Transcript

Acta Mathematica Scientia 2011,31B(4):1337–1346

http://actams.wipm.ac.cn

THREE POINT BOUNDARY VALUE PROBLEMS

FOR NONLINEAR FRACTIONAL

DIFFERENTIAL EQUATIONS∗

Mujeeb ur Rehman1 Rahmat Ali Khan2 Naseer Ahmad Asif 2

1. National University of Sciences and Technology (NUST),

Centre for Advanced Mathematics and Physics, Sector H-12 Islamabad, Pakistan

2. University of Malakand, Chakdara Dir(L), Khyber Pakhtunkhawa, Pakistan

E-mail: [email protected]; rahmat [email protected]; [email protected]

Abstract In this paper, we study existence and uniqueness of solutions to nonlinear

three point boundary value problems for fractional differential equation of the type

cDδ

0+u(t) = f(t, u(t), cDσ

0+u(t)), t ∈ [0, T ],

u(0) = αu(η), u(T ) = βu(η),

where 1 < δ < 2, 0 < σ < 1, α, β ∈ R, η ∈ (0, T ), αη(1 − β) + (1 − α)(T − βη) 6= 0 andcDδ

0+, cDσ0+ are the Caputo fractional derivatives. We use Schauder fixed point theorem

and contraction mapping principle to obtain existence and uniqueness results. Examples

are also included to show the applicability of our results.

Key words fractional differential equations; three point boundary conditions; existence

and uniqueness results

2000 MR Subject Classification 34A08

1 Introduction

Fractional differential equations have been the focus of many studies due to their frequent

applications in various fields of physics, mathematics, engineering, biology, control theory, fi-

nance and dynamical processes in self-similar structures, see for example, [10, 13, 18, 21]. There

are many excellent books and papers that provide broad and deep understanding of the theory

and applications of fractional calculus and fractional differential equations. In particular, the

book by Oldham and Spanier [18] had a chronological listing on major works in the study of

fractional calculus. There was a significant development in fractional differential equations in

recent years; see the monographs of Hilfer [10], Machando [14], Miller and Ross [15], Nishimoto

[16], Podlubny [19], Samko, Kilbas and Marichev [22] and the references therin. The physical

and geometric interpretations of fractional integrals and derivatives was discussed in [20].

∗Received September 27, 2009; revised November 20, 2010.

1338 ACTA MATHEMATICA SCIENTIA Vol.31 Ser.B

There were several approaches to fractional derivatives such as Riemann-Liouville, Caputo,

Weyl, Hadamard, Grunwald-Letnikov and Erdelyi-Kober. Applied problems require those defi-

nitions of fractional derivatives that allow the utilization of physically interpretable initial and

boundary conditions. The Caputo fractional derivative fulfills these requirements.

Recently, existence and uniqueness of solutions to boundary value problems for fractional

differential equations had attracted the attention of many authors, see for example, [1, 5–7, 11,

12, 24, 28] and the references therein.

M. Shahed [23] studied existence and nonexistence of positive solution of nonlinear frac-

tional two-point boundary value problem derivative

Dδ0+u(t) + λa(t)f(u(t)) = 0, 0 < t < 1, 2 < δ < 3,

u(0) = u′(0) = u′(1) = 0,

where λ is a positive parameter and a : (0, 1) → [0,∞) is continuous. Z. Bai and L. Haishen

[4] studied existence and multiplicity of positive solutions for nonlinear fractional differential

equation

Dα0+u(t) + f(t, u(t)) = 0, 0 < t < 1, 2 < δ < 3

subject to the two-point boundary conditions u(0) = 0, u(1) = 0. Existence and uniqueness of

positive solution for the above fractional differential equation under the three-point boundary

conditions u(0) = 0, βu(η) = u(1) was recently been studied by Z. Bai [3].

B. Ahmad and J.J. Nieto [1] studied existence and uniqueness results for the following gen-

eral three point fractional boundary value problem involving a nonlinear fractional differential

equation of order q,

cDq0+u(t) = f(t, u(t)), 0 < t < 1, q ∈ (m − 1, m], m ∈ N, m ≥ 2,

u(0) = 0, u′(0) = 0, u′′(0) = 0, · · · , u(m−2)(0) = 0, u(1) = αu(η),

where cDq0+ is the Caputo fractional derivative.

