature-Dependent Substrate Eddy Currents in On-Chip

Spiral Inductors Using the Complex Image Method ," Magnetics, IEEE Transactions on , vol.43, no.7, pp.3243-3253, July 2007

PORT1 PORT2Meddy

Rs,eddy

PORT1

PORT2

PORT3

Si Substrate

IMD

Image inductor on

lossy substrate

Page 7: Generiic RF passive device modeling

Modeling Oxide Capacitance and

Substrate Loss

• Model silicon substrate and IMD (oxides) as a 2D mesh

• Semi-empirical formula accounting for fringing and proximity effects (s: spacing, w: line width, ℎ𝑜𝑥: height above oxide)

𝐶𝑜𝑥 = 1 −𝑠

𝑠 + 𝑤

1.16 𝜖0𝜖𝑜𝑥 ∙ 𝑤 ∙ 𝑙

ℎ𝑜𝑥

2014/4/18 Tao-Yi Lee @ RFVLSILAB 7

CoxCox Cox

RsubCsubRsubCsubRsubCsub

Rnon-uniform Rnon-uniform

OptionalOptional

• Kai Kang; Jinglin Shi; Wen-Yan Yin; Le-Wei Li; Zouhdi, S.; Rustagi, S.C.; Mouthaan, K.; , "Analysis of Frequency- and Temperature-Dependent Substrate Eddy Currents in On-Chip Spiral Inductors Using the Complex Image Method ," Magnetics, IEEE Transactions on , vol.43, no.7, pp.3243-3253, July 2007

Page 8: Generiic RF passive device modeling

Modeling Substrate

• Modeling of substrate extrinsic is generally difficult, but some closed form solution are found in micro-strip transmission line researches (ℎ𝑠𝑢𝑏:height of the substrate, 𝜖𝑠𝑢𝑏,𝑒𝑓𝑓: effective dielectric constant)

– 𝐶𝑠𝑢𝑏 =

𝑤

ℎ𝑠𝑢𝑏+1.393+0.667 ln

𝑤

ℎ𝑠𝑢𝑏+1.444

120𝜋𝑐∙

𝑙

2𝜖𝑠𝑢𝑏,𝑒𝑓𝑓

• In reference 2, shunt resistance 𝑅𝑠𝑢𝑏 in silicon can be determined using relaxation time constant

𝜖0𝜖𝑆𝑖

𝜎𝑆𝑖

– 𝑅𝑠𝑢𝑏 =𝜖0𝜖𝑆𝑖

𝐶𝑆𝑖𝜎𝑆𝑖

• Consider circuit optimization to look for practical design values

2014/4/18 Tao-Yi Lee @ RFVLSILAB 8

• Ref. 1 :M. Kirschning and R. H. Jansen, “Accurate wide-range design equations for the frequency-dependent characteristics of parallel coupled microstrip lines,” IEEE Trans. Microwave Theory and Tech., vol. MTT-32, pp. 83–90, Jan. 1984.

• Ref.2 :J. Zheng, Y.-C. Hahm, V. K. Tripathi, and A. Weisshaar, “CAD-oriented equivalent circuit modeling of on-chip interconnects on lossy silicon substrate,” IEEE Trans. Microwave Theory Tech., vol. 48, pp. 1443–1451, Sept. 2000

Page 9: Generiic RF passive device modeling

Solve Y Parameter Matrix 𝑌 of The

Lumped Equivalent Network• Definition of Y parameters

– Yij = Ii

Vj Vk=0 for k≠j

𝐼1𝐼2𝐼3

𝑌11 𝑌12 𝑌13

𝑌21 𝑌22 𝑌23

𝑌31 𝑌32 𝑌33

𝑉1

𝑉2

𝑉3

– Short all other terminals to ground reference and write down 𝑌𝑖𝑗 as function of lumped elements

