20

Click here to load reader

UC Davis gyrotron cavity simulation

Embed Size (px)

Citation preview

Page 1: UC Davis gyrotron cavity simulation

TE0,2,1 mode S =2, Vb = 30 kV, alpha = 2.57, velocity spread = 0% Rc / Rw = 0.3268, Rw = 0.3571 cm

L

rw

2 3 4 5 6 7 8 9 100

1x105

2x105

3x105

4x105

5x105

L / rwbe

am e

ffic

ienc

y (%

)

0

10

20

30

40

QP

b (

kW)

Page 2: UC Davis gyrotron cavity simulation

Rw = 0.3571 cm

Vb = 30 kV, alpha = 2.57, Bz0 = 17.4 kG

-20 -10 0 10 200

20

40

60

80

100

120

140

160 TE13TE32

TE61

TE02 (operating mode)TE22

TE51TE12

TE31

TE01TE21

S = 2

freq

uenc

y (G

Hz)

kz (cm-1)

S = 1

TE11

Page 3: UC Davis gyrotron cavity simulation

(1) Do QPVSB runs with the ideal cavity parameters you used to run for Larry's TE02, s=2 design Previous parameters: Rw = 0.3571 cm, L/ Rw = 6, Rc / Rw = 0.3268 Vb = 30 kV, alpha = 2.57, delta = -10 ~ 20 Operation mode TE021 S=2

-10 -5 0 5 10 15 200.0

2.0x104

4.0x104

6.0x104

8.0x104

1.0x105 TE(2)022

TE(2)025

TE(2)023

TE(2)024 TE(1)

115

TE(2)022

TE(1)214

TE(1)213

TE(1)212

delta

QP

(kW

)

TE(2)021

16.8 17.2 17.6 18.00.0

2.0x104

4.0x104

6.0x104

8.0x104

1.0x105

TE(1)115

TE(2)025

TE(2)024

TE(2)023

TE(2)022

TE(2)022

TE(1)214

TE(1)213

QP

(kW

)

B (kG)

TE(2)021TE(1)

212

Page 4: UC Davis gyrotron cavity simulation

(2) Let Vb =30 kV, Rc= 1.26 mm, alpha= 2.0, dVz/Vz = 5%, ismain =2, immain=0, inmain =2, ilmain=1, dmin=-10, dmax= 20

Rw = 0.3571 cm, L/ Rw = 6, Rc / Rw = 0.3528, velocity spread = 5% Vb = 30 kV, alpha = 2.0, delta = -10 ~ 20 Operation mode TE021 S=2

-10 -5 0 5 10 15 200.0

2.0x104

4.0x104

6.0x104

8.0x104

1.0x105 TE(2)022

TE(1)215

TE(2)023

TE(2)024

TE(1)115

TE(2)022 TE(1)

214

TE(1)213 TE(1)

212

delta

QP

(kW

)

TE(2)021

16.8 17.2 17.6 18.00.0

2.0x104

4.0x104

6.0x104

8.0x104

1.0x105

TE(1)115

TE(1)215

TE(2)024

TE(2)023

TE(2)022

TE(2)022

TE(1)214

TE(1)213

QP

(kW

)

B (kG)

TE(2)021TE(1)

212

Page 5: UC Davis gyrotron cavity simulation

Electron-wave resonance lines for the S=1 ~ S=3 Rw = 0.3571 cm, Vb = 30 kV, alpha = 2.0, Bz0 = 17.5 kG Operation mode TE021 S=2

-20 -10 0 10 20

20406080

100120140160180 TE14TE33TE91

TE52TE03TE23TE81

TE42

TE71TE13TE32TE61TE02TE22

TE51TE12TE41

S = 3

S = 2S = 1

TE31

TE01TE21

TE11

kz (cm-1)

freq

uenc

y (G

Hz)

Page 6: UC Davis gyrotron cavity simulation

(1) Do QPVSB runs with the ideal cavity parameters you used to run for Larry's TE02, s=2 design Previous parameters: Rw = 0.3571 cm, L/ Rw = 6, Rc / Rw = 0.3268, velocity spread = 0% Vb = 30 kV, alpha = 2.57, delta = -10 ~ 20 Operation mode TE021 S=2

16.8 17.2 17.6 18.00.0

5.0x105

1.0x106

1.5x106

2.0x106

TE(1)115TE(1)

214

TE(1)213

TE(1)212

TE(2)226

TE(2)225

TE(2)224

TE(2)224

TE(2)223

TE(2)223

TE(2)222TE(2)