However, very little work have been done on the case when the nonlinearity f depends on

the fractional derivative cDβ0+u(t) of the unknown function. X. Su and S. Zhang [26] studied

the existence and uniqueness of solutions for following nonlinear two-point fractional boundary

value problem

cDα0+u(t) = f(t, u(t), cD

β0+u(t)), t ∈ (0, 1),

a1u(0) − a2u′(0) = A, b1u(1) + b2u

′(1) = B,

where α, β, ai, bi (i = 1, 2) satisfy certain conditions.

We study existence and uniqueness of solutions to the nonlinear fractional differential

equations under the more general three point boundary conditions of the type

cDδ0+u(t) = f(t, u(t), cDσ

0+u(t)), t ∈ [0, T ],

u(0) = αu(η), u(T ) = βu(η),(1.1)

where 1 < δ < 2, 0 < σ < 1, α, β ∈ R, η ∈ (0, T ), αη(1 − β) + (1 − α)(T − βη) 6= 0 and cDδ0+,

cDσ0+ are the Caputo fractional derivatives.

No.4 M. Rehman et al: THREE POINT BOUNDARY VALUE PROBLEMS 1339

This paper is organized as fallows: In Section 2, we recall some basic definitions and

preliminary results. In Section 3, we study existence and uniqueness of solutions to the boundary

value problem (1.1). In Section 4, we give examples to illustrate the applicability of our results.

2 Preliminaries

Riemann’s modified form of Liouville’s fractional integral operator is a generalization of

Cauchy’s integral formula [15]∫ t

a

dt1

∫ t1

a

dt2 · · ·∫ tn−1

a

g(tn)dtn =1

Γ(n)

∫ t

a

g(s)

(t − s)1−nds, (2.1)

where Γ is the Euler’s gamma function. Clearly, the right-hand side of equation (2.1) is mean-

ingful for any positive real values of n. Hence, it is natural to define fractional integral as

follows:

Definition 2.1 If g ∈ C([a, b]) and α > 0, then the Riemann-Liouville fractional integral

is defined by

Iαa+g(t) =

1

Γ(α)

∫ t

a

g(s)

(t − s)1−αds. (2.2)

For a = 0, the fractional integral (2.2) can be written as Iα0+h(t) = h(t) ∗ ϕα(t), where ϕα(t) =

tα−1

Γ(α) for t > 0 and ϕα(t) = 0 for t ≤ 0 .

Definition 2.2 The Caputo fractional derivative of order α > 0 of a continuous function

g : (a, b) → R is defined by

cDαa+g(t) =

1

Γ(n − α)

∫ t

a

g(n)(s)

(t − s)α−n+1ds,

where n = [α] + 1 (The notation [α] stands for the largest integer not greater than α).

Remark 2.3 Under the natural conditions on g(t), the Caputo fractional derivative

becomes the conventional integer order derivative of the function g(t) as α → n.

We state the following known results in the sequel [25, 27].

Lemma 2.4 For α > 0, g(t) ∈ C(0, 1) ∩ L(0, 1), the homogenous fractional differential

equation cDα0+g(t) = 0 has a solution g(t) = c1 + c2t + c3t

2 + · · · + cntn−1, where ci ∈ R,

i = 0, · · · , n and n = [α] + 1.

Lemma 2.5 Assume that g(t) ∈ C(0, 1)∩ L(0, 1) with derivative of order n that belongs

to C(0, 1) ∩ L(0, 1), then Iα0+

cDα0+g(t) = g(t) + c1 + c2t + c3t

2 + · · · + cntn−1, where ci ∈ R,

i = 0, · · · , n and n = [α] + 1.

3 Main Results

For convenience, we define X ={

u : u ∈ C([0, T ]), cDσ0+u ∈ C([0, T ]), 0 < σ < 1

}

equipped with the norm ‖u‖ = max0≤t≤1

|u(t)| + max0≤t≤1

|cDσ0+u(t)|. The space X is a Banach space

[26].