– Simple; Can be done by inspection

– Matrix symmetry of passive networks

2014/4/18 Tao-Yi Lee @ RFVLSILAB 9

Solve Y parameter matrix [Y] of the lumped equivalent network

Page 10: Generiic RF passive device modeling

Solve Y Parameter Matrix 𝑌 of The

Lumped Equivalent Network

• 2-port 𝜋 model

2014/4/18 Tao-Yi Lee @ RFVLSILAB 10

Y11+Y21

-Y12

Y21+Y22

PORT1 PORT2PORT1

C12

C22C11

L12 R12

PORT2i1

simple 2 port inductor model

Page 11: Generiic RF passive device modeling

Solve Y Parameter Matrix 𝑌 of The

Lumped Equivalent Network

• 2-port shunt model

2014/4/18 Tao-Yi Lee @ RFVLSILAB 11

Y11+Y21

-Y12

Y21+Y22

PORT1

Y11+Y21

PORT1

-Y12

Y11PORT1

-Y12

Page 12: Generiic RF passive device modeling

Solve Y Parameter Matrix 𝑌 of The

Lumped Equivalent Network

• 2-port differential model

2014/4/18 Tao-Yi Lee @ RFVLSILAB 12

Y11+Y21

-Y12

Y21+Y22

PORT1PORT2

-Y12PORT1 PORT2

Y11+Y21 Y21+Y22

-Y12

Y11//Y22+Y21/2 Y11//Y22-Y21/2

Page 13: Generiic RF passive device modeling

Run EM Simulations Of The Desired

Structures, Obtain 𝑌𝐸𝑀

• Convert S-parameters to

Y-parameters via post-

processing

2014/4/18 Tao-Yi Lee @ RFVLSILAB 13

Rum EM simulations of the desired structures, obtain [YEM]

YEMSEM

Page 14: Generiic RF passive device modeling

Define The Minimization Problem In

MATLAB

∀i, j, minimizeR1,R2,…,L1,L2,…,C1,C2,…

ΔYij

= minimizeR1,R2,…,L1,L2,…,C1,C2,…

𝐘 − 𝐘𝐄𝐌

subject to all passive elements ≥ 0

2014/4/18 Tao-Yi Lee @ RFVLSILAB 14

Program the Ycost(R1, L1, C1)=[Y]-[YEM] matrix into MATLAB script as cost functions in numerical analysis

Page 15: Generiic RF passive device modeling

Solve Component Values Using Non-linear

Least-square Solvers

• “lsqnolin” function in

MATLAB

– trust-region-reflective

– levenberg-marquardt

• Computational intensive

2014/4/18 Tao-Yi Lee @ RFVLSILAB 15

Solve values for lumped component, i.e. find R1, L1, C1,…, such that Ycost is minimized

Page 16: Generiic RF passive device modeling

MODEL FITTING OF INDUCTORS

2014/4/18 Tao-Yi Lee @ RFVLSILAB 16

Page 17: Generiic RF passive device modeling

Inductor 1 Port Model #1

Y11 = 𝑠𝐶𝑠1 +1

𝑠𝐿1 + 𝑅1

2014/4/18 (C) RFVLSI LAB Confidential TYLEE 17

Model#11R1L

1SC

Page 18: Generiic RF passive device modeling

Inductor 1 Port Model #2

𝑌11 =𝐶𝑆1𝐶𝑆5

(𝐶𝑆1 + 𝐶𝑆5)⋅

𝑠 ⋅ (𝑠 +1

𝑅𝑆5𝐶𝑆5)

𝑠 +1

𝑅𝑆5 𝐶𝑆1 + 𝐶𝑆5

+1

𝑠𝐿1 + 𝑅1

2014/4/18 (C) RFVLSI LAB Confidential TYLEE 18

Model#2

1SC

5SC

5SR

1R1L

Page 19: Generiic RF passive device modeling

Inductor 1 Port Model #3

• 𝑌11 = 𝑠𝐶𝑓 +1

𝐿0⋅

𝑠+𝑅0+𝑅1

𝐿1

𝑠2+𝑠 𝑅0𝐿0+𝑅1𝐿0+𝑅0𝐿1

𝐿0𝐿1+

𝑅0𝑅1𝐿0𝐿1

+𝐶𝑆1𝐶𝑆2

(𝐶𝑆1+𝐶𝑆2)⋅

𝑠⋅(𝑠+1

𝑅𝑆2𝐶𝑆2)

