42
GRLWEAP - Santa Cruz, 2015 1 Congreso Internacional de Fundaciones Profundas de Bolivia Santa Cruz, Bolivia, 12 al 15 de Mayo de 2015 Day 1: Software Demonstrations Frank Rausche, Ph.D., P.E., D.GE - Pile Dynamics, Inc. Applications of Stress Wave Theory to Deep Foundations with an Emphasis on “The Wave Equation” (GRLWEAP) GRLWEAP - Santa Cruz, 2015 2 CONTENT CONTENT Introduction Dynamic Formula Static Formula The OneDimensional Wave Equation and Wave Demonstrations Wave Equation Models Bearing Graph and Driveability Example Conclusions

Grlweap frank rausche

Embed Size (px)

Citation preview

GRLWEAP - Santa Cruz, 20151

Congreso Internacional de Fundaciones Profundas de Bolivia

Santa Cruz, Bolivia, 12 al 15 de Mayo de 2015

Day 1: Software DemonstrationsFrank Rausche, Ph.D., P.E., D.GE - Pile Dynamics, Inc.

Applications of Stress Wave Theory to Deep Foundations with an Emphasis on

“The Wave Equation”(GRLWEAP)

GRLWEAP - Santa Cruz, 20152

CONTENTCONTENT

• Introduction– Dynamic Formula

– Static Formula

• The One‐Dimensional Wave Equation and Wave Demonstrations

• Wave Equation Models

• Bearing Graph and Driveability

• Example

• Conclusions

GRLWEAP - Santa Cruz, 20154

WAVE EQUATION OBJECTIVESWAVE EQUATION OBJECTIVES

Smith’s Basic Interest: 

– Allow for realistic stress calculations– Replace Unreliable Energy Formulas– Use improved models

• elastic pile• elasto‐plastic static resistance• viscous dynamic (damping) resistance • detailed driving system representation

GRLWEAP - Santa Cruz, 20155

Wave Demonstrations

– Slinky

– Pendulum

– Buddies

– Shear Waves

– Compressive Waves

GRLWEAP - Santa Cruz, 20156

Animation courtesy of Dr. Dan Russell, Kettering Univ.

http://paws.kettering.edu/~drussell/demos.html

WAVES

Example of a Baseball Wave

GRLWEAP - Santa Cruz, 20157

Animation courtesy of Dr. Dan Russell, Kettering Univ.

Example of a Shear Wave

GRLWEAP - Santa Cruz, 20158

Animation courtesy of Dr. Dan Russell, Kettering Univ.

Example of a Compressive Wave

GRLWEAP - Santa Cruz, 20159

The 1-D Wave Equation

ρ(δ2u/ δt2) = E (δ2u/ δx2)E … elastic modulus

ρ … mass density

with  c2 = E/ ρ ... Wave Speed

Solution: u = f(x‐ct) + g(x+ct)

x … length coordinate

t ... time

u … displacement

f

gx

GRLWEAP - Santa Cruz, 201510

x

Timet

The compression wave,induced by the

hammer at the pile top, moves downward a

distance c t during the time interval t.

Waves in a PileWaves in a Pile

GRLWEAP - Santa Cruz, 201511

x

Timet t + t

C t

The compression wave, induced by the hammer at the pile top, moves

downward a distance c t during the time

interval t.

Waves in a PileWaves in a Pile

GRLWEAP - Santa Cruz, 201512

The compression wave, arrives at the pile toe where it

is reflected(on a free pile in tension).

t Time t + t Waves in a Pile

GRLWEAP - Santa Cruz, 201513

2012 13 Wave Mechanics for Pile Testers

x

u

ρ(δ2u/ δt2) = E (δ2u/ δx2)

E … elastic modulus

ρ … mass density

with c2 = E/ ρ … Wave Speed

x … length coordinate t ... time

u … displacement

THE Wave Equation

Solution: u = f(x-ct) + g(x+ct)