Lemma 3.1 Let h ∈ C[0, 1], then the unique solution of the linear problem

cDδ0+u(t) = h(t), 0 < t < 1, 1 < δ < 2, t ∈ [0, T ], (3.1)

u(0) = αu(η), u(T ) = βu(η) (3.2)

1340 ACTA MATHEMATICA SCIENTIA Vol.31 Ser.B

is given by

u(t) = Iδ0+h(t) +

1

p{(αT + (β − α)t)Iδ

0+h(η) − (αη + (1 − α)t)Iδ0+h(T )}, (3.3)

which is equivalent to u(t) =∫ T

0 G(t, s)h(s)ds, where p = αη(1 − β) + (1−α)(T − βη) 6= 0 and

G(t, s) is the kernel of Hammerstien integral operator (Green’s function) and is given by

G(t, s) =

(t − s)δ−1

Γ(δ)+

(αT + (β − α)t)(η − s)δ−1

pΓ(δ)− (αη + (1 − α)t)(T − s)δ−1

pΓ(δ),

if 0 ≤ s ≤ t, η ≥ s,

(αT + (β − α)t)(η − s)δ−1

pΓ(δ)− (αη + (1 − α)t)(T − s)δ−1

pΓ(δ),

if 0 ≤ t ≤ s ≤ η,

(t − s)δ−1

Γ(δ)− (αη + (1 − α)t)(T − s)δ−1

pΓ(δ), if η ≤ s ≤ t ≤ 1,

− (αη + (1 − α)t)(T − s)δ−1

pΓ(δ), if 0 ≤ t ≤ s, s ≥ η.

(3.4)

Proof In view of Lemma 2.5 the general solution of (3.1) is given by

u(t) = Iδ0+h(t) + c1 + c2t, (3.5)

where c1, c2 ∈ R. Using boundary conditions (3.2) and (3.5), we have

(1 − α)c1 − αηc2 = αIδ0+h(η), (1 − β)c1 + (T − βη)c2 = βIδ

0+h(η) − Iδ0+h(T ).

Thus, we have c1 = αp

(TIδ0+h(η)−ηIδ

0+h(T )), c2 = 1p((β−α)Iδ

0+h(η)+(α−1)Iδ0+h(T ). Therefore

the unique solution of boundary value problem (3.1), (3.2) is

u(t) = Iδ0+h(t) +

1

p{(αT + (β − α)t)Iδ

0+h(η) − (αη + (1 − α)t)Iδ0+h(T )}.

Now, for t ≤ η, we have

u(t) =

∫ t

0

(t − s)δ−1

Γ(δ)h(s)ds +

(∫ t

0

+

∫ η

t

)

(αT + (β − α)t)(η − s)δ−1

pΓ(δ)h(s)ds

−(

∫ t

0

+

∫ η

t

+

∫ T

η

)

(αη + (1 − α)t)(T − s)δ−1

pΓ(δ)h(s)ds

=

∫ t

0

(

(t − s)δ−1

Γ(δ)+

(αT + (β − α)t)(η − s)δ−1

pΓ(δ)− (αη + (1 − α)t)(T − s)δ−1

pΓ(δ)

)

h(s)ds

+

∫ η

t

(

(t − s)δ−1

Γ(δ)+

(αT + (β − α)t)(η − s)δ−1

pΓ(δ)− (αη + (1 − α)t)(T − s)δ−1

pΓ(δ)

)

h(s)ds

−∫ T

η

(αη + (1 − α)t)(T − s)δ−1

pΓ(δ)h(s)ds =

∫ T

0

G(t, s)h(s)ds.

For t ≥ η, we have

u(t) =

(∫ η

0

+

∫ t

η

)

(t − s)δ−1

Γ(δ)h(s)ds +

∫ η

0

(αT + (β − α)t)(η − s)δ−1

pΓ(δ)h(s)ds

No.4 M. Rehman et al: THREE POINT BOUNDARY VALUE PROBLEMS 1341

−(

∫ η

0

+

∫ t

η

+

∫ T

t

)

(αη + (1 − α)t)(T − s)δ−1

pΓ(δ)h(s)ds

=

∫ η

0

(

(t − s)δ−1

Γ(δ)+

(αT + (β − α)t)(η − s)δ−1

pΓ(δ)− (αη + (1 − α)t)(T − s)δ−1

pΓ(δ)

)

h(s)ds

+

∫ t

η

(

(t − s)δ−1

Γ(δ)− (αη + (1 − α)t)(T − s)δ−1

pΓ(δ)

)

h(s)ds

−∫ T

t

(αη + (1 − α)t)(T − s)δ−1

pΓ(δ)h(s)ds =

∫ T

0

G(t, s)h(s)ds.