𝑠+1

𝑅𝑆2 𝐶𝑆1+𝐶𝑆2

2014/4/18 (C) RFVLSI LAB Confidential TYLEE 19

2R2LModel#3

1SC

5SC

5SR

1R1L

Page 20: Generiic RF passive device modeling

EM Setup – Symmetrical Inductor

• Inductor@M9, UTM = 3.4𝜇𝑚, 2 turns

• IMD Simplification

• Localized Excitation

2014/4/18 (C) RFVLSI LAB Confidential TYLEE 20

Name Thickness (nm) Rel Permittivity Z

FOXEQ 300 3.9 1

ILDEQ 310 4.2 2

IMD_1aEQ 4100 3.523395 3

IMD_9aEQ 725 4.2 4

IMD_9bEQ 110 8.1 5

IMD_9cEQ 3230 4.2 6

PASS1EQ 1800 5.254054 7

Page 21: Generiic RF passive device modeling

MODEL FITTING OF CENTER-TAPPED

INDUCTORS

2014/4/18 Tao-Yi Lee @ RFVLSILAB 21

Page 22: Generiic RF passive device modeling

Center Tapped Inductor 3 Port Model #1

2014/4/18 (C) RFVLSI LAB Confidential TYLEE 22

PORT1 PORT3

C13

C12 C23

C33C22C11

L12 L23R12 R23

Model #1

PORT2

Mi2i1

Page 23: Generiic RF passive device modeling

Center Tapped Inductor 3 Port Model #1

• 𝜇 =𝑠𝑀

𝑠𝐿12+𝑅12 𝑠𝐿23+𝑅23 −𝑠2𝑀2

• A =𝑠𝐿23+𝑅23

𝑠2𝐿12𝐿23−𝑠2𝑀2+𝑠 𝐿12𝑅23+𝐿23𝑅12 +𝑅12𝑅23

• 𝐵 =𝑠𝐿12+𝑅12

𝑠2𝐿12𝐿23−𝑠2𝑀2+𝑠 𝐿12𝑅23+𝐿23𝑅12 +𝑅12𝑅23

• 𝐴′ = −𝑠𝐿23+𝑅23+𝑠𝑀

𝑠2𝐿12𝐿23−𝑠2𝑀2+𝑠 𝐿12𝑅23+𝐿23𝑅12 +𝑅12𝑅23

• 𝐵′ = −𝑠𝐿12+𝑅12+𝑠𝑀

𝑠2𝐿12𝐿23−𝑠2𝑀2+𝑠 𝐿12𝑅23+𝐿23𝑅12 +𝑅12𝑅23

2014/4/18 (C) RFVLSI LAB Confidential TYLEE 23

Self Mutual

Y11 = sC11 + sC12 + sC13 + A 𝑌13 = 𝑌31 = −𝑠𝐶13 + 𝜇

Y22 = sC22 + sC12 + sC23 − A′ − B′ 𝑌12 = 𝑌21 = −𝑠𝐶12 + 𝐴′

Y33 = sC33 + sC23 + sC13 + B 𝑌23 = 𝑌32 = −𝑠𝐶23 − 𝐵′

Page 24: Generiic RF passive device modeling

Center Tapped Inductor 3 Port Model #2

2014/4/18 (C) RFVLSI LAB Confidential TYLEE 24

PORT1

PORT2

PORT3

C13

C12 C23

C33C22C11

L12 L23R12 R23

Model #2

CS2RS2 CS3RS3CS1RS1

Mi2i1

Page 25: Generiic RF passive device modeling

Center Tapped Inductor 3 Port Model #2

2014/4/18 (C) RFVLSI LAB Confidential TYLEE 25

Ys1

=sC11 sRS1CS1 + 1

sRS1 C11 + CS1 + 1

Ys2

=sC22 sRS2CS2 + 1

sRS2 C22 + CS2 + 1

Ys3

=sC33 sRS3CS3 + 1

sRS3 C33 + CS3 + 1

Self Mutual

Y11 = sC12 + sC13 + Ys1 + A 𝑌13 = 𝑌31 = −𝑠𝐶13 + 𝜇

Y22 = sC13 + sC23 + Ys2 − A′ − B′ 𝑌12 = 𝑌21 = −𝑠𝐶12 + 𝐴′

Y33 = sC13 + sC23 + Ys3 + B 𝑌23 = 𝑌32 = −𝑠𝐶23 + 𝐵′

Page 26: Generiic RF passive device modeling

Center Tapped Inductor 3 Port Model #3

2014/4/18 (C) RFVLSI LAB Confidential TYLEE 26