GRLWEAP - Santa Cruz, 201514

2012 14 Wave Mechanics for Pile Testers

f

g

x

f

g

x

C t

C t

Time

t + tTime

t

The Solution to the Wave Equationu = f(x-ct) + g(x+ct)

GRLWEAP - Santa Cruz, 201515

Force, F – Time to + t

Point A

Point A, like all other points along the pile, is at rest at time to (when

contact between ram and pile top occurs)

Compressed distance, L

Time to

u

The first instant after impact

GRLWEAP - Santa Cruz, 201516

∆u is the displacement of a point of pile during time ∆t

F

∆L

Wave travels distance ∆L = c ∆t during time ∆t

Particle Velocity, v = ∆u/ ∆t but ∆u = ε ∆L and therefore v = ε ∆L / ∆t and with wave speed c = ∆L / ∆t:

∆u

Force Velocity ProportionalityForce Velocity Proportionality

v = ε c

GRLWEAP - Santa Cruz, 201517

This is the strain, stress, force-velocity proportionality

Z = EA/c is the pile impedance (kN/m/s)

This is the strain, stress, force-velocity proportionality

Z = EA/c is the pile impedance (kN/m/s)

Fd = vd (EA/c)Fd = vd (EA/c)

d = vd(E/c)d = vd(E/c)εd = vd / cεd = vd / c

Strain-Stress-Force ProportionalityWave travels in one direction only

Strain-Stress-Force ProportionalityWave travels in one direction only

GRLWEAP - Santa Cruz, 201518

Express Your ImpedanceExpress Your Impedance

Z = EA/c kN/(m/s)

with c = (E/ρ)1/2 Z = A (E ρ)1/2

with E = c2 ρ Z = A c ρ

with Mp= L A ρ Z = Mp c/ L (Mp ... pile mass)

The Pile Impedance is a force which changes the pile velocity suddenly by 1 m/s. 

Reversely, if the velocity changes by 1 m/s then pile will develop a force equal to Z. 

GRLWEAP - Santa Cruz, 201519

A Quick Look at Energy FormulasA Quick Look at Energy Formulas

Energy Dissipated in Soil =

Energy Provided by Hammer

Ru (s + sl) = ηWrh 

sl … “lost” set (empirical or measured),

η … efficiency of hammer/driving system

Engineering News: Rallow =  Wr h / 6(s + 0.1)

GRLWEAP - Santa Cruz, 201520

The Gates Formula The Gates Formula

Ru = 7 (Wrh)½ log(10Blows/25 mm) ‐ 550

Ru … Nominal Resistance (kN)

Wr… ram weight (kN)

h   … actual stroke (m)

log … logarithm to base 10

GRLWEAP - Santa Cruz, 201521

The Hiley Formulausing Set-Rebound Measurements

The Hiley Formulausing Set-Rebound Measurements

Ru = ηWr h    (Wr+ e2 WP)

(s + c/2) (Wr + WP)

Rebound: c

Set = s

Considers combined pile‐soil elasticity effectUsually with F.S. = 3; η = hammer efficiency.

GRLWEAP - Santa Cruz, 201522

Bearing Graphs from 2 Energy FormulasHammer D 19-42; Er = 59 kJ

Bearing Graphs from 2 Energy FormulasHammer D 19-42; Er = 59 kJ

0

500

1000

1500

2000

2500

3000

3500

4000

0 25 50 75 100 125 150 175 200

Blows/0.25 m

Capacity in

kN

Gates - w/ calculated Stroke ENR - Ru = Rd x 2

Ru = ηEr /(s + sl)η = 1/3; sl = 2.5mm

Ru = 1.6 Ep ½ log(10Blows/25mm) – 120 kN

4000[900]

Ru - kN[kips]

2000[450]