The proof is completed.

Define l∗ =: max(

∫ T

0| ∂∂t

G(t, s)φ(s)|ds)

, l = max(

∫ T

0|G(t, s)φ(s)|ds

)

, N = |β − α|ηδ +

|1 − α|T δ and M =[

(p + |α|η)T δ + |α|Tηδ + T σ−1

Γ(2−σ) (pT δ−1 + N)]

.

Define an operator A : x → R by

Au(t) =

∫ T

0

G(t, s)f(s, u(s), cDσ0+u(s))ds.

Our first result is based on the Schauder’s fixed point theorem.

Theorem 3.2 Let f : [0, T ] × R × R → R be continuous. Suppose that one of the

following condition is satisfied:

(H1) There exists a nonnegative function φ ∈ L[0, T ] such that

|f(t, u, v)| ≤ φ(t) + c1|u|θ1 + c2|v|θ2 ,

where c1, c2 ∈ R are nonnegative constants and 0 < θ1, θ2 < 1.

(H2) |f(t, u, v)| ≤ φ(t) + c1|u|θ1 + c2|v|θ2 , where c1, c2 ∈ R are nonnegative constants and

θ1, θ2 > 1.

Then, the boundary value problem (1.1) has a solution.

Proof Suppose (H1) holds. Choose R ≥ max{

3(l + l∗T 1−σ

Γ(2−σ) ), (3Mc1)1

1−θ1 , (3Mc2)1

1−θ2

}

and define U = {u ∈ X : ‖u‖ ≤ R}. For any u ∈ U , using (H1), we have

|Au(t)| =

∫ T

0

G(t, s)f(s, u(s), cDσ0+u(s))ds

≤∫ T

0

|G(t, s)φ(s)|ds + (c1Rθ1 + c2R

θ2)

[∫ t

0

(t − s)δ−1

Γ(δ)ds

+1

p(|α|T + |β − α|t)

∫ η

0

(η − s)δ−1

Γ(δ)ds +

1

p(|α|η + |1 − α|t)

∫ T

0

(T − s)δ−1

Γ(δ)ds

]

≤ l + (c1Rθ1 + c2R

θ2)

(

δΓ(δ)+

1

p(|α|T + |β − α|t) ηδ

δΓ(δ)+

1

p(|α|η + |1 − α|t) T δ

Γ(δ)

)

,

which implies that |Au(t)| ≤ l + (c1Rθ1+c2Rθ2 )δpΓ(δ)

(

pT δ + |α|(Tηδ + ηT δ) + NT)

. Also,

|(Au)′(t)| ≤∫ T

0

∂tG(t, s)

|f(s, u(s), cDσ0+u(s))|ds

≤∫ T

0

∂tG(t, s)φ(s)

ds + (c1Rθ1 + c2R

θ2)

(∫ t

0

(t − s)δ−2

Γ(δ − 1)ds

1342 ACTA MATHEMATICA SCIENTIA Vol.31 Ser.B

+|β − α|

p

∫ η

0

(η − s)δ−1

Γ(δ)ds +

|1 − α|p

∫ T

0

(T − s)δ−1

Γ(δ)ds

)

≤ l∗ + (c1Rθ1 + c2R

θ2)

(

tδ−1

(δ − 1)Γ(δ − 1)+

N

δpΓ(δ)

)

.

Hence,

|Dσ0+A(u)| =

1

Γ(1 − σ)

∫ t

0

(t − s)−σ(Au)′(s)ds

≤ 1

Γ(1 − σ)

∫ t

0

(t − s)−σ|(Au)′(s)|ds

≤ l∗t1−σ

(1 − σ)Γ(1 − σ)+

(c1Rθ1 + c2R

θ2)t1−σ

(1 − σ)Γ(1 − σ)

(

tδ−1

Γ(δ)+

|β − α|ηδ

δpΓ(δ)+

|1 − α|T δ

δpΓ(δ)

)

,

which implies that

|Dσ0+A(u)| ≤ l∗T 1−σ

Γ(2 − σ)+

(c1Rθ1 + c2R

θ2)

δpΓ(δ)Γ(2 − σ)

(

pT δ−1 + N)

T 1−σ.