PORT1

PORT2

PORT3

C13

C12 C23

C33C22C11

L12 L23R12 R23

Model #3

CS2RS2 CS3RS3CS1RS1

L12i R12i L23iR23i

M

i2i1

Page 27: Generiic RF passive device modeling

Center Tapped Inductor 3 Port Model #3

• C =sL23+R23

s2L12L23−s2M2+s L12R23′ +L23R12

′ +R12′ R23

• D =sL12+R12

s2L12L23−s2M2+s L12R23′ +L23R12

′ +R12′ R23

• 𝐶′ = −𝑠𝐿23+𝑅23

′ +𝑠𝑀

𝑠2𝐿12𝐿23−𝑠2𝑀2+𝑠 𝐿12𝑅23′ +𝐿23𝑅12

′ +𝑅12′ 𝑅23

• 𝐷′ = −𝑠𝐿12+𝑅12

′ +𝑠𝑀

𝑠2𝐿12𝐿23−𝑠2𝑀2+𝑠 𝐿12𝑅23′ +𝐿23𝑅12

′ +𝑅12′ 𝑅23

2014/4/18 (C) RFVLSI LAB Confidential TYLEE 27

Self Mutual

Y11 = sC12 + sC13 + Ys1 + C 𝑌13 = 𝑌31 = −𝑠𝐶13 + 𝜇′

Y22 = sC12 + sC23 + Ys2 − C′ − D′ 𝑌12 = 𝑌21 = −𝑠𝐶12 + 𝐶′

Y33 = sC13 + sC23 + Ys3 + D 𝑌23 = 𝑌32 = −𝑠𝐶23 + 𝐷′

R12′ =

R12 sL12i + R12i

R12 + R12i + sL12iR23

′ =R23 sL23i + R23i

R23 + R23i + sL23i

Page 28: Generiic RF passive device modeling

Center Tapped Inductor 3 Port Model #4

2014/4/18 (C) RFVLSI LAB Confidential TYLEE 28

PORT1

PORT2

PORT3

C13

C12 C23

C33C22

C11

L12 L23R12 R23

Model #4

CS2RS2 CS3RS3CS1RS1

L12i R12i L23iR23i

RS4 RS4

M

Page 29: Generiic RF passive device modeling

Quality of Fitting

• Good from 1GHz thru 30 GHz

2014/4/18 (C) RFVLSI LAB Confidential TYLEE 29

Page 30: Generiic RF passive device modeling

EM Setup –

Symmetrical Center-Tapped Inductor• Inductor@M9, UTM = 3.4𝜇𝑚, 2 turns

• IMD Simplification

• Localized Excitation

2014/4/18 (C) RFVLSI LAB Confidential TYLEE 30

Name Thickness (nm) Rel Permittivity Z

FOXEQ 300 3.9 1

ILDEQ 310 4.2 2

IMD_1aEQ 4100 3.523395 3

IMD_9aEQ 725 4.2 4

IMD_9bEQ 110 8.1 5

IMD_9cEQ 3230 4.2 6

PASS1EQ 1800 5.254054 7

Page 31: Generiic RF passive device modeling

MODEL FITTING OF 4 PORT CENTER-

TAPPED INDUCTORS

2014/4/18 Tao-Yi Lee @ RFVLSILAB 31

Page 32: Generiic RF passive device modeling

Center Tapped Inductor 4 Port Model #1

2014/4/18 (C) RFVLSI LAB Confidential TYLEE 32

PORT1 PORT3

C14

C12

C34

C44C33C11

L12 L34R12 R34

Model #1

PORT2

M i2i1

PORT3C22

C23PORT4

C24C13

Page 33: Generiic RF passive device modeling

Center Tapped Inductor 3 Port Model #1

• 𝜇 =𝑠𝑀

𝑠𝐿12+𝑅12 𝑠𝐿34+𝑅34 −𝑠2𝑀2

• A =𝑠𝐿34+𝑅34

𝑠2𝐿12𝐿34−𝑠2𝑀2+𝑠 𝐿12𝑅23+𝐿34𝑅12 +𝑅12𝑅34

• 𝐵 =𝑠𝐿12+𝑅12

𝑠2𝐿12𝐿34−𝑠2𝑀2+𝑠 𝐿12𝑅34+𝐿34𝑅12 +𝑅12𝑅34