222

TE(2)221 TE(2)

516

TE(2)515

TE(2)515

TE(2)514

TE(2)513

TE(2)512

TE(2)025

TE(2)024

TE(2)023

TE(2)022

TE(2)022

TE(2)021

TE(3)426

TE(3)425

TE(3)236

TE(3)236

TE(3)235TE(3)

235 TE(3)234

TE(3)234

TE(3)233

TE(3)233

TE(3)232

TE(3)232TE(3)

231TE(3)

036

TE(3)035

TE(3)035

TE(3)034

TE(3)034 TE(3)

033

TE(3)033

TE(3)032 TE(3)

032TE(3)031

TE(3)526

TE(3)525TE(3)

524

TE(3)523

TE(3)523

TE(3)522

TE(3)521

B (kG)

QP

(kW

)

17.0 17.2 17.4 17.6 17.8 18.00.0

2.0x105

4.0x105

6.0x105

8.0x105

1.0x106

TE(1)115

TE(1)214 TE(1)

213

TE(2)226TE(2)

225

TE(2)224

TE(2)223

TE(2)222

TE(2)516

TE(2)514

TE(2)513

TE(2)025

TE(2)024

TE(2)023

TE(2)022

TE(2)022

TE(2)021

TE(3)426

TE(3)235

TE(3)234

TE(3)233

TE(3)232

TE(3)036TE(3)

035

TE(3)034

TE(3)034

TE(3)033

TE(3)033

TE(3)032

TE(3)032

TE(3)031

TE(3)526

TE(3)525 TE(3)

524

TE(3)522

TE(3)522

TE(3)523

TE(3)521

B (kG)

QP

(kW

)

Page 7: UC Davis gyrotron cavity simulation

16.8 17.2 17.6 18.00

1x105

2x105

3x105

4x105

5x105

TE(2)223

TE(2)223

TE(2)222

TE(2)222

TE(2)221

TE(2)515TE(2)

514

TE(2)022

TE(2)426

TE(3)526

TE(3)523

TE(3)036

TE(3)035

TE(3)035

TE(3)034TE(3)

034 TE(3)033

TE(3)033

TE(3)032

TE(1)115TE(1)

214 TE(1)213

TE(1)212

TE(2)425

TE(2)516

TE(2)515

TE(2)513

TE(3)031

TE(2)512

TE(2)025

TE(2)024TE(2)

023TE(2)

022

TE(3)032

TE(3)524

TE(3)523

TE(3)522

TE(3)525

TE(3)521

TE(2)021

B (kG)

QP

(kW

)

16.8 17.2 17.6 18.00.0

2.0x104

4.0x104

6.0x104

8.0x104

1.0x105

TE(1)115

TE(2)025

TE(2)024

TE(2)023

TE(2)022

TE(2)022

TE(1)214

TE(1)213

QP

(kW

)

B (kG)

TE(2)021TE(1)

212

Page 8: UC Davis gyrotron cavity simulation

(2) Let Vb =30 kV, Rc= 1.26 mm, alpha= 2.0, dVz/Vz = 5%, ismain =2, immain=0, inmain =2, ilmain=1, dmin=-10, dmax= 20

Rw = 0.3571 cm, L/ Rw = 6, Rc / Rw = 0.3528, velocity spread = 5% Vb = 30 kV, alpha = 2.0, delta = -10 ~ 20 Operation mode TE021 S=2

16.4 16.8 17.2 17.6 18.00.0

5.0x105

1.0x106

1.5x106

2.0x106

TE(1)115

TE(1)215

TE(1)214

TE(1)213TE(1)

212

TE(2)416

TE(2)126

TE(2)516

TE(2)515

TE(2)515

TE(2)514

TE(2)513

TE(2)512

TE(2)026

TE(2)025

TE(2)024

TE(2)023

TE(2)022

TE(2)022

TE(2)021

TE(3)424

TE(3)036TE(3)

035

TE(3)035

TE(3)034TE(3)

034 TE(3)033

TE(3)033

TE(3)032

TE(3)032TE(3)

031

TE(3)526

TE(3)525

TE(3)524

TE(3)523

TE(3)523

TE(3)522

TE(3)521

B (kG)

QP

(kW

)

17.0 17.2 17.4 17.6 17.8 18.00.0

2.0x105

4.0x105

6.0x105

8.0x105

1.0x106

TE(1)115 TE(1)