0

0 5 10 15 20Blows/25mm

GRLWEAP - Santa Cruz, 201523

Shortcomings of FormulasShortcomings of Formulas

• Rigid pile model

• Poor hammer representation

• Inherently inaccurate for both capacity and blow count predictions

• No stress results

• Unknown hammer energy

• Relies on EOD Blow Counts

GRLWEAP - Santa Cruz, 201524

Static FormulasStatic Formulas

• Based on Soil Properties

• Always done for any deep foundation type

• Backed up by Static or Dynamic Testing

GRLWEAP - Santa Cruz, 201525

Static Analysis to Calculate LTSR

Basically for All Soil Types:

Ru = Ru,shaft + Ru,toeRu = fsAs + qt At

fs, Ru,shaft, As … Shaft Resistance/Area

qt, Ru,toe, At … End Bearing/Area

GRLWEAP - Santa Cruz, 201526

The β-Method for Cohesionless Soils

• Ru,shaft = fs As

– fs = ko tan(δ) popo is the effective overburden pressure

ko is some earth pressure coefficient

– β = ko tan(δ)

• Ru,toe = Nt po AtNt is a bearing capacity factor

All with Certain Limits

GRLWEAP - Santa Cruz, 201527

The α-Method for Cohesive Soils

• Ru,shaft =  fs As

– fs = α c

c is the undrained shear strength

α is a function of po• Ru,toe = 9 c At

..... with certain limits

GRLWEAP provides 4 different static analysis methods

ST – based on Soil Type; SA‐ based on SPT‐N; CPT; API

GRLWEAP - Santa Cruz, 201528

GRLWEAP: ST MethodNon-Cohesive Soils (after Bowles)

Soil Parameters in ST Analysis for Granular Soil Types

Soil Type SPT NFriction Angle

Unit Weight, γ β Nt Limit (kPa)

degrees kN/m3 Qs Qt

Very loose 2 25 - 30 13.5 0.203 12.1 24 2400

Loose 7 27 - 32 16 0.242 18.1 48 4800

Medium 20 30 - 35 18.5 0.313 33.2 72 7200

Dense 40 35 - 40 19.5 0.483 86.0 96 9600

Very Dense 50+ 38 - 43 22 0.627 147.0 192 19000

GRLWEAP - Santa Cruz, 201529

ST - INPUTST - INPUT

GRLWEAP - Santa Cruz, 201530

GRLWEAP: ST MethodCohesive Soils (after Bowles)

Soil Parameters in ST Analysis for Cohesive Soil Types

Soil Type SPT NUnconfined Compr.

StrengthUnit Weight γ Qs Qt

kPa kN/m3 kPa kPa

Very soft 1 12 17.5 3.5 54

Soft 3 36 17.5 10.5 162

Medium 6 72 18.5 19 324

Stiff 12 144 20.5 38.5 648

Very stiff 24 288 20.5 63.5 1296

hard 32+ 384+ 19 – 22 77 1728

GRLWEAP - Santa Cruz, 201531

ST - INPUTST - INPUT

GRLWEAP - Santa Cruz, 201532

The Wave Equation ModelThe Wave Equation Model

• The Wave Equation Analysis calculates– The displacement of any point along a slender, elastic rod at any time durting and after impact

– From the displacements forces, stresses, velocities

• The calculation is based on rod properties:  – Length

– Cross Sectional Area

– Elastic Modulus

– Mass density

GRLWEAP - Santa Cruz, 201533

The Wave Equation ModelThe Wave Equation Model

• The Wave Equation Analysis calculates– The displacement of any point along a slender, elastic rod at any time durting and after impact

– From the displacements forces, stresses, velocities

• The calculation is based on rod properties:  – Length

– Cross Sectional Area

– Elastic Modulus

– Mass density

GRLWEAP - Santa Cruz, 201534

GRLWEAP FundamentalsGRLWEAP Fundamentals

• For a pile driving analysis, the “slender, elastic rod” consists of Hammer+DrivingSystem+Pile

• The soil is represented by resistance forces acting on the pile and representing the forces in the pile‐soil interface

Ham

mer

D.S.

