76
School of Civil Engineering FACULTY OF ENGINEERING Ground=source Heat Pump Applications CIBSE Yorkshire March 16 th 2016 Simon Rees [email protected]

Ground Source Heatpump Applications

Embed Size (px)

Citation preview

School&of&Civil&EngineeringFACULTY&OF&ENGINEERING

School&of&Civil&EngineeringFACULTY&OF&ENGINEERING

Ground=source&Heat&Pump&Applications

CIBSE&YorkshireMarch&16th 2016

Simon&Rees

[email protected]

Outline

• Heat*pump*principles

• Historical*developments

• Domestic*field*trials

• Non6domestic*Systems*6

• Ground*heat*exchange

• System*Integration

• Measured*Performance

• GSHP*Research

Rees,%S.%and%R.%Curtis%(2014)%National%Deployment%of%Domestic%Geothermal%Heat%Pump%

Technology:%Observations%on%the%UK%Experience%1995–2013.%Energies.%7(8):% 5460T5499Free%online%at:%http://www.mdpi.com/1996T1073/7/9/6224

Heat&Pump&Principles

• Based&on&a&vapour=compression&refrigeration&cycle

• Heat&is&‘pumped’ by&a&compressor:&more&heat&out&than&electrical&power&in.

• Coefficient&of&Performance&defines&thermodynamic&efficiency

• The&smaller&the&temperature&difference&Inside=to=outside,&the&greater&the&efficiency.

Compressor

Heat Rejected ( to the heat sink at high

temperature ( )TH

QH)

Compressor Electrical Power ( )P

Heat extracted ( the heat source at low

temperature (T )

QC) from

C

Heat&Pump&Characteristics

Staffell,%I%(2009).%A)review)of)domestic)heat)pump)coefficient)of)performance,%2009.%

Heat&Sources:&Air&or&Ground?

The&ground’s&high&thermal&mass&means&it&has&a&temperature&that&is&more&favourable&for&heat&exchange&than&the&air.

!10

!5

0

5

10

15

20

25

Tempe

rature)(°C))

Time)()mm)yy))

Daily+Mean+Ground+Loop+Average+Fluid+Temperature Daily+Mean+Air+Temperature Initial+Ground+Temperature+ (+12.3+°C+)

Ground&Temperatures

CIBSE&TM51&

(Busby&et&al.&2009)

����

����

����

���

���

���

���

���

�� �� ��� ��� ��� ��� ��� ���

��������

����������������

������������������������������

Approaches&to&Ground=coupling

The&coupling&with&the&ground&can&be&through&

closed=loop&systems&with:

• Vertical&borehole&heat&exchangers&(100=150m&typical&in&UK)

• Single&U=tube

• Double&U=tube

• Co=axial

• Horizontal&loops&with&straight&pipe

• ’Slinky’&horizontal&loops

Water&sources&can&be&used&through:

• Extraction&from&wells,&rivers,&lakes&(open&loop)

• Closed&loops&submerged&in&lakes

Seasonal&storage&can&be&achieved&using&large&groups&of&boreholes&(BTES)&or&pairs&of&wells&in&aquifers&(ATES).

SingleU-tube

DoubleU-tube

Co-axial

E

C

Horizontal&Slinky&Heat&Exchangers

Source:&GeoScience&Ltd

Source:&Carbon&Trust

Heat&Exchanger&Technology

Vertical&Boreholes:&Drill,&Insert,&Grout.

Energy&Piles&and&Walls

REHAU Soga*and*Rui (2016)*Energy*Geostructures

Seasonal&Performance

• Coefficient*of*Performance*(COP)*is*a*steady6state*parameter*at*particular*operating*conditions*(catalogue*values).

• Seasonal*Performance*Factor*(SPF)*is*based*on*seasonal*energy* inputs*and*outputs.*This*is*of*more*interest* in*evaluating*real*performance

• SPF*is*the*ratio*of*total*useful*thermal*energy*to*system*electrical*energy*consumed.

• In*reality*systems*are*complex*and*SPF*can*be*calculated*different*ways*depending*on*what*electrical*demands*are*included.

