26
Improved Quality Prediction of Injection Molded Fiber Reinforced Components by Considering Fiber Orientations Sascha Pazour Wolfgang Korte PART Engineering GmbH [email protected] 0049 2204 30677 26 © PART Engineering GmbH, www.part-gmbh.de

Improved Quality Prediction of Injection Molded Fiber Reinforced Components by Considering Fiber Orientations

Embed Size (px)

DESCRIPTION

For fiber reinforced parts the consideration of anisotropic material behavior is required to receive reliable results. In the scope of this fact a procedure is described how to consider these effects in terms of process-structure interaction and how to achieve possible benefits such as weight reduction and shorter development cycles shown for examples of the industry . The developed procedures show how to consider the anisotropic mechanical behavior of injection molded short-fiber-reinforced plastics parts in FE analysis. It is shown how the existing information, which is provided by injection molding simulation software, can be processed and transferred into mechanical simulation models. The procedure is outlined with practical applications.

Citation preview

Improved Quality Prediction of Injection Molded Fiber Reinforced

Components by Considering Fiber Orientations

Sascha Pazour

Wolfgang Korte

PART Engineering GmbH

[email protected]

0049 2204 30677 26

© PART Engineering GmbH, www.part-gmbh.de

Plastics

CAE Services & Software

Technical Simulation Contract Simulation Services

in FEA

CAE Staffing Resident Engineers at

customers‘ sites

CAE Software - Process-Structure-Interaction

- Strength & Fatigue Assessment

Metals

S-Life

Elastomers

Material:

PA6+GF30

perpendicular

parallel

Influence of Fiber Orientation onto Material Properties

Fig. 2

Fiber Orientations in Short-Fiber-Reinforced Plastics

S1 Shear layer: Fibers oriented parallel to flow direction

S2 Mid layer: Fibers oriented perpendicular to flow direction

Fig. 3

Flow Direction X

X

Cut View X

Flow Direction

S1

S2

S1

Example

Micrograph

Pictures:

Thick

Mid Layer Thin

Mid Layer

Isotropic and Orthotropic Material Models

Isotropic Material Model

Orthotropic Material Model

Fig. 4

needs 2 material properties: Tensile Modulus E and Poisson ratio

needs 9 material properties:

Tensile modulii the 3 orthotropic axes E1, E2, E3

Shear modulii the 3 orthotropic planes G12, G13, G23

Poisson ratios 12, 13, 23

Further the position of the orthotropic axes (local element coordinate sytem)

with reference to the global coordinate system is needed

Degree of Orientation

Fig. 5

33

2322

131211

..

.

a

aa

aaa

000

000

001

33.000

033.00

0033.0

2

3 1

general case unidirectional quasi-isotropic

-90° +90° -45° +45° 0° -90° +90° -45° +45° 0° -90° +90° -45° +45° 0°

Schmelzeflussrichtung

Schmelzeflussrichtung

2

1

Example: Weld Lines

Isotropic Approach Fig. 6

Common Approach:

Isotropic

Schmelzeflussrichtung

Schmelzeflussrichtung

Example: Weld Lines

Anisotropic Approach Fig. 7

CONVERSE Approach:

Anisotropic

Schmelzeflussrichtung

Schmelzeflussrichtung

Fig. 8

Orientation and Degree of Orientation

from Injection Molding Simulation

shear layer

mid layer

[Part: Mann & Hummel]

Fiber Orientation and Anisotropic Material

Fig. 9

Converse Graphical User Interface

[Part: Mann & Hummel]

Mesh Topology

Fig. 10

Converse IM solver mechanical solver

shell (mid-plane/surface) => shell (tria, quad)

shell (mid-plane/surface) => solid (tet, hex)

solid => solid (tet, hex)

unequal meshes

possible

Material Dialog

Fig.11

Mechanical Solver Injection Moulding Solver

- Moldflow

- Cadmould

- Sigma

- Moldex

- Fluent

- Simpoe

- 3D Timon

- Ansys

- Abaqus

- Optistruct

- Nastran

- Marc

- Samcef

- FEMFat

- Ncode

- Virtual.Lab

Orientations

Pressures

Temperatures

Wall Thicknesses

Residual Stresses

Shrinkage & Warpage

Weld Lines

Fig. 12

Converse Features and Interfaces

0

200

400

600

800

1000

1200

1400

0 1 2 3 4 5 6

Kra

ft [N

]

Verschiebung [mm]

Messung 1

Messung 2

isotrop

orthotrop

Example: Rotary Valve

Material: Grivory HTV 3H1

forc

e [N

]

displacement [mm]

test 1

test 2

FEA isotropic

FEA anisotropic

Fig. 13

[Part: Mann & Hummel]

Example: Air Intake Manifold

Material: Ultramid A3WG6

Fig. 14

[Part: Mann & Hummel]

Eigenfrequencies and Eigenmodes

0

100

200

300

400

500

600

700

800

900

1000

250,00 270,00 290,00 310,00 330,00 350,00 370,00 390,00

eff

ektive M

asse

[g]

Frequenz [Hz]

x-Richtung - isotrop y-Richtung - isotrop z-Richtung - isotrop

x-Richtung - orthotrop y-Richtung - orthotrop z-Richtung - orthotrop

x-direction-isotropic

x-direction-anisotropic

y-direction-isotropic

y-direction-anisotropic

z-direction-isotropic

z-direction-anisotropic

frequency [Hz]

effe

ctive

ma

ss [kg

]

Fig. 15

[Part: Mann & Hummel]

Example: Burst Pressure

Material: PP + GF20

Fig. 16

Cyclic Utilization Ratio for N=80000

A cycl,max (N) = 91%

Fatigue strength

assessment satisfied!

A cycl(N)

X(N)=63 MPa

Y(N)=42 MPa

S(S)=24 MPa

Fig.17

[Part: Mann & Hummel]

Failure Assessment

Fig. 18

[Part: Mann & Hummel]

Lens Bracket Example

Fig. 19

Part Geometry Fiber Orientation in Converse

[Valeo Lighting Systems]

Lens Bracket Example

Fig. 20

Frequency correlation – simulation to Xp. modal analysis

+5Hz

+30Hz

Converse

Isotropic

Average error – 4 Modes

Mode Experimental (Hz) Isotropic (Hz) Converse (Hz)

1 44 76 60

2 56 77 62

3 91 114 94

4 224 270 218 [Valeo Lighting Systems]

Influence Of Production on Fiber Orientation

Fig. 21

Supplier 2 Supplier 1

• Two suppliers but parts are geometrically up to 95% equal.

• Same material supplier, same mashine settings, etc.

• Different gating location means two completly different engine components!

Water pump housing

Gate location

Gate location

Moldflow results show different orientation

Influence Of Production on Anisotropic Part Stiffness

Fig. 22

Blue – Supplier 1

Red – Supplier 2

Dotted – Isotropic material

fiber orientation and material model by

4. isotropic vs. anisotropic results

∆ - 62%

Untolerable error if homogeneous

isotropic material is used!

3. displacements

1. distributed pressure on sealing contact surface

2. results evaluated on a path

Dis

pla

cem

ent

True distance along path

Fig. 23

www.part-gmbh.de What´s New?

Converse Installation

consider the real part properties

get better predictions of

strength & deformation

by using data already

available

integrates smoothly into

your day-to-day CAE routines

straigthforward easy-to-use

Fig. 24

Add Value to Your Mechanical Simulation

Fig. 25

Thank you for your Attention!

Questions?