By the definition of the norm ‖.‖ = max0≤t≤1

|.(t)| + max0≤t≤1

|cDσ0+.(t)| and the above relations, we

obtain

‖Au(t)‖ ≤ l +l∗T 1−σ

Γ(2 − σ)+

c1Rθ1 + c2R

θ2

δpΓδ

[

(p + |α|η)T δ + |α|Tηδ +T σ−1

Γ(2 − σ)(pT δ−1 + N)

]

≤ R

3+(

c1Rθ1 + c2R

θ2

)

M ≤ R

3+

R

3+

R

3= R,

which implies that A : U → U . The continuity of the operator A follows from the continuity of

f and G.

Now, if (H2) holds, we choose

0 < R ≤ min

{

3

(

l +l∗T 1−σ

Γ(2 − σ)

)

,

(

1

3Mc1

)1

1−θ1

,

(

1

3Mc1

)1

1−θ1

}

and by the same process as above, we obtain

‖Au(t)‖ ≤ R

3+(

c1Rθ1 + c2R

θ2

)

M ≤ R

3+

R

3+

R

3= R,

which implies that A : U → U .

Now, we show that A is a completely continuous operator. Let

K = max{|f(t, u(t), cDσ0+u(t))| : t ∈ [0, T ], u ∈ U}.

For t1, t2 ∈ [0, T ] such that t1 < t2, we have

|Au(t1) − Au(t2)| =

∫ T

0

(G(t1, s) − G(t2, s))f(s, u(s), cDσ0+u(s))ds

≤ K

[∫ t1

0

|G(t1, s) − G(t2, s)|ds +

∫ t2

t1

|G(t1, s) − G(t2, s)|ds

+

∫ T

t2

|G(t1, s) − G(t2, s)|ds

]

,

No.4 M. Rehman et al: THREE POINT BOUNDARY VALUE PROBLEMS 1343

which, in view of the definition of G, implies that

|Au(t1) − Au(t2)| ≤ K

[∫ t2

0

(t2 − s)δ−1

Γ(δ)ds −

∫ t1

0

(t1 − s)δ−1

Γ(δ)ds

+|β − α|(t2 − t1)

pΓ(δ)

∫ η

0

(η − s)δ−1ds +|1 − α|(t2 − t1)

pΓ(δ)

∫ T

0

(η − s)δ−1ds

]

≤ K

δpΓ(δ)[p(tδ2 − tδ1) + (|β − α|ηδ + |1 − α|T δ)(t2 − t1)]

=K

δpΓ(δ)

[

p(tδ2 − tδ1) + N(t2 − t1)]

and

|cDσ0+A(u)(t1) − cDσ

0+A(u)(t2)|

=1

Γ(1 − σ)

∫ t2

0

(t2 − s)−σ(Au)′(s)ds −∫ t1

0

(t1 − s)−σ(Au)′(s)ds

≤ 1

Γ(1 − σ)

∫ t2

0

(t2 − s)−σ(Au)′(s)ds −∫ t1

0

(t2 − s)−σ(Au)′(s)ds

+1

Γ(1 − σ)

∫ t1

0

(t2 − s)−σ(Au)′(s)ds −∫ t1

0

(t1 − s)−σ(Au)′(s)ds

≤ 1

Γ(1 − σ)

(∫ t2

t1

(t2 − s)−σ|(Au)′(s)|ds +

∫ t1

0

((t2 − s)−σ − (t1 − s)−σ)|(Au)′(s)|ds

)

≤ 1

Γ(1 − σ)

[

∫ t2

t1

(t2 − s)−σ

(

∫ T

0

∂sG(s, z)

|f(z, u(z), cDσ0+u(z))|dz

)

ds

+

∫ t1

0

((t2 − s)−σ − (t1 − s)−σ)

(

∫ T

0

∂sG(s, z)

|f(z, u(z), cDσ0+u(z))|dz

)

ds

]

≤ K

δpΓ(δ)Γ(1 − σ)(pT δ−1 + N)

[∫ t2

t1

(t2 − s)−σds +

∫ t1

0

((t2 − s)−σ − (t1 − s)−σ)ds

]

≤ K(pT δ−1 + N)

δpΓ(δ)Γ(2 − σ)(t1−σ

2 − t1−σ1 ).