• Heating*and*cooling*can*be*separated:*SPFH,*SPFC

SPF&Defined

• SPF1 is*heat*pump*product*alone

• SPF2 includes*the*ground*loop*pump

• SPF3 includes*supplementary* heater

• SPF4 includes*the*heating*circulating*pump

SPF&Target&Values

• Acceptable*values*vary*depending*on*the*comparison*being*made:*site*energy,*primary*energy,*carbon*saving,*running*cost,*renewable*contribution…

• A*modern*domestic*gas*boiler*system*has*SPF4 about*0.85.

• For*carbon*benefits*in*the*UK,*HP*SPF4 needs*to*be*>*2.21

• For*cost*savings*(DECC*2014*values)*SPF4 needs*to*be:

• >*2.49*relative* to*gas

• >*1.9*relative* to*LPG

• >*1.65*relative* to*oil

• For*the*purposes*of*the*RES*Directive*SPF2 >=*2.5*to*be*classed*as*renewable*(saving*primary*energy).

Historical&Developments

Early&Heat&Pump&Pioneers

• Originally&proposed&by&Lord&Thompson&Kelvin&“On&the&Economy&of&the&Heating&or&Cooling&of&

Buildings&by&Means&of&Currents&of&Air.”&Proceedings+of+the+Physical+Society+of+Glasgow 3:&269–72.

• Further&comments&in&a&book&‘The&Steam&Engine&

and&other&Heat&Engines’&(1910)&by&James&Alfred&Ewing:&“Burning+fuel+to+warm+a+room+by+a+few+degrees+is+a+wasteful+way+to+utilise+heat”.

• First&GSHP&patent&by&Swiss&engineer,&Heinrich&

Zoelly in&1912.

Early&Heat&Pump&Pioneers

Haldane,&T.G.N.&1930.&“The&Heat&Pump===an&Economical&Method&of&Producing&

Low=Grade&Heat&from&Electricity.”&Journal+of+the+Institution+of+Electrical+Engineers68&(402):&666–75.

Results&from&his&Glasgow&home:&

1926=1928&season

Haldane’s&proposal&for&a&River=source&

heat&pump&and&radiant&panel&system

Early&work&in&the&USA

Crandall,&A.C.&1946.&“House&Heating&with&Earth&Heat&Pump.”&Electrical+World 19&(November&9):&94–95.

‘Earth&coils’&were&metal&pipes&to&directly&evaporate&

the&refrigerant&(DX)

The&origins&of&GSHP:&USA

Coogan,%C.%H.%1948.%The)residential)heat)pump)in)New)England.%Waterbury,%CT,%USA:%Connecticut%Light%and%Power%Co.

A&Divergence&of&Opinions…

The%heat%pump%holds%promise%of%permitting%the%industry%to%supply%domesticT

heating%service%in%an%economical%manner.%Up%until%now%the%electric%utility%

industry%has%supplied%very%little%of%this%market%and%we%think%that%without%the%

heat%pump%we%are%not%likely%ever%to%supply%very%much%of%it.

Andrews,%S.%W.%1948.%The%Heat%Pump%From%the%Utility’s%Point%of%View.%Transactions)of)the)American)Institute)of)Electrical)Engineers,%67(1),%562–564.%

undesirable%electrical%features%such%as%highTstarting%current,%lowTpower%

factor,%and%high%demand,%which,%otherwise,%would%have%adverse%economic%

effects%upon%the%electric%supply%system%and%thus%result%in%economic%

handicaps%in%the%utilization%of%the%electrical%service%by%this%device.%

Bary,%C.%1948.%The%Heat%pump%– Its%Significance%As%a%Potential%Residential%Load.%Electrical)Engineering,%p.%340T344.%

The&origins&of&GSHP:&UK

Proceedings)of)the)IEE)Part)A:)Power)Engineering,%1956,%104(15),%262–271.%

Origins&of&the&GSHP:&UK

Comment% from%J.%Sumner%(1957)%in%response%to%Miriam%Griffith’s%

presentation:

