28
Sizing and Optimal AVR Placement in Radial Distribution System Presented by: NHET RA Faculty: Electrical and Energy Engineering Adviser: Mr. KHUN Chanthea 2013 - 2014 1 ASSERTATION OF FINAL YEAR MINISTRY OF EDUCATION, YOUTH AND SPORT INSTITUTE OF TECHNOLOGY OF CAMBODIA ELECTRICAL AND ENERGY DEPARTEMENT

Optimal avr placements using Backtracking Technic

  • Upload
    nhet-ra

  • View
    185

  • Download
    6

Embed Size (px)

DESCRIPTION

This is my slide presentation about AVR placement in radial distribution system. Please leave your comment if you find out that it has some mistake. Thank for viewing

Citation preview

Page 1: Optimal avr placements using Backtracking Technic

Sizing and Optimal AVR Placement in

Radial Distribution System

Presented by: NHET RA

Faculty: Electrical and Energy Engineering

Adviser: Mr. KHUN Chanthea

2013 - 2014 1

ASSERTATION OF FINAL YEAR

MINISTRY OF EDUCATION,

YOUTH AND SPORTINSTITUTE OF TECHNOLOGY

OF CAMBODIA

ELECTRICAL AND ENERGY DEPARTEMENT

Page 2: Optimal avr placements using Backtracking Technic

Content

Introduction1

Data Collection 2

Methodology3

Result Before and After AVR implemented4

Conclusion5

Recommendation 6

Page 3: Optimal avr placements using Backtracking Technic

3

1. Sources

2. Step-Transformer

3. Transmission line

4. Primary Distribution

line

5. Secondary

distribution line

1 Introduction

Page 4: Optimal avr placements using Backtracking Technic

4

1 Introduction

Page 5: Optimal avr placements using Backtracking Technic

Rational

Voltage drop in a long distribution line.

Increasing load demand.

Shortage of source supply.

5

1 Introduction

Page 6: Optimal avr placements using Backtracking Technic

Objectives

To maintain the voltage level within the limitation (±5%).

To minimize losses in the

power distribution system

To allow the MV load customer able to connect the EDC’s grid system

To provide a means document to further researcher

6

1 Introduction

Page 7: Optimal avr placements using Backtracking Technic

• Line Configuration

7

A CB

0.7m 1.4m

Position1

A

C1.8 m

B

Position 2

2 Data Collection

Page 8: Optimal avr placements using Backtracking Technic

• Line Parameter Computation

– Resistance Line

– Temperature Effect

– Skin Effect

8

dc

lR

A

22 1

1

T tR R

T t

( )ac dcR f x R

_

0.0635981.6093 dc km

fX

R

2 Data Collection(Conts)

Page 9: Optimal avr placements using Backtracking Technic

9

2 Data Collection(Conts)

X K X K X K X K

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.00000

1.00000

1.00001

1.00004

1.00013

1.00032

1.00067

1.00124

1.00212

1.00340

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

1.00519

1.00758

1.01071

1.01470

1.01069

1.02582

1.03323

1.04205

1.05240

1.06440

2.0

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

1.07816

1.00375

1.11126

1.13069

1.15207

1.17538

1.20056

1.22753

1.25620

1.28644

3.0

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

1.31800

1.35102

1.38504

1.41900

1.45570

1.49202

1.52879

1.56587

1.60314

1.64051

Page 10: Optimal avr placements using Backtracking Technic

– Line Inductance

– Reactance

– Impedance

10

0.2 ln /L

GMDL mH km

GMR

3L SA SB SCGMR D D D

312 23 13GMD D D D

2X Lf

Z R jX

2 Data Collection(Conts)

Page 11: Optimal avr placements using Backtracking Technic

• Line Impedance

11

TYPEOverhead Line

AAC

Section [mm2] 70 150

Z [Ω/km]Position 1 0.5012+j0.3673 0.2358+j0.3434

Position 2 0.5012+j0.3700 0.2358+j0.3460

2 Data Collection(Conts)

Page 12: Optimal avr placements using Backtracking Technic

Load Categories

12

Apparent

power (kVA)

Number of

Transformer

Load % Active

Power (kW)

Active Power

(kW)