Hence,

‖Au(t1) − Au(t2)‖ ≤ K

δpΓ(δ)

[

p(tδ2 − tδ1) + N(t2 − t1) +pT δ−1 + N

Γ(2 − σ)(t1−σ

2 − t1−σ1 )

]

,

which implies that ||Au(t1)−Au(t2)|| → 0 as t1 → t2. By Arzela-Ascoli Theorem, it follows that

A : X → X is completely continuous. As a consequence of the Schauder’s fixed point theorem,

A has a fixed point which implies that the boundary value problem (1.1) has a solution.

Uniqueness of solutions is based on application of the Banach contraction principle. Define

kδα,β =

2|α| + |β|pδΓ(δ)

, kδα =

1 + |α|pδΓ(δ)

and kδ =T δ

pδΓ(δ).

Theorem 3.3 Assume that there exists a constant k > 0 such that

|f(t, u, v) − f(t, u, v))| ≤ k(|u − u| + |v − v|) for each t ∈ [0, T ] and all u, u ∈ R, v, v ∈ R.

1344 ACTA MATHEMATICA SCIENTIA Vol.31 Ser.B

If k <(

kδα,β

(

T δ + ηδT 1−σ

Γ(2−σ)

)

+ (kδαT δ+1 + kδ)

(

1 + T−σ

Γ(2−σ)

))−1, then the boundary value problem

(1.1) has a unique solution.

Proof By the definition of A, we have

|A(u)(t) − A(u)(t)| ≤∫ T

0

|G(t, s)||f(s, u(s), cDσ0+u(s)) − f(s, u, cDσ

0+u(s))|ds

≤ k‖u − u‖pΓ(δ)

[∫ t

0

(t − s)δ−1ds + (|α|T + |β − α|t)∫ η

0

(η − s)δ−1ds

+(|α|η + |1 − α|t)∫ T

0

(T − s)δ−1ds

]

≤ k‖u − u‖pδΓ(δ)

(

tδ + (|α|T + |β − α|t)ηδ + (|α|η + |1 − α|t)T δ)

≤ k‖u − u‖(

(1 + T + (η + T )|α|)T δ

pδΓ(δ)+

(2|α| + |β|)Tηδ

pδΓ(δ)

)

≤ k‖u − u‖(

T δ

pδΓ(δ)+

(2|α| + |β|)ηT δ

pδΓ(δ)+

(1 + |α|)T δ+1

pδΓ(δ)

)

= k‖u − u‖(

kδ + kδα,βηT δ + kδ

αT δ+1)

and

|cDσ0+(Au)(t) − cDσ

0+(Au)(t)| =

1

Γ(1 − σ)

∫ t

0

(t − s)−σ((Au)′(s) − (Au)′(s))ds

≤ 1

Γ(1 − σ)

∫ t

0

(t − s)−σ

(∫ 1

0

∂sG(s, z)

|f(z, u(z), cDσ0+u(z)

−f(z, u(z), cDσ0+u(z)|dz

)

ds

≤ k‖u − u‖Γ(1 − σ)

∫ t

0

(t − s)−σ

(∫ 1

0

∂sG(s, z)

dz

)

ds.

Using the definition of G(t, s), we obtain∫ 1

0

∂tG(t, s)

ds ≤∫ t

0

(t − s)δ−2

Γ(δ − 1)ds +

|β − α|pΓ(δ)

∫ η

0

(η − s)δ−1ds +|1 − α|pΓ(δ)

∫ T

0

(T − s)δ−1ds

≤ tδ−1

δΓ(δ)+

|β − α|ηδ + |1 − α|T δ

pδΓ(δ)≤ T δ−1

δΓ(δ)+

|β − α|ηδ + |1 − α|T δ

pδΓ(δ).