It%has%been%said%that%nowadays%we%cannot%afford%the%capital%

required%to%build%heat%pumps.%I%understand%that% the%National%

Coal%Board%is%proposing%to%spend%£1000%million%in%the%next%ten%

years%in%order%to%increase%the%output%of%coal%by%10%million%tons%a%

year.%I%think%it%could%be%demonstrated% that,%if%the%N.C.B.%were%to%

allocate%even%£1%million%of%this%to%building%heat%pumps,%they%

could%conserve%more%coal%than%if%it%were%spent%on%new%plant.%

After&the&1950s&…

In&the&UK:

• Miriam&Griffith&and&BEAIRA&did&no&further&work

• John&Sumner&was&a&lone&campaigner&for&HP&technology

• Natural&Gas&was&a&clear&winner

• Some&EA&Technology&work&on&ASHP&in&70/80s

• No&GSHP&interest&until&mid&1990s

In&the&rest&of&the&world:

• The&immediate&post&war&US&oil&shortage&eased&– little&further&interest&in&50/60s

• Domestic&air&conditioning&demand&in&the&USA&grew&hugely

• The&1973&oil&crisis&saw&a&big&spurt&in&GSHP&research&– National&Labs,&Universities,&Utilities&and&IGSHPA.&Similarly& in&Europe&(Sweden&and&Switzerland)&but&not&UK.

• Plastic&pipe&meant&corrosion&and&DX&could&be&avoided.&Better&compressors&by&the&80s

Current&Worldwide&Deployment

1400000

981667

476842

314502

144069

141833

122250

94288

85307

51638

45986

31038

22750

19908

13200

8875

6996

5500

4272

3201

3020

2839

2828

2597

1250

1144

106

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000USA

China

Sweden

Germany

France

Switzerland

Canada

Austria

Finland

Denmark

Netherlands

Poland

UK

CzechGRep.

Italy

Estonia

Belgium

Slovenia

Bulgaria

Ireland

Portugal

Slovakia

Lithuania

Hungary

Romania

Spain

Luxembourg

Installatio

ns

Current&Worldwide&Deployment

5028

5

1755

4

1579

4

1121

4

9253

6697

4390

3915

3874

2749

2676

2207

1895

942

805

723

698

631

583

525

358

286

261

222

202

62 24

0

10000

20000

30000

40000

50000

60000Sw

eden

Switzerland

Finland

Austria

Denmark

Estonia

USA

Germany

Canada

Netherland

s

Slovenia

France

CzechGRep.

Lithuania

Poland

China

Ireland

Belgium

Bulgaria

Slovakia UK

Portugal

Hun

gary

Italy

Luxembo

urg

Romania

Spain

Installaions)per)million)captia

Large&Systems&in&the&UK

Churchill&Hospital,&Oxford

240&x&100m&borehole

8&x&500kW&heat&pumps

Domestic&Systems&in&the&UK

UK&Developments&(later&1990s)

Initial&installations:&one=off&‘low&energy’ houses&and&refurbs

Source:&GeoScience Ltd

Along&came&ECC&and&Clear&Skies&…

Source:&GeoScience Ltd

UK&Support&Programmes

Grant&programmes

• Clear&Skies&(£10m,&8.2%&for&GSHP)

• Low&carbon&building&Programme&(£139m)

• Renewable&Heat&Premium&Payments&(RHPP)

Supplier&Obligation&programmes

• Energy&Conservation&Commitments:&ECC1,&ECC2&(£500m)

• Carbon&Emissions&Reduction&Target:&CERT&(£1.2bn)

• Energy&Company&Obligation:&ECO&(£1.3bn&– now&cut)&

Current&programmes:&RHI&and&Green&Deal&.&ECO&does&not&support&renewables

UK&Support&Programme&Outcomes&to&2014

0

5000

10000

15000

20000

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

Cumlative*GS

HP*In

stallations

Year

Other0funding

RHPP

EEC1,0EEC2,0CERT

Clear0Skies0&0LCBP

National&Trials&and&Monitoring

• EST&National&Field&Trial&– Phase&1&(54&GSHP&sites)

• Monitored&‘system&efficiency’

• User&research&by&the&Open&University

• DECC&technical&investigation

• EST&National&Field&Trial&– Phase&2.&After&a&range&of&interventions

• RHPP&– more&detailed&monitoring&but&without&manufacturers.&User&data&from&online&questionnaires.&Initial&results&published&in&2014.