Pil

e

GRLWEAP - Santa Cruz, 201535

Smith’s Numerical Solution of the Wave EquationSmith’s Numerical Solution of the Wave Equation

∆L

ρ(δ2u/ δt2) = E (δ2u/ δx2)E … elastic modulus ‐ ρ … mass densitywith c2 = E/ ρ ... Wave Speed

Closed Form Solutions to the wave equation are not practical; we therefore solve the equation numerically:

(mi/ki)(ui,j+1 ‐2ui,j + ui,j‐1)/Δt2

= (ui+1,j – 2ui,j + ui‐1,j)

This is equivalent to considering mass points and springs!

ii+1

i-1

GRLWEAP - Santa Cruz, 201536

The GRLWEAP Pile ModelThe GRLWEAP Pile Model

Each segment has a mass and spring stiffness

– of length ∆L ≤ 1 m (3.3 ft)

– with mass  m = ρ A ∆L 

– and stiffness k = E A / ∆L

there are N = L / ∆L pile segments which allow us to solve the wave equation numerically.

∆L

GRLWEAP - Santa Cruz, 201537

The Pile ModelThe Pile Model

Relationship between the uniform pile and the 

lumped mass model properties:

m k = (ρ A ∆L)(EA/∆L) = A2Eρ = Z2  [kN s/m]2

m/k = (ρ A ∆L)/(EA/∆L) = (ρ/E)∆L2  = (∆L/c)2 [s]2

Or

Z =  (mk)1/2 (pile impedance) and 

∆t = (m/k)1/2 (wave travel time)

Note: the smaller ∆L, the smaller ∆L and that means the higher the frequencies that can be 

represented.

∆L

GRLWEAP - Santa Cruz, 201540

We can model 3 hammer-pile systemsWe can model 3 hammer-pile systems

GRLWEAP - Santa Cruz, 201541

Ram: A, L for stiffness, mass

Cylinder and upper frame = assembly top mass

Drop height

External Combustion Hammer Modeling

Ram guides for assembly stiffness

Hammer base = assembly bottom mass

GRLWEAP - Santa Cruz, 201542

External Combustion Hammer ModelExternal Combustion Hammer Model

• Ram modeled like rod

• Stroke is an input (Energy/Ram Weight) 

• Impact Velocity Calculated from Stroke with Hammer Efficiency Reduction: vi = (2 g h η) ½ 

• Assembly also modeled because it may impact during pile rebound

• Note approximation in data file: 

Assembly mass = Total hammer mass – Ram mass

GRLWEAP - Santa Cruz, 201543

External Combustion HammersRam Model

Ram segments ~1m long

Combined Ram‐H.Cushion

Helmet mass

GRLWEAP - Santa Cruz, 201544

External Combustion HammersAssembly model

External Combustion HammersAssembly model

Assembly segments, typically 2

Helmet mass

GRLWEAP - Santa Cruz, 201545

External Combustion HammersCombined Ram Assembly Model

External Combustion HammersCombined Ram Assembly Model

Combined Ram-H.Cushion

Helmet mass

Ram segments

Assembly segments

GRLWEAP - Santa Cruz, 201546

External Combustion HammerAnalysis Procedure

• Static equilibrium analysis

• Dynamic analysis starts when ram is within 1 ms of 

impact.