2014/4/18 (C) RFVLSI LAB Confidential TYLEE 33

Self

𝑌11 = 𝑠𝐶11 + 𝑠𝐶12 + 𝑠𝐶13 + 𝑠𝐶14 + 𝐴

𝑌22 = 𝑠𝐶12 + 𝑠𝐶22 + 𝑠𝐶23 + 𝑠𝐶24 + 𝐴

𝑌33 = 𝑠𝐶14 + 𝑠𝐶23 + 𝑠𝐶33 + 𝑠𝐶34 + 𝐵

𝑌44 = 𝑠𝐶14 + 𝑠𝐶24 + 𝑠𝐶34 + 𝑠𝐶44 + 𝐵

Mutual

𝑌12 = 𝑌21 = −𝑠𝐶13 − A

𝑌13 = 𝑌31 = −𝑠𝐶12 − 𝜇

𝑌14 = 𝑌41 = −𝑠𝐶23 + 𝜇

𝑌23 = 𝑌32 = −𝑠𝐶13 + 𝜇

𝑌24 = 𝑌42 = −𝑠𝐶12 − 𝜇

𝑌34 = 𝑌43 = −𝑠𝐶23 − 𝐵

Page 34: Generiic RF passive device modeling

Center Tapped Inductor 4 Port Model #2

2014/4/18 (C) RFVLSI LAB Confidential TYLEE 34

PORT1

PORT2

PORT4

C14

C12 C34

C44C33C11

L12 L34R12 R34

Model #2

CS2

RS2 CS4RS4CS1RS1

Mi2i1

CS3

RS3

C22

C23

PORT3

Page 35: Generiic RF passive device modeling

Center Tapped Inductor 3 Port Model #2

2014/4/18 (C) RFVLSI LAB Confidential TYLEE 35

Ys1

=sC11 sRS1CS1 + 1

sRS1 C11 + CS1 + 1

Ys2

=sC22 sRS2CS2 + 1

sRS2 C22 + CS2 + 1

Ys3

=sC33 sRS3CS3 + 1

sRS3 C33 + CS3 + 1

Ys𝟒

=sC𝟒𝟒 sRS𝟒CS𝟒 + 1

sRS𝟒 C𝟒𝟒 + CS𝟒 + 1

Self

𝑌11 = Ys1 + 𝑠𝐶12 + 𝑠𝐶13 + 𝑠𝐶14 + 𝐴

𝑌22 = Ys2 + 𝑠𝐶12 + 𝑠𝐶23 + 𝑠𝐶24 + 𝐴

𝑌33 = Ys3 + 𝑠𝐶13 + 𝑠𝐶23 + 𝑠𝐶34 + 𝐵

𝑌44 = Ys1 + 𝑠𝐶14 + 𝑠𝐶24 + 𝑠𝐶34 + 𝐵

Mutual

𝑌12 = 𝑌21 = −𝑠𝐶13 − A

𝑌13 = 𝑌31 = −𝑠𝐶12 − 𝜇

𝑌14 = 𝑌41 = −𝑠𝐶23 + 𝜇

𝑌23 = 𝑌32 = −𝑠𝐶13 + 𝜇

𝑌24 = 𝑌42 = −𝑠𝐶12 − 𝜇

𝑌34 = 𝑌43 = −𝑠𝐶23 − 𝐵

Page 36: Generiic RF passive device modeling

Center Tapped Inductor 4 Port Model #3

2014/4/18 (C) RFVLSI LAB Confidential TYLEE 36

PORT1

PORT2

PORT4

C14

C12 C34

C44

C22C11

L12 L34R12 R34

Model #3

CS3RS2

CS4RS4CS1RS1

L12i R12i L34iR34i

M

i2i1

C33

RS3CS2

C23

PORT3

Page 37: Generiic RF passive device modeling

Center Tapped Inductor 3 Port Model #3

• 𝜇′ =𝑠𝑀

𝑠𝐿12+R12′ 𝑠𝐿34+R𝟑𝟒

′ −𝑠2𝑀2

• C =𝑠𝐿34+R𝟑𝟒

𝑠2𝐿12𝐿34−𝑠2𝑀2+𝑠 𝐿12𝑅23+𝐿34R12′ +R12

′ R𝟑𝟒′

• 𝐷 =𝑠𝐿12+R12

𝑠2𝐿12𝐿34−𝑠2𝑀2+𝑠 𝐿12R𝟑𝟒′ +𝐿34R12

′ +R12′ R𝟑𝟒

2014/4/18 (C) RFVLSI LAB Confidential TYLEE 37

R12′ =

R12 sL12i + R12i

R12 + R12i + sL12iR𝟑𝟒

′ =R𝟑𝟒 sL𝟑𝟒𝐢 + R𝟑𝟒𝐢

R𝟑𝟒 + R𝟑𝟒𝐢 + sL𝟑𝟒𝐢

Self

𝑌11 = Ys1 + 𝑠𝐶12 + 𝑠𝐶13 + 𝑠𝐶14 + 𝐶

𝑌22 = Ys2 + 𝑠𝐶12 + 𝑠𝐶23 + 𝑠𝐶24 + 𝐶

𝑌33 = Ys3 + 𝑠𝐶13 + 𝑠𝐶23 + 𝑠𝐶34 + 𝐷

𝑌44 = Ys1 + 𝑠𝐶14 + 𝑠𝐶24 + 𝑠𝐶34 + 𝐷

Mutual

𝑌12 = 𝑌21 = −𝑠𝐶13 − C

𝑌13 = 𝑌31 = −𝑠𝐶12 − 𝜇′

𝑌14 = 𝑌41 = −𝑠𝐶23 + 𝜇

𝑌23 = 𝑌32 = −𝑠𝐶13 + 𝜇

𝑌24 = 𝑌42 = −𝑠𝐶12 − 𝜇

𝑌34 = 𝑌43 = −𝑠𝐶23 − 𝐷

Page 38: Generiic RF passive device modeling