• Related&domestic&fields&trials:&

Stafford,%A.,%&%Lilley,%D.%(2012).%Predicting%in%situ%heat%pump%performance:%An%

investigation% into%a%single%groundTsource%heat%pump%system%in%the%context%of%10%

similar%systems.%Energy)and)Buildings,%49,%536–541.%

Field&Trial&Results&– Phase&1

Field&Trial&Results&– Phase&1&Findings

A&number&of&systems&with&Efficiencies&>&3&but&some&very&poor&performing&systems

Main&technical&findings:

1. under=sizing&of&the&heat&pumpq

2. under=sizing&of&the&ground&heat&exchangerq

3. poor&insulation&standards&(pipes&and&tanks)q

4. flow&temperature&unnecessarily&highq

5. excessive&pump&usage&(time&control&or&number&of&pumps)q

6. poor&control.

Non=technical& findings&from&user&surveys:

• 86%&satisfied&with&heating&performanceq

• only&63%&satisfied&with&level&of&supportq

• only&62%&satisfied&with&cost&savingsq

• controls&not&easy&to&understand&and&use.

Issues&for&the&industry:&changes&to&Micro=generation&Certification&Scheme&standards&(MIS),&better&training,&better&user&support&and&information.

Field&Trial&Results&– Phase&2

Field&Trial&Results&– RHPP&2013

• Mean&SPF4 is&2.92,&System&efficiency&2.74&(from&2.39)

• 84%&of&systems&would&be&classed&as&renewable

• 85%&would&show&carbon&savings&relative&to&gas&heating

• 64%&would&show&cost&savings&relative&to&gas.&Nearly&all&RHPP&participants&

saved&money&as&initial&fuel&was&not&gas

Further&Technical&Challenges

• Performance&levels&are&improving&but&still&not&as&high&as&other&EU&trial&results

• Some&systems&are&still&‘failures’

• User&survey&highlights&some&control&issues

• UK&Specific&issues:&small&houses,&high&thermal&mass,&high&heating&temperatures?

Non=Domestic&Systems:&Ground&heat&exchange

Ground&heat&exchange

The*design*question:*for*a*given*set*of*heating*and*cooling*demands,*how*many*and*how*deep*do*the*boreholes*need*to*be?

Key*design*points:

1. System*efficiency*depends*on*fluid*temperatures* and*so*we*want*these* to*be*close*to*the*‘undisturbed’*or*background*ground*temperature.

2. The*relationship*between* fluid*temperatures* and*the*ground*temperature*depends,* in*general,*on

• Ground* thermal*conductivity

• Borehole*thermal*resistance.

3. Long*term*(seasonal)* temperatures* depend*on*long*term*energy*exchange:*

• design*is*based*on*annual*energy*demands*– not*just*peak*loads.

• consider*several*years*of*operation* to*find*the*min/max*fluid* temperature*range.

4. In*design*methods*(software)*we*define*the*temperature* limits*we*want*to*work*with*(targets).*These*can*be*based*on:*

• Heat*pump*min/max*operating* temperatures

• Values*that*are*going* to*give*the*SPF*we*are*looking* for

Borehole*resistance*and*ground*conductivity

• First,*think*about*rejecting*a*given*amount*of*heat*per*meter*of*borehole.

• Local*temperature*gradient*depends*on*the*thermal*resistance*of*the*components*in*the*borehole*and*the*thermal*conductivity*of*the*ground

• High*thermal*resistance*means*fluid*temperatures* have*to*be*higher*to*reject*a*given*amount*of*heat.

Borehole*resistance*and*ground*conductivity

• Borehole* resistance*depends*on

• Configuration*– single,*double*or*co6ax

• Pipe*size*and*spacing

• Grout*properties*– thermally*enhanced*grouts*are*often*used

• Borehole*diameter*– typically*1206150mm.