• All ram segments then have velocity

VRAM = (2 g h η)1/2 – 0.001 g

g is the gravitational acceleration 

h is the equivalent hammer stroke and η is the hammer efficiency

h = Hammer potential energy/ Ram weight

GRLWEAP - Santa Cruz, 201547

• Dynamic analysis ends when 

– Pile toe has rebounded to 80% of max dtoe

– Pile has penetrated more than 4 inches

– Pile toe has rebounded to 98% of max dtoe and energy 

in pile is essentially dissipated

External Combustion HammerAnalysis Procedure

GRLWEAP - Santa Cruz, 201548

Diesel HammersDiesel Hammers

• Very popular in the US

• Have their own fuel tank 

and combustion “engine”

• Model therefore includes a 

thermodynamic analysis

• Stroke is computed

GRLWEAP - Santa Cruz, 201558

GRLWEAP hammer efficienciesηh = Ek/EP

GRLWEAP hammer efficienciesηh = Ek/EP

•The hammer efficiency reduces the impact velocity of the ram; it is based on experience

•Hammer efficiencies cover all losses which cannot be calculated

•Diesel hammer energy loss due to pre‐compression or cushioning can be calculated and, therefore, is not covered by hammer efficiency

GRLWEAP - Santa Cruz, 201560

WR

h

ER = WR hManufacturer’s Rating

WR

Max ET = ∫F(t) v(t) dt(EMX, ENTHRU)

ηT =   ENTHRU/ ER(transfer ratio or efficiency) Measure: 

Force, F(t)Velocity, v(t)

Measured Transferred Energy

Measured Transferred Energy

GRLWEAP - Santa Cruz, 201562

Measured Transfer Ratios for DieselsSteel Piles Concrete Piles

GRLWEAP - Santa Cruz, 201563

For all impact hammers GRLWEAP needs impact velocity

WP

mR

hEr = Wr he = mr g he

he = Er / Wr he – equivalent stroke

he = h for single acting hammers

Epr = η Er Wr he (η = Hammer efficiency )

WRvi

Ek = Epr = ηh (½ mr vi2) (kinetic energy)

vi = 2g heηh

GRLWEAP - Santa Cruz, 201564

GRLWEAP Diesel hammer efficiencies , ηh

GRLWEAP Diesel hammer efficiencies , ηh

Open end diesel hammers: 0.80uncertainty of fall height, friction, alignment

Closed end diesel hammers: 0.80uncertainty of fall height, friction, power assist, alignment

GRLWEAP - Santa Cruz, 201565

Modern Hydraulic Hammer Efficiencies, ηh

Modern Hydraulic Hammer Efficiencies, ηh

Hammers with internal monitor: 0.95uncertainty of hammer alignment

Hydraulic drop hammers: 0.80uncertainty of fall height, alignment, friction

Power assisted hydraulic hammers: 0.80uncertainty of fall height, alignment, friction, power assist

GRLWEAP - Santa Cruz, 201568

Vibratory HammersVibratory Hammers

GRLWEAP - Santa Cruz, 201569

Vibratory Force:

FV = me [ω2resin ω t ‐ a2(t)]

FL

FV

m1

m2

• Line Force

• Bias Mass and 

• Oscillator mass, m2

• Eccentric masses, me, radii, re

• Clamp

Vibratory Hammer ModelVibratory Hammer Model

GRLWEAP - Santa Cruz, 201571

The Driving Systems Consists of1. Helmet including inserts to 

align hammer and pile

2. Optionally: Hammer Cushion to protect hammer

3. For Concrete Piles: Softwood Cushion

Driving System ModelsDriving System Models

GRLWEAP - Santa Cruz, 201572

Helmet + Inserts

Driving System ModelExample of a diesel hammer

on a concrete piles

Driving System ModelExample of a diesel hammer

on a concrete piles

Hammer Cushion: Spring plus Dashpot

Pile Top: Spring + DashpotPile Cushion

GRLWEAP - Santa Cruz, 201575

Interface Soil: Elasto‐Plastic Springs and Viscous Dashpots

Soil outside of interface: Rigid

The Soil Model After Smith

GRLWEAP - Santa Cruz, 201576

Soil ResistanceSoil Resistance

• Soil resistance slows pile movement and causes pile rebound

• A very slowly moving pile only encounters static resistance

• A rapidly moving pile also encounters dynamic resistance

• The static resistance to driving (SRD) differs from the soil resistance under static loads