1000 1 50% 475 156.12

500 1 50% 237.5 78.06

400 4 50% 190 62.44

320 1 50% 152 49.95

250 3 50% 118.75 39.03

160 5 50% 76 24.97

100 11 50% 47.5 15.61

63 1 65% 29.925 9.83

50 7 50% 23.75 7.80

30 2 50% 14.25 4.68

2 Data Collection(Conts)

Page 13: Optimal avr placements using Backtracking Technic

• Capacitor Bank

13

N0 Capacitor Bank Rating (kVAr) Denomination

1 45 224

2 125 195

3 125 430

4 75 359

5 75 454

6 45 307

7 45 166

8 30 325

9 45 259

10 30 596

2 Data Collection(Conts)

Page 14: Optimal avr placements using Backtracking Technic

14

The Voltage at source node 2 is taken as

In General

3 Methodology

1 1V 2 2V

1I

1 1Z= r jx

2 2P jQ

2 1 1 1V =V I Z

2 1V =n n j jV I Z

1 2

j

Page 15: Optimal avr placements using Backtracking Technic

The Load Current at node is calculate by

The real and reactive power losses of branch ‘j’

can be calculated as

The current in each branch is calculated by

applying KCL

15

3 Methodology

*

i ii

i

P jQIL

V

2

i j jLP I r

2

i j jLQ I x 1,2,....,for j nb

1

0nb

j i

j

I IL

" "i

Page 16: Optimal avr placements using Backtracking Technic

• DETERMINING REQUIRE REGULATOR TYPE AND SIZE

According to real nameplate 150 Amps

16

1000( )

3

three phase kVARated load Amps Three phase

line to linevolts

3 Methodology

6753 1000177.22

22000 3

kVARated load Amps Amps

volts

Page 17: Optimal avr placements using Backtracking Technic

• Backtracking is a methodical way of trying out

various sequences of decisions, until you find one

that “works”

17

3 Methodology

Page 18: Optimal avr placements using Backtracking Technic

1819 bus RDS before shifting of auto-voltage regulators

3 Methodology(Conts)

Page 19: Optimal avr placements using Backtracking Technic

1919 bus RDS after shifting of auto-voltage regulators

3 Methodology(Conts)

Page 20: Optimal avr placements using Backtracking Technic

START

Read System line and load data, base kV and kVA, iteration

count (IC) =1 and tolerance (e) = 0.0001

Perform load flow and calculate voltage at each bus,

real and reactive power losses

1. Using PSS/ADEPT study POWER FLOW

2. Find optimal point for placing AVR in radial power distribution systems

Yes

Noint?ref realV V Optimal po

END 20

Page 21: Optimal avr placements using Backtracking Technic

21

4 Result

Result before AVR implemented with 50% on load

Page 22: Optimal avr placements using Backtracking Technic

22

4 Result(Conts)

Result before AVR implemented with 70% on load

Page 23: Optimal avr placements using Backtracking Technic

23

4 Result(Conts)

Result after AVR implemented with 50% load

Page 24: Optimal avr placements using Backtracking Technic

24

4 Result(Conts)

Result after AVR implemented with 70% load

Page 25: Optimal avr placements using Backtracking Technic

25

4 Result(Conts)

Power LossesBefore Using

BTAfter AVR Using

BT

Power losses with 50% on load

407.48 411.53

502.96 506.13

Power losses with 70% on load

914.56 758.57

1,348.29 1,156.17

( )lossesP kW

( )lossesQ kVAr

( )lossesQ kVAr

( )lossesP kW

Page 26: Optimal avr placements using Backtracking Technic

Voltage profile before AVR is implemented

started to decrease lower than the limitation

(±5%) with a high power losses.

After AVR is implemented, Voltage profile

stay within the limitation even the power

consumption shoot up to 70%.

26

5 Conclusion

Page 27: Optimal avr placements using Backtracking Technic

For further research, the decision makers may consider on:

Using Genetic Algorithm or Fuzzy Set to make the research study more accurate and precise.

Propose another alternative solution such as sub-transmission line, Optimal CAPO, or creating a new power Distribution Line.

27

6 Recommendations

Page 28: Optimal avr placements using Backtracking Technic

Thank You for Your Attention.

Any Question?

28