• Fluid*resistance*– flow*rate*and*fluid*properties*(Reynolds*number).

!"∗ =%& − %"("

0.000.020.040.060.080.100.120.140.16

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

R g[(m

$K)/W]

λg [W/(m$K)]

Zeroth0order2Multipole

10th0order2Multipole

Bauer2et2al.2(2011)

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

R a[(m

$K)/W]

λg [W/(m$K)]

Zeroth.order0Multipole

1st.order0Multipole

10th.order0Multipole

Javed and%Spitler (2016)

System&hydraulic&design

• Propylene&or&Ethylene&glycol&based&mixtures&are&the&common&heat&transfer&fluids&for&geothermal&systems

• Viscosity&is&noticeably&higher&than&water&and&varies&with&temperature&

significantly

• Reynolds&numbers&can&be&low&and&heat&transfer&drop=off&without&care.

• Some&optimization&is&required:

• High&flow&rate&gives&better&heat&

transfer

• Higher&flow&rate&gives&higher&pressure&drop&and&pump&energy&demand

• Pump&demand&no&more&than&3%&of&

heat&delivered&is&required&for&compliant&domestic&systems

Long6term*borehole*field*response

• Long*term*temperature* trends*are*important*and*depend*on*annual*heating*and*cooling*energy*balances

• Whether*the*long*term*trend*is*rising*or*falling*temperatures* depends*on*whether*heating*or*cooling*is*dominant

• Borehole*depth*is*selected*on*the*basis*of*the*long6term*trend

• Balanced*demands*lead*to*the*most*economical*solutions*– shortest*boreholes.

• Max*and*min*temperatures* depend*on*a*combination*of*demands*and*peak*loads

• Simulation*results*are*needed* to*estimate*the*costs*accurately

15

17

19

21

23

25

27

29

31

33

35

37

0 1460 2920 4380 5840 7300

Temperature3[°C]

Simulation3Days3

163bh 323bh 1203bh

!70!55!40!25!1052035506580

0 730 1460 2190 2920 3650 4380 5110 5840 6570 7300 8030 8760

Time0(hours)

Building0Loads0(kW)

Borehole&field&configuration

• After&a&few&seasons,&boreholes&interact&– temperature&changes&at&one&influence&those&at&neighboring&boreholes.

• This&effect&is&well&understood&and&can&be&modelled.

0

2

4

6

8

10

12

14

16

18

0 5 10 15 20

ΔT)(°C

)

Distance)(m)

DT DT)1 DT)2

Borehole&field&configuration

• Different&configurations&(rows&and&columns&of&boreholes)&respond&differently&e.g.&2&x&6&

is&not&the&same&as&3&x&4&etc.&

• Response&characteristic&also&depends&on&spacing/depth&

ratio.

• Response&can&be&characterized&by&‘g=function’&

data.&This&relates&temperature&change&to&heat&input. 0

24681012141618202224262830323436384042

(5 (4.5 (4 (3.5 (3 (2.5 (2 (1.5 (1 (0.5 0 0.5 1 1.5 2 2.5 3 3.5

ln(t/ts)

g(t/ts,rb/H=0.0005)

Borehole&Array&Design

Simulationof+GHE

Adjust+size

User+input:GSHP+Loads+&+(optionally)GHE+Loads

User+inputs:+Ground+properties

BH+info.HP+characteristics

HP+Simulation

Spitler and%Bernier%(2016).%Vertical%Borehole%Heat%Exchanger%Design%Methods

Ground&heat&exchanger&design&software&helps&with&the&iterative&process&needed&to&find&the&design&heat&exchanger&size

Essential&Design&Data

To&summarize:&the&design&data&needed&is:

1. Local&undisturbed&ground&temperature

2. Ground&thermal&conductivity&and&diffusivity

3. Building&heating/cooling&rejection&demands&(monthly)

4. Monthly&peak&heating&and&cooling&loads

5. Borehole&resistance&– pipe&size,&spacing,&grout&properties,&

borehole&diameter

6. Target&temperature&range&for&the&system&– avoiding&

freezing&and&high&pressure&limit,&or&targets&for&SPF.

