1
Controlled Administra/on of Amiodarone using a Frac/onalOrder Controller Abstract: Amiodarone is an an/arrhythmic drug that exhibits highly complex and non exponen/al dynamics whose controlled administra/on has important implica/ons for its clinical use especially for longterm therapies. Its pharmacokine/cs has been accurately modelled using a frac/onalorder compartmental model. In this paper we design a frac/onalorder PID controller and we evaluate its dynamical characteris/cs in terms of the stability margins of the closed loop and the ability of the controlled system to aCenuate various sources of noise and uncertainty. Frac*onal Dynamics: One of the most exo/c proper/es of noninteger order deriva/ves is that they are nonlocal operators. They come as generalisa/ons of classical operators. For instance, using the Cauchy formula for the definite integral operator: (I n f )(t)= 1 (n - 1)! Z t 0 (t - ) n-1 f ()d,t 0. P. Sopasakis 1 & H. Sarimveis 2 1 IMT Ins/tute for Advanced Studies Lucca, Piazza San Ponziano 6, Lucca 55100, Italy (Tel: +39 0583 4326 710; email: [email protected]). 2 School of Chemical Engineering, Na/onal Technical University of Athens, 9 Heroon Polytechneiou Street, 15780 Zografou Campus, Athens, Greece (Tel: +30 210 7723237, email: [email protected]) Using the fact that the Gamma func/on intercepts the factorial on the set of natural numbers, we extend the above integral to introduce the RiemannLiouville frac1onalorder integral: (I f )(t)= 1 Γ() Z t 0 (t - ) -1 f ()d,t 0. We now define the Caputo frac1onalorder deriva1ve as follows: (D f )(t)= I m-d m f (t) dt m , where m = de L [D f ](s)= s F (s) - m-1 X k =0 s -k -1 d k f dt k 0 , where F (s)=(Lf )(s) It is of fundamental importance that it is possible to have an analy/cal expresion for the Laplace transforma/on of the Caputo frac/onal order deriva/ve: This enables us to represent frac/onalorder dynamical systems in the Laplace domain using transfer func/ons and design controllers using frequen/st criteria (such as the Bode stability criterion). In this study we consider the compartmental pharmacokine/c model for the distribu/on of Amiodarone, an an/arrhythmic agent. The compartmental topology is shown in the figure below [1]: We consider that Amiodarone is administered to the pa/ent intravenously and con/nuously, the controller has access to plasma measurements of the concentra/on of Amiodarone and that the administra/on rate can be adjusted in real /me by the controller. We use a frac/onalPID feedback controller to control the concentra/on of Amiodarone in the pa/ent’s plasma. The trea/ng doctor can modify the set point in real /me to achieve the desired therapeu/c effect. The controller’s dynamics is given by the following transfer func/on: G c (s)= K p + K i s λ + K d s μ J itae = Z 1 0 ⌧✏()dIn order to tune the controller we selected those parameters that minimise the Integral Time Absolute Error (ITAE) index following