Center Tapped Inductor 3 Port Model #4

2014/4/18 (C) RFVLSI LAB Confidential TYLEE 38

PORT1

PORT2

PORT4

C14

C12 C34

C44

C22

C11

L12 L34R12 R34

Model #4

CS3RS2

CS4RS4CS1RS1

L12i R12i L34iR34i

M

i2i1

C33

RS3CS2

C23

PORT3

Rs12 Rs34

Page 39: Generiic RF passive device modeling

EM Setup –

Symmetrical Center-Tapped Inductor• Inductor@M9, UTM = 3.4𝜇𝑚, 2 turns

• IMD Simplification

• Localized Excitation

2014/4/18 (C) RFVLSI LAB Confidential TYLEE 39

Name Thickness (nm) Rel Permittivity Z

FOXEQ 300 3.9 1

ILDEQ 310 4.2 2

IMD_1aEQ 4100 3.523395 3

IMD_9aEQ 725 4.2 4

IMD_9bEQ 110 8.1 5

IMD_9cEQ 3230 4.2 6

PASS1EQ 1800 5.254054 7

Page 40: Generiic RF passive device modeling

Quality of Fitting

• Good from 1GHz thru 30 GHz

2014/4/18 (C) RFVLSI LAB Confidential TYLEE 40

Page 41: Generiic RF passive device modeling

Future Works

• Accuracy of transformer models

• Accuracy in higher frequencies

2014/4/18 Tao-Yi Lee @ RFVLSILAB 41

Page 42: Generiic RF passive device modeling

2014/4/18 Tao-Yi Lee @ RFVLSILAB 42

Thank you for listening!

Page 43: Generiic RF passive device modeling

References

• Sung-gi Yang, Gi-hyon Ryu, And Kwang-seok Seo, "Fully Symmetrical, Diff Erential-pair Type Floating Active Inductors," International Symposium On Circuits And Systems, Pp. 93-96, Jun. 1997.

• Kenichi Okada And Kazuya Masu, "Modeling Of Spiral Inductors," In Advanced Microwave Circuits And Systems, April 1, 2010, P. 291.

• C. Patrick Yue, Changsup Ryu, Jack Lau, Thomas H. Lee, And S. Simon Wong, "A PHYSICAL MODEL FOR PLANAR SPIRAL INDUCTORS ON SILICON".

• T. Kamgaing, T. Myers, M. Petras, And M. Miller, "Modeling Of Frequency Dependent Losses In Two-port And Three-port Inductors On Silicon," Radio Frequency Integrated Circuits Symposium, Pp. 307-310, 2002.

• J. R. Long And M. A. Copeland, "Modeling, Characterization And Design Of Monolithic Inductors For Silicon Rfics.," Custom Integrated Circuits Conference, 1996.

• Sunderarajan S. Mohan, Maria Del Mar Hershenson, Stephen P. Boyd, And Thomas H. Lee, "Simple Accurate Expressions For Planar Spiral Inductances," JOURNAL OF SOLID-STATE CIRCUITS, Vol. 34, No. 10, Oct. 1999.

2014/4/18 Tao-Yi Lee @ RFVLSILAB 43