Ground&Thermal&Response&Testing

Ground&thermal&conductivity&is&a&key&parameter&– how&do&we&estimate&it?

• Reference&book&valuesq

• British&Geological&Survey&desktop&study

• In=situ&Thermal&Response&Testing&(TRT)&f

In&Situ&Thermal&Response&Testing

1. A&single&test&borehole&is&completed

2. A&closed&circuit&is&formed&and&electrical&heaters&used&to&

apply&a&pulse&of&heat&over&48+&hours.

3. Flow,&power&and&temperature&data&are&collected&and&

analyzed.

Typical&TRT&Responses

The&key&data&needed&for&

analysis&is&the&average&fluid&

temperature&and&power&input

Data& source:& IGSPHA

Data& source:& Groenholland

Research&Equipment

Photos:&J.D.&Spitler

Electric&heaters&

(3&x&3kW)

Flow&

meterFlow/return&temp.&

sensors

Pumps&and&purge&valves

Compact&Site&Equipment

A.&ChaissonGroenholland Geo&Energy&Systems

TRT&Analysis

1. Plot&temperature&vs natural&log&of&time2. Find&the&slope&– ignoring&some&early&data

3. Use&the&slope&to&derive&the&effective&conductivity

! = #4%&'!

Where&s is&the&slope&of&the&temperature&vs natural&log&time&plot

Non=Domestic&Systems:&System&Integration

System&Integration

Operating&temperatures

• Chilled&water&temperatures&can&be&in&the&usual&range&– hence&able&to&serve&AHUs,&Fan&Coils&etc.

• Heating&temperatures&can&be&up&to&55&but&better&at&40/45.&Hence&well&suited&to&underfloor&heating/&oversized&radiators,&fan&coils.

Central&Plant&Integration&– 3&basic&approaches

1. Reversible&heat&pumps&with&sliding&headers.

2. Reversible&heat&pumps&with&Independent&header&connections.

3. Reversing&on&the&water=side&and&heat&exchange&between&buffer&tanks.

Sliding&header&configuration

CIBSE&TM51

• Header&is&split&between&heating&and&cooling&depending&on&valve&position&

and&demand

• Heat&pumps&are&controlled&in&sequence&according&to&

heating/cooling&demand&by&BMS.

• Heat&pumps&can’t&be&

independently&switched&between&heating&and&cooling.

Independent&Header&Connections

Naicker and&Rees&(2011)

Plantroom installation

Header&pipes&and&valves

Water=side&reversing&and&buffer&tanks

Groenholland Geo&Energy&Systems

Plantroom Installation&(Skids)

Groenholland Geo&

Energy&Systems

Non=Domestic&Systems:&Measured&Peformance

• A*multi6use*building*(15,607*m2)

• Monitored*since*opening*in*Jan.*2010

• GSHP*system*provides*all*AHU*and*FCU*cooling*(360*kW*peak)*and*all*underfloor heating*(330*kW*peak*capacity)***

• Has**Four*Water*Furnace*26stage*reversible*heat*pumps

• 56*x*100m*deep*borehole*heat*exchangers,*125mm*diameter.*30*l/s*peak*flow

Monitoring*at*De*Montfort*University*Hugh*Aston*Building

Naiker,%S.S.%(2016)%Performance%Analysis%of%a%LargeTscale%Ground%Source%

Heat%Pump%System.%PhD%Thesis:%De%Montfort%University.

Hugh&Aston&Building&Ground&Heat&Exchangers

19&+&37&arrays,&100m&deep

Heat&Pump&Installation

Header&pumps

Ground&loop&pumps

Header&pipes&and&valves

Monthly&Heat&Balances

0

2

4

6

8

10

12

14

16

18

20

'0.6

'0.4

'0.2

0

0.2

0.4

0.6

0.8

1

Tempe

rature)(°C))

Heat)Ex

chan

ge)(M

Wh)

Time)(mmm)8 yy)

Monthly0daily0Mean0Heat0Extraction(MWh) Monthly0daily0Mean0Heat0Rejection(MWh) Monthly0daily0Mean0Net0Heat0Exchange0(0MWh)