GRLWEAP - Santa Cruz, 201577

Segment 

i

Segment 

i‐1

Segment 

i+1

Pile‐Soil Interface

Soil Model ParametersSoil Model Parameters

ki,Rui

Ji

RIGID SOIL

ki+1,Rui+1

Ji+1

ki-1,Rui-1

Ji-1

GRLWEAP - Santa Cruz, 201578

FixedSoil

Smith’s Soil ModelSmith’s Soil Model

Total Soil ResistanceRtotal = Rsi +Rdi

Total Soil ResistanceRtotal = Rsi +Rdi

Displacement uiVelocity vi

Pile

Segment i

GRLWEAP - Santa Cruz, 201579

The Static Soil ModelThe Static Soil Model

Displacement uiVelocity vi

Pile

Segment i

Pile Displacement

Rui

Static Resistance

Rui … ult. resistanceqi … quake

ksi = Rui /qi

GRLWEAP - Santa Cruz, 201582

Recommended Toe Quakes, qtoeRecommended Toe Quakes, qtoe

0.1” or 2.5 mm forall soil types0.04” or 1 mm for hard rock

qtoe

Static Toe Res.

qtoe Ru,toe

Toe Displacement

D/120 for very dense or hard soilsD/60 for soils which are not very dense or v. hard

Displacement pilesNon‐displacement piles

D

GRLWEAP - Santa Cruz, 201583

Toe Quake Effect on Blow Count Toe Quake Effect on Blow Count

S200

100

m

610x

12

95 m

Approximatelyy 50% Shaft Resistance

Total No. of Blows: ∞ (qt =D/60); 27,490 (qt=D/120)

0

10

20

30

40

50

60

70

80

90

100

0 200 400 600 800

Dep

th o

f P

ile T

oe

Pen

etra

tio

n -

m

Blow Count - Blows/m

qt = D/60

qt = D/120

GRLWEAP - Santa Cruz, 201584

The Dynamic Soil ModelThe Dynamic Soil Model

Displacement uiVelocity vi

Pile

Segment i

Rd = RuJsv vSmith‐viscous 

damping factor,Jsv [s/m or s/ft]

For RSA and Vibratory Analysis

Smith damping factor,

Js [s/m or s/ft]

Rd = RsJs v

Standard

GRLWEAP - Santa Cruz, 201585

Recommended Smith damping factors(Js or Jsv)

Recommended Smith damping factors(Js or Jsv)

Shaft

Clay: 0.65 s/m or 0.20 s/ft

Sand: 0.16 s/m or 0.05 s/ft

Silts: use an intermediate value

Layered soils:  use a weighted averagefor bearing graph 

Toe

All soils: 0.50 s/m or 0.15 s/ft

GRLWEAP - Santa Cruz, 201586

Shaft Damping on Blow Count Shaft Damping on Blow Count

S200

100

m

610x

12

95 m

Approximatelyy 50% Shaft Resistance

Total No. of Blows: ∞ (Js=0.65 s/m); 27,490 (Js=0.16 s/m)

0

10

20

30

40

50

60

70

80

90

100

0 200 400 600 800

Dep

th o

f P

ile T

oe

Pen

etra

tio

n -

m

Blow Count - Blows/m

Js = 0.65 s/m

Js = 0.16 s/m

GRLWEAP - Santa Cruz, 201588

GRLWEAP’s Static Analysis MethodsGRLWEAP’s Static Analysis Methods

Rs

Rt

QIcon Input Basic AnalysisST Soil Type Effective Stress, Total StressSA SPT N-value Effective StressCPT R at cone tip and sleeve SchmertmannAPI φ, Su Effective Stress, Total Stress

• GRLWEAP’s static analysis methods may be used for dynamic analysis preparation (resistance distribution, estimate of capacity for driveability).