Consequently,

|cDσ0+(Au)(t) − cDσ

0+(Au)(t)| ≤ k‖u − u‖t1−σ

(1 − σ)Γ(1 − σ)

(

T δ−1

δΓ(δ)+

|β − α|ηδ + |1 − α|T δ

pδΓ(δ)

)

≤ k‖u − u‖T 1−σ

δΓ(δ)Γ(2 − σ)

(

T δ−1 +|β − α|ηδ + |1 − α|T δ

p

)

≤ k‖u − u‖T 1−σ

Γ(2 − σ)

(

T δ−1

pδΓ(δ)+

(2|α| + |β|)ηδ

pδΓ(δ)+

(1 + |α|)T δ

pδΓ(δ)

)

=k‖u − u‖Γ(2 − σ)

(

kδT−σ + kδα,βηδT 1−σ + kδ

αT δ−σ+1)

.

Hence, it follows that ‖Au − Au‖ ≤ L‖u − u‖, where

L = k

(

kδα,β

(

T δ +ηδT 1−σ

Γ(2 − σ)

)

+ (kδαT δ+1 + kδ)

(

1 +T−σ

Γ(2 − σ)

))

.

No.4 M. Rehman et al: THREE POINT BOUNDARY VALUE PROBLEMS 1345

Clearly L < 1. Hence, by the contraction mapping principle, BVP (1.1) has a unique solution.

4 Examples

Example 4.1 Consider the following boundary value problem

cDδ0+u(t) =

Γ(δ + 1)

64√

πet +

Γ(δ + 1)

120e−κt(|u(t)|)θ1 +

e−πt cos t

187(|cDσ

0+u(t)|)θ2 , t ∈ [0, 2],

u(0) =3

7u(3

2

)

, u(1) =9

11u(3

2

)

,

(4.1)

where 1 < δ < 2, 0 < σ < 1 and κ > 0.

Choose α = 37 , β = 9

11 , η = 32 , φ(t) = Γ(δ+1)

64√

πet, c1 = Γ(δ+1)

120 , c2 = 1187 and

f(t, u, v) =Γ(δ + 1)

64√

πet +

Γ(δ + 1)

120e−κt(|u(t)|)θ1 +

e−πt cos t

187(|v(t)|)θ2 ,

then p = 58471078 , and for t ∈ [0, 2], we have

|f(t, u, v)| ≤ φ(t) + c1|u|θ1 + c1|v|θ2 .

For 0 < θ1, θ1 < 1, condition (H1) of Theorem 3.2 is satisfied and for θ1, θ1 > 1, condition (H2)

of Theorem 3.2 is satisfied. Therefore the boundary value problem (4.1) has a solution.

Example 4.2 Consider the following fractional BVP:

cD3

2

0+u(t) =e−πt(|u| + |cD

1

2

0+u(t)|)(24

√π + e−πt)(1 + |u| + |v|) , t ∈ [0, 1],

u(0) =5

7u(

1

4), u(1) =

9

7u(

1

4).

(4.2)

Set f(t, u, v) = e−πt(|u(t)|+|v(t)|)(24

√π+e−πt)(1+|u|+|v|) , t ∈ [0, 1], u, v ∈ [0,∞). For t ∈ [0, 1] and u, u, v, v ∈

[0,∞), we have

|f(t, u, v) − f(t, u, v)| =e−πt

(24√

π + e−πt)

u(t) + v(t)

1 + |u| + |v| −u(t) + v(t)

1 + |u| + |v|

≤ e−πt(|u(t) − u(t)| + |v(t) − v(t)|)(24

√π + e−πt)(1 + |u| + |v|)(1 + |u| + |v|)

≤ e−πt(|u(t) − u(t)| + |v(t) − v(t)|)24

√π + e−ct

≤ 1

24√

π(|u(t) − u(t)| + |v(t) − v(t)|).

For α = 57 , β = 9

7 , η = 14 , δ = 3

2 and σ = 12 , we have p = 3, kδ

α, β = 193√

π, kδ

α = 4√π

and kδα = 4√

π.

Therefore

L =

(

1

24√

π

)(

3(8√

π + 9)

π

)

=8√

π + 9

8π√

π< 1.

Hence by Theorem 3.3 the fractional BVP (4.2) has a unique solution.