Monthly0daily0Mean0Ground0Loop0Temp.0(°C0) Monthly0daily0Mean0Air0Temp.0(°C0)

System&Efficiencies

2.89

3.99

3.31

2.69

2.22

3.55

3.87

3.67

3.16

2.61

3.19

4.06

3.54

2.97

2.49

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

SPF//H1 SPF/C1 SPF/1 SPF/2 SPF/4

SPF

May/52010/to/April/52011 May/52011/to/April/52012 Feb/52010/to/July/52012

Year%(%Season) SPF%%H1 SPF%C1 SPF%1 SPF%2 SPF%4May%52010%to%April%52011 2.89 3.99 3.31 2.69 2.22May%52011%to%April%52012 3.55 3.87 3.67 3.16 2.61Feb%52010%to%July%52012 3.19 4.06 3.54 2.97 2.49

Seasonal&performance&Factors:

• SPF1&is&heat&pump&alone

• SPF2&includes&the&ground&loop&pump&demand

• SPF&4&includes&the&heating/cooling&header&pumps

RES&Directive&requires&SPFH2&>&2.5

Dynamic&Operation

Only&one&compressor&stage&is&needed&for&much&of&the&time.&On/off&control&leads&to&short&cycle&times.

0

5

10

15

20

25

30

35

%"of""Occurrence

Hourly"kWh

Heating Cooling

0

5

10

15

20

25

30

%"of"O

ccurrence

Daily"kWhrHeating Cooling

0

1

2

3

4

5

6

7

10

11

12

13

14

15

16

17

18

Flow%(l/s)

Temp

eratur

e%(°C)

Time%(Date%Hour)

Source0side0outlet0Temperature0(°C) Source0side0intlet0Temperature0(°C) Source0side0Flow0rate0(l/s)

Dynamic&Operation

0

1

2

3

4

5

6

7

8

0 200 400 600 800 1000 1200

Daily&&SPF

H1

Daily&Heating&Demand&(kWh)

0

1

2

3

4

5

6

7

8

9

0 200 400 600 800 1000 1200

Daily&&SPF

C1

Daily&Cooling&Demand&(kWh)

0

10

20

30

40

50

60

0(1 1(2 2(3 3(4 4(5 5(6 6(7 >7

%""of"O

ccurrence

Hourly"SPFH1

Cycle0Time0(0(100min/cycle) Cycle0Time0(11(200min/cycle) Cycle0Time0(21(300min/cycle)Cycle0Time0(31(400min/cycle) Cycle0Time0(41(500min/cycle) Cycle0Time0(51(600min/cycle)

0

5

10

15

20

25

30

35

40

45

0'1 1'2 2'3 3'4 4'5 5'6 6'7 >7

%"of"O

ccurrence

Hourly"SPFC1Cycle0Time0(0'100min/cycle) Cycle0Time0(11'200min/cycle) Cycle0Time0(21'300min/cycle)Cycle0Time0(31'400min/cycle) Cycle0Time0(41'500min/cycle) Cycle0Time0(51'600min/cycle)

Circulating&Pump&Operation

Pump&sizes&are&large&relative&to&compressor&sizes

Pumps&also&operate&unnecessarily&– valve,&flow&switch&

and&control&faults

0

10

20

30

40

50

60

70

80

90

100

Ope

ratio

nal+Hou

rs++/%

Time+(+mmm/yy)

Compressor2Operational2Hours2;%22(Both2Cooling2and2Heating2)2 Useful2Heating2and2Cooling2Energy2Delivered2Across2Manifold2; Hours2%

Heating2or2Cooling2Loop2Circulating2Pump2Operational2Hours22; % Ground2Loop2Circulating2Pump2Operational2Hours2; %

Circulating&Pump&Energy&Demands

Pump&demands&have&a&big&effect&on&SPF2 and&SPF4

Monthly&Pump&to&Compressor&Power&Ratio&Vs Monthly&SPF2,&SPF4

0

0.5

1

1.5

2

2.5

3

3.5

0 0.2 0.4 0.6 0.8Mon

thly(SP

F 4

Power(Ratio(((Wp(SPF4)(/Wc)