• For design, be sure to use a method based on local experience.

GRLWEAP - Santa Cruz, 201589

Use of Static Analysis MethodsUse of Static Analysis Methods

• Should always be done for finding reasonable pile type and length

• For driven piles static analysis is only a starting point, since pile length is determined in the field (exceptions are piles driven to depth, for example, because of high soil setup)

• For LRFD when finding pile length by static analysis method use resistance factor for selected capacity verification method 

GRLWEAP - Santa Cruz, 201592

Resistance DistributionResistance Distribution3. More Involved:

I. ST Input: Soil Type

II. SA Input: SPT Blow Count, Friction Angle or Unconfined Compressive Strength

III. API (offshore wave version)      Input: Friction Angle or UndrainedShear Strength

IV. CPT Input: Cone Record including Tip Resistance and Sleeve Friction vs Depth.

Pen

etra

tio

n

All are good for a Bearing GraphII, III and IV OK for Driveability Analysis

Local experience may provide better values

GRLWEAP - Santa Cruz, 201594

Mass i

Mass i-1

Mass i+1

Numerical TreatmentNumerical Treatment• Predict displacements:

uni = uoi + voi ∆t 

Fi, ci

uni-1

uni

uni+1

Ri-1

Ri

Ri+1

• Calculate spring compression:

ci = uni - uni-1

• Calculate spring forces:

Fi = ki ci

• Calculate resistance forces:

Ri = Rsi + Rdi

GRLWEAP - Santa Cruz, 201595

Force balance at a segmentForce balance at a segment

Acceleration: ai = (Fi + Wi – Ri – Fi+1) / mi

Velocity, vi, and Displacement, ui, from Integration

Mass i

Force from upper spring, Fi

Force from lower spring, Fi+1

Resistance force, Ri Weight, Wi

GRLWEAP - Santa Cruz, 201597

Set or Blow Count Calculation (a) Simplified: extrapolated toe displacement

Set or Blow Count Calculation (a) Simplified: extrapolated toe displacement

Static soil Resistance

PileDisplacement

Final Set

Max. Displacement

Quake

Ru

Extrapolated

Calculated

GRLWEAP - Santa Cruz, 2015100

Blow Count Calculation(b) Residual Stress Analysis (RSA)

Blow Count Calculation(b) Residual Stress Analysis (RSA)

Set  for 2 Blows

Convergence:Consecutive Blows 

have same pile compression/sets

GRLWEAP - Santa Cruz, 2015101

RSA Effect on Blow Count RSA Effect on Blow Count

S500

100

m

1220

x25

0

10

20

30

40

50

60

70

80

90

100

0 200 400 600 800

Dep

th o

f P

ile

To

e P

enet

rati

on

-m

Blow Count - Blows/m

Standard

RSA

95 m

Total No. of Blows: 8907 (Standard); 6235 (RSA)

0

20

40

60

80

100

120

0 200 400 600 800 1000

B lo w C o u n t (b l/m)

No RSA

RSA

GRLWEAP - Santa Cruz, 2015103

Static EquilibriumRam velocity

Dynamic analysis

Program Flow – Bearing GraphProgram Flow – Bearing Graph

Model hammer,driving system

and pile

• Pile stresses• Energy transfer• Pile velocitiesChoose first Ru

Calculate BlowCount

Distribute RuSet Soil Constants

Output

IncreaseRu?