215

TE(1)214

TE(1)213

TE(2)514

TE(2)513

TE(2)026

TE(2)025TE(2)

024

TE(2)023

TE(2)022

TE(2)022

TE(3)036 TE(3)

034TE(3)033TE(3)

032TE(3)

031 TE(3)526

TE(3)525

TE(3)524TE(3)

523

TE(3)522

TE(3)522

TE(3)521

TE(2)021

B (kG)

QP

(kW

)

Page 9: UC Davis gyrotron cavity simulation

16.5 17.0 17.5 18.00

1x105

2x105

3x105

4x105

5x105

TE(1)115

TE(1)215

TE(1)214

TE(1)213

TE(1)212

TE(2)416

TE(2)126

TE(2)516

TE(2)515

TE(2)515

TE(2)514

TE(2)513

TE(2)512

TE(2)026

TE(2)025

TE(2)024

TE(2)023

TE(2)022TE(2)

022

TE(3)032

TE(3)524

TE(3)523 TE(3)

523

TE(3)522

TE(3)522

TE(3)521

TE(2)021

B (kG)

QP

(kW

)

16.8 17.2 17.6 18.00.0

2.0x104

4.0x104

6.0x104

8.0x104

1.0x105

TE(1)115

TE(1)215

TE(2)024

TE(2)023

TE(2)022

TE(2)022

TE(1)214

TE(1)213

QP

(kW

)

B (kG)

TE(2)021TE(1)

212

Page 10: UC Davis gyrotron cavity simulation

Structure (all dimension in cm)

0 1 2 3 40.0

0.1

0.2

0.3

0.4

0.5

3.9855 cm

0.4077r1 = 0.35 0.3571

12.3

0.13550.3

0.15

Rw

(cm

)

Z (cm)

0.1

Parameters Table.1. (cavity dimensions shown above)

Vb = 35kV, alpha = 2.0, dVz/Vz = 6 %, Rc/Rw = 0.3192, and / 1Cu in all structure section.

Operation mode: (2)021TE

Page 11: UC Davis gyrotron cavity simulation

Use the stationary self-consistent code(parameters as in Table.1) to estimate the start oscillation current vs

B(uniform) for each competition mode.

8 10 12 14 16 18 20 220

10

20

30

40

50

TE(2)5,1

TE(2)2,2

TE(1)1,1

TE(1)2,1

TE(2)0,2

B (kG)

I st (

A)

16 17 18 19 200

2

4

6

8

10

TE(2)5,1

TE(2)2,2

TE(1)1,1

TE(1)2,1

TE(2)0,2

B (kG)

I st (

A)

Page 12: UC Davis gyrotron cavity simulation

The corresponding hot f and hot Q vs B (Hot Q defined in Sec. III-B of S. H. Kao, C. C. Chiu, P. C. Chang, K.

L. Wu, and K. R. Chu, “Harmonic Mode Competition in a THz Gyrotron Backward-Wave Oscillator,” Phys.

Plasmas 19, 103103 (2012).)

17.5 18.0 18.5 19.0 19.5 20.090

92

94

96

98

100

102

104

B (kG)

= 3

= 2

= 1

0

1000

2000

3000

4000

5000TE(2)

0,2

Hot

f (G

Hz)

Hot

Q

10 12 14 16 18 2020

25

30

35

40

45

50

Hot

f (G

Hz)

20

40

60

80

100

120

TE(1)1,1

B (kG)

Hot

Q

Page 13: UC Davis gyrotron cavity simulation

15 16 17 18 19 2040

42

44

46

48

50

TE(1)2,1

B (kG)

Hot

f (G

Hz)

Hot

Q

0

100

200

300

400

17 18 19 2088

90

92

94

96

98

100

0

1000

2000

3000

4000

5000

TE(2)2,2

Hot

Q

Hot

f (G

Hz)

B (kG)

16 17 18 19 2085

90

95

100

0

500

1000

1500

2000

2500

3000

TE(2)5,1

Hot

Q

B (kG)

Hot

f (G

Hz)

Page 14: UC Davis gyrotron cavity simulation

Change r1 to see the trend of the Ist vs B

r1 = 0.35 cm

15 16 17 18 19 200

2

4

6

8

10

TE(2)5,1

TE(2)2,2

TE(1)1,1

TE(1)2,1

TE(2)0,2

B (kG)

I st (

A)

r1 = 0.3 cm

15 16 17 18 19 200

2

4

6

8

10

TE(2)5,1

TE(1)1,1

TE(1)2,1

TE(2)0,2

B (kG)

I st (

A)

r1 = 0.25 cm

15 16 17 18 19 200

2

4

6

8

10

TE(2)5,1

TE(1)1,1

TE(1)2,1

TE(2)0,2

B (kG)

I st (

A)

Page 15: UC Davis gyrotron cavity simulation

Using stationary self-consistent code to determined efficiency and forward wave power

choose r1 = 0.35 cm, B = 17.78 kG (the magnetic field corresponding to the lowest Ist)

other parameters are the same as in Table.1.