0

0.5

1

1.5

2

2.5

3

3.5

4

0 0.1 0.2 0.3 0.4

Mon

thly(SP

F 2

Power(Ratio(((Wp(SPF2)(/Wc)

Improving&Performance

Overall,&performance&is&satisfactory.&

Cycle&times&would&be&improved&by

• Smaller&lead&machine

• Variable&compressor&speed

• Buffer&tanks

Lift&could&be&reduced&by&heating&temperature&

tuning/reduction

Pump&energy&demands&could&be&reduced&by:

• Better&hydraulic&design

• More&robust&control&(fault&detection/correction)

• Reduced&start=up/shut=down&running

• Ground&loop&demand&control

Geothermal&Heat&Pump&System&Research

The&EU&Horizon&2020&Programme

Aim:&reduced&complexity,&improved&robustness&and&efficiency

Key&Technologies:

• Innovative&drilling&technology

• High&efficiency&heat&exchanger

• Dual=source&heat&pump

• Robust&control&systems&and&

monitoring

• Foundation&heat&exchange&systems

Geothermal&Technology&for&Economic&Cooling&and&Heating

� Innostock�2012� ���The�12th�International�Conference�on�Energy�Storage�

� 1

INNO-U-32

The GEOTHEX geothermal heat exchanger, characterisation of a novel high efficiency heat exchanger design

Henk Witte

Groenholland Geo-Energysystems, Valschermkade 26, 1059CD Amsterdam, Netherlands,

Phone: 31-20-6159050, e-mail: [email protected]

1. Introduction

The Geothex heat exchanger (http://www.geothex.nl/en/), figure 1, has been developed to provide a highly efficient ground source heat exchanger for use with geothermal heat pumps. The goal has been to develop a high-quality heat exchanger with a very low thermal resistance, even at laminar flow conditions and, at the same time, achieve this with a low pressure loss.

Geothermal heat pumps are widely recognized as very efficient systems for heating and cooling applications that combine a high potential for saving on primary energy and greenhouse gas emissions with a very long life span and low maintenance. Different ways to interface the heat pump with the ground are in use, but by far the largest number of systems use a closed loop heat exchanger placed vertically to depths varying between perhaps 30 and 400 meters. In these so-called "Borehole Heat Exchangers" (BHE) heat is exchanged between the primary side (the fluid flowing through the loop and heat pump) and secondary side (the ground volume) due to a temperature difference.

Figure 1. Impression of the Geothex heat exchanger showing the insulated inner pipe and helical vanes (source: Geothex BV). Shown is the functioning in heat extraction mode with flow through the inner tube or flow through the

annulus.

As with any heat exchanger, there is a relation between the amount of heat transferred (q), the thermal resistance of the heat exchanger (R) and the temperature difference ('T) between the primary and secondary side:

q = 'T/R

This implies that, for a given constant heat flux rate, the higher the thermal resistance of the heat exchanger, the larger the required temperature difference between the fluid and the ground. Now, the efficiency of the heat pump depends mainly on the difference between the source (cold) and sink (hot) temperatures. In fact, it can be shown that for every degree of temperature

The&EU&Horizon&2020&Programme

The&EU&Horizon&2020&Programme

• A&hybrid&dual=source&approach:&air&and&ground&heat&exchanger&for&optimal&choice&of&source/sink&temperature

• Variable&speed,&DC&permanent&magnet&motor,&scroll&compressor,&refrigerant&R32.

• Hybrid&design&and&smart&controls&make&the&implementation&robust

• Reduced&complexity&to&improve&uptake&(consumers,&developers&and&SMEs).

New&Heat&Pump&Development&in&the&GEOTeCH project&=

Sources&of&information

http://geotrainet.eu

http://www.gshp.org.uk

http://www.igshpa.okstate.edu

http://www.egec.org

CIBSE&TM45,&TM51&and&CP2&– via&knowledge&portal

Useful&web&sites:

UK

EU

US

Thank&you&for&listening

[email protected]