Increase Ru Input

N

Y

GRLWEAP - Santa Cruz, 2015104

Bearing Graph: Variable Capacity, One depthSI-Units; Clay and Sand Example; D19-42; HP 12x53;

Bearing Graph: Variable Capacity, One depthSI-Units; Clay and Sand Example; D19-42; HP 12x53;

GRLWEAP - Santa Cruz, 2015107

Driveability AnalysisDriveability Analysis

• Analyze a series of Bearing Graphs for different depths for SRD and/or LTSR

• Put the results in sequence so that we get predicted blow count and stresses vs pile toe penetration

• Note that, in many or most cases, shaft resistance is lower during driving (soil setup) and end bearing is about the same as long term

• In the few cases of relaxation, the toe resistance is actually higher during driving than long term

GRLWEAP - Santa Cruz, 2015108

Analysis

Program Flow – DriveabilityProgram Flow – Driveability

Model Hammer &Driving System

Choose first Depth to analyze

Next G/L

Pile Length and Model

Calculate Rufor first gain/loss

Output IncreaseDepth?

Increase Depth

Input

IncreaseG/L?

N

N

Y

Y

GRLWEAP - Santa Cruz, 2015109

Driveability Result

During a driving interruption soil setup occurs

GRLWEAP - Santa Cruz, 2015110

When Should we do the Analysis?When Should we do the Analysis?

• Before pile driving begins

– Equipment selection for safe and efficient installation

– Preliminary driving criterion

• After initial pile tests have been done

– Refined Wave Equation analysis for improved driving criterion

– For different driving systems

• In preparation of dynamic testing

GRLWEAP - Santa Cruz, 2015111

SummarySummary• The wave equation analysis simulates what happens in the pile when it is struck by a heavy hammer input.

• It calculates a relationship between capacity and blow count, or blow count vs. depth.

• The analysis model represents hammer (3 types), driving system (cushions, helmet), pile (concrete, steel, timber) and soil (at the pile‐soil interface)

• GRLWEAP provides a variety of input help features (hammer and driving system data, static formulas among others).

GRLWEAP - Santa Cruz, 2015112

An example for a Dynamic Test Preparation

An example for a Dynamic Test Preparation

• Prepare dynamic test on a 400 mm dia. pile with  Expander Body of 600 mm diameter and 2000 mm length.

• Sand and Gravel

• Drop Weights 5 and 8 tons

• Drop Height 1.2 m

• Cushion 100 mm

GRLWEAP - Santa Cruz, 2015113

Ananlysis of a Pile with Expander BodyAnanlysis of a Pile with Expander Body

GRLWEAP - Santa Cruz, 2015114

Analysis resultsHammers 1 m drop height, 9 inch cushioin

Analysis resultsHammers 1 m drop height, 9 inch cushioin

30-Apr-2015GRL Engineers, Inc. Expander Body: 8ton ram; 6" cushion

GRLWEAP Version 2010Expander Body: 5ton ram; 6" cushion

30-Apr-2015GRL Engineers, Inc. Expander Body: 8ton ram; 6" cushion

GRLWEAP Version 2010Expander Body: 5ton ram; 6" cushion Com

pre

ssive S

tress

(M

Pa)

0

6

12

18

24

30

Tension S

tress

(M

Pa)

0

2

4

6

8

10

Blow Count (blows/.10m)

Ultim

ate

Capacity (kN

)

0 10 20 30 40 50 600

800

1600

2400

3200

4000

GRL 8 ton GRL 5 ton

Stroke 0.91 0.91 mRam Weight 71.20 44.50 kNEfficiency 0.800 0.800

Helmet Weight 0.00 0.00 kNPile Cushion 173 173 kN/mmCOR of P.C. 0.500 0.500

Skin Quake 2.500 mm 2.500 mmToe Quake 5.080 mm 5.080 mmSkin Damping 0.164 sec/m 0.164 sec/mToe Damping 0.500 sec/m 0.500 sec/m

Pile LengthPile PenetrationPile Top Area

12.00 12.00

1256.63

Pile ModelSkin FrictionDistribution

Res. Shaft = 20 %(Proportional)

12.00 12.00

1256.63

m m cm2

Pile ModelSkin FrictionDistribution

Res. Shaft = 20 %(Proportional)

GRLWEAP - Santa Cruz, 2015115

Thank you for your attention!

QUESTIONS?

Thank you for your attention!

QUESTIONS?