0 2 4 6 8 10 1293.90

93.92

93.94

93.96

93.98

94.00

94.02

94.04

94.06 TE(2)0,2

Ib (A)

F

requ

ency

(G

Hz)

0 1 2 3 4 5 6 7 8 9 10 11 120

5

10

15

20

25

30

35

40

TE(2)0,2

backward wave power

Ib (A)

pow

er (

kW)

forward wave power

TE(2)

02 Ist

0.93 A 1.51 ATE(1)

21 Ist TE(1)

11 Ist

2.76 A

0 1 2 3 4 5 6 7 8 9 10 11 120

1

2

3

4

5

6

7

8

9

10

11TE(2)

0,2

TE(2)

02 Ist

0.93 A 1.51 ATE(1)

21 Ist TE(1)

11 Ist

backward wave efficiency

forward wave efficiency

Effi

cien

cy (

%)

Ib (A)

2.76 A

Page 16: UC Davis gyrotron cavity simulation

choose r1 = 0.35 cm, Ib = 5A, tune B-field, other parameters are the same as in Table.1.

17.6 17.8 18.0 18.2 18.4 18.6

93.8

94.0

94.2

94.4

94.6

94.8

95.0

95.2

95.4

95.6

Fre

quen

cy (

GH

z)

B (kG)

17.4 17.6 17.8 18.0 18.2 18.4 18.60

10

20

30

40

50

60

70

backward wave power

forward wave power

pow

er (

kW)

B (kG)

17.4 17.6 17.8 18.0 18.2 18.4 18.60

5

10

15

20

25

30

35

40

backward wave efficiency

forward wave efficiency

Effi

cien

cy (

%)

B (kG)

Page 17: UC Davis gyrotron cavity simulation

Using stationary self-consistent code to determined efficiency and forward wave power

choose r1 = 0.3 cm, B = 17.78 kG (the magnetic field corresponding to the lowest Ist)

other parameters are the same as in Table.1.

0 2 4 6 8 10 1293.94

93.96

93.98

94.00

94.02

94.04

94.06

94.08TE(2)

0,2

Ib (A)

F

requ

ency

(G

Hz)

0 1 2 3 4 5 6 7 8 9 10 11 120

5

10

15

20

25

30

35

40

TE(2)0,2

backward wave power~0

Ib (A)

pow

er (

kW)

forward wave power

TE(2)

02 Ist

1.25 A 1.78 ATE(1)

21 Ist TE(1)

11 Ist

2.75 A

0 1 2 3 4 5 6 7 8 9 10 11 120

1

2

3

4

5

6

7

8

9

10

11TE(2)

0,2

TE(2)

02 Ist

1.25 A 1.78 ATE(1)

21 Ist TE(1)

11 Ist

backward wave efficiency~0

forward wave efficiency

Effi

cien

cy (

%)

Ib (A)

2.75 A

Page 18: UC Davis gyrotron cavity simulation

choose r1 = 0.3 cm, Ib = 5A, tune B-field, other parameters are the same as in Table.1.

17.4 17.6 17.8 18.0 18.2 18.4 18.6

93.8

94.0

94.2

94.4

94.6

94.8

95.0TE(2)

0,2

Fre

quen

cy (

GH

z)

B (kG)

17.4 17.6 17.8 18.0 18.2 18.4 18.60

10

20

30

40

50

60

70TE(2)

0,2

backward wave power

forward wave power

pow

er (

kW)

B (kG)

17.4 17.6 17.8 18.0 18.2 18.4 18.60

5

10

15

20

25

30

35

40TE(2)

0,2

backward wave efficiency

forward wave efficiency

Effi

cien

cy (

%)

B (kG)

Page 19: UC Davis gyrotron cavity simulation

Mode Competition Criteria

Ref.: S. H. Kao, C. C. Chiu, P. C. Chang, K. L. Wu, and K. R. Chu, “Harmonic Mode Competition in a

THz Gyrotron Backward-Wave Oscillator,” Phys. Plasmas 19, 103103 (2012).