1346 ACTA MATHEMATICA SCIENTIA Vol.31 Ser.B

References

[1] Ahmad B, Nieto J J. Existence of solutions for nonlocal boundary value problems of higher order nonlinear

fractional differential equations. Abs Appl Anal, 2009, Article ID 494720

[2] Ahmad B, Nieto J J. Existence results for a coupled system of nonlinear fractional differential equations

with three-point boundary conditions. Comp and Math Appl, 2009, 58: 1838–1843

[3] Bai Z. On positive solutions of a nonlocal fractional boundary value problem. Nonlinear Analysis, 2009,

72: 916–924

[4] Bai Z, Haishen L. Positive solutions for boundary-value problem of nonlinear fractional differential equa-

tion. J Math Anal Appl, 2005, 311: 495–505

[5] Bai C, Fang J. The existence of positive solution for singular coupled system of nonlinear fractional

equations. Appl Math Comput, 2004, 150: 611–621

[6] Benchohra M, Henderson J, Ntoyuas S K, Ouahab A. Existence results for fractional order functional

differential equations with infinite delay. J Math Anal Appl, 2008, 338: 1340–1350

[7] Delbosco D, Rodino I. Existence and uniqueness for a nonlinear fractional differential equation. J Math

Anal Appl, 1996, 204: 609–625

[8] El-Shahed M, Nieto J J. Nontrivial solutions for a nonlinear multi-point boundary value problem of frac-

tional order Comput Math Appl, 2010, 59: 3438–3443

[9] Eloe P W, Bashir Ahmad. Positive solutions of a nonlinear nth boundary value problems with nonlocal

conditions. Applied Math Let, 2005, 18: 521527

[10] Hilfer R, Ed. Applications of Fractional Calculus in Physics. Singapore: World Scientific, 2000

[11] Ibrahim R W, Momani S. On existence and uniqueness of solutions of a class of fractional differential

equations. J Math Anal Appl, 2007, 3334: 1–10

[12] Lakshmikantham V, Leela S. Nagumo-type uniqueness result for fractional differential equations. Nonlinear

Analysis, TMA, 2009, 71(7/8): 2886–2889

[13] Machando J T. Disrete time fractional-order controllers. Frac Cal App Anal, 2001, 4: 47–66

[14] Sabatier J, Agrawal O P, Machado Tenreiro J A. Advances in Fractional Calculus. Springer, 2007

[15] Miller K S, Ross B. An Introduction to the Fractional Calculus and Fractional Differential equations. New

York: Wiley, 1993

[16] Nishimoto K. An Essence of Neshimoto’s Fractional Calculus. Koriyama: Descartes Press, 1991

[17] Nieto J J. Maximum principles for fractional differential equations derived from MittagLeffler functions.

Appl Math Lett, 2010, 23: 1248–1251

[18] Oldham K B, Spanier J. The Fractional Calculus. New York: Academic Press, 1974

[19] Podlubny I. Fractional Differential Equations. San Diedo: Academic Press, 1999

[20] Podlubny I. Geometric and physical interpretation of fractional integration and fractional differentiation.

Frac Cal and App Anal, 2002, 4: 366–386

[21] Sabatier J, Agarwal O P, Ttenreiro Machado J A. Advances in Fractional Calculus, Theoretical Develop-

ments and Applications in Physics and Engineering. Springer, 2007

[22] Samko S G, Kilbas A A, Marichev O I. Fractional Integrals and Derivatives, Theory and Applications.

Amsterdam: Gordon and Breach, 1993

[23] El-Shahed M. Positive Solutions for Boundary Value Problem of Nonlinear Fractional Differential Equation.

Abst Appl Analy, 2007, Article ID 10368

[24] Stojanovic M. Existence-uniqueness results for a nonlinear n-term fractional equation. J Math Anal Appl,

2009, 353: 244–255

[25] Su X, Zhang S. Solutions to boundary-value problems for nonlinear differential equations of fractional

order. Elec J Diff Equat, 2009, 26: 1–15

[26] Su X. Boundary value problem for a coupled system of nonlinear fractional differential equations. Appl

Math Letters, 2009, 22: 64–69

[27] Zang S. Positive solutions for boundary-valve problems of nonlinear fractional differential equations. Elec

J Diff Equat, 2006, 36: 1–12

[28] Zhang S. Existence of solution for boundary value problem of fractional order. Acta Math Sci, 2006,

26B(2): 220–228


Recommended