The mode competition processes examined in the above reference (Sec. IV-C) consistently follow three

criteria:

(1) The presence of the s = 2 mode enhances the Ist of the competing modes. For example, in Fig. 4(d-f), the s

= 2 mode enhances the linear Ist of the lowest-kz, s = 1 mode by a factor of 2.63, 2.14, and 1.63, respectively. As

can be seen from the figures, the enhancement factor is larger for a higher-amplitude s = 2 mode. As shown in [30],

the enhancement factor can be as large as 15 if the competing mode is a high-kz, s = 1 mode. Clearly, this criterion

also applies to an early-starting mode of any cyclotron harmonic number.

(2) The early-starting s = 2 mode is eventually suppressed by an s = 1 mode because of the unfavorable

evolution of the s = 2 coupling coefficient. This is a criterion that gives a lower-s mode a dominant advantage over

a higher-s mode.

(3) Among the s = 1 modes, the one with the lowest kz (instead of the lowest Ist) has a competitive advantage.

This criterion plays an insignificant role in an s = 1 gyrotron because one can always tune the magnetic field to

favor a low-kz (e.g. 1 ) mode. However, it governs the competition among the s = 1 modes when the magnetic

field is tuned in favor of an s>1 mode as in the present case. For the reason discussed at the end of Sec. IV-A, this

criterion can be generalized to the competition between any two modes, with the same or different cyclotron

harmonic numbers.

In multiple-mode competitions, more than one criterion may be at work. In this case, all three criteria could

work in favor of one mode (e.g. an early-starting, low-kz, s = 1 mode) or two criteria play opposing roles [e.g. an

early-starting, low-kz, s = 2 mode competing with a low-kz, s = 1 mode with a higher Ist, as in Fig. 4(d-f)]. One

criterion does not necessarily override an opposing one. The outcome of the competition depends on the relative

weight of the criteria, which in turn depends on the relative magnitude of kz, the separation of Ist of the modes

involved, as well as the peak Ib value. Hence, a clearer picture lies in the details in the Ist versus B chart.

Although criteria (1) and (3) do not bias a particular cyclotron harmonic number, criterion (2) is inherently in

favor of a lower-s mode. Thus, overall, a higher-s mode is much more likely to be suppressed by a lower-s mode,

as in Fig. 4(d-f) and [13, 14, 16, 19, 20, 30, 31].

Page 20: UC Davis gyrotron cavity simulation

Analysis of the case inTable I

(r1 = 0.35 cm, Vb=35 kV, α=2, Δvz/vz=6%, Rc/Rw=0.3192, uniform B-field, etc.)

1. At B = 17.78 kG, as Ib rises to 0.93 A, the TE02 (s=2) mode will be the first mode excited. It will remain in

single-mode operation until Ib=1.51 A (Pout ~3 kW, η~5.7%) which is the linear Ist of the TE21 (s=1) mode.

As Ib rises further to Ib=2.76 A, it hits the linear Ist of the TE11 (s=1) mode. We have assumed α=2 for all Ib.

2. In the competition between the early-starting, low-kz,TE02 (s=2) mode and the two, higher-kz, s=1 modes,

Criteria (1) and (3) favor the TE02 (s=2) mode, while Criterion (2) favors the s=1 modes. By Criteria (1) and

(3), it is likely that the TE02 (s=2) mode can survive up to Ib~2.5 A (Pout~7.5 kW, η~8.7%) before it is

eventually suppressed by the TE21 (s=1) mode. By Criterion (3), the highest-kz, TE11 (s=1) is less

competitive than the TE21 (s=1) mode.

3. If Criteria (1) and (3) dominate over Criterion (2) at still higher Ib (e.g. 5A), the TE02 (s=2) mode may

remain in single mode operation with significantly higher Pout (e.g. Pout ~18 kW and η~10.3% at Ib~5 A).

4. From cases studied in the above reference, it is unlikely that the TE02 (s=2) mode can operate at a more

optimal B-field (e.g. 17.6 kG) by suppressing the early-starting TE21 (s=1) mode.

Scenario 2 is reasonable, but Scenario 3 may be too optimistic. Unfortunately, no one here knows how

to run our time-dependent, multi-mode code to verify Scenarios 2 and 3. It will take ~2 months to get one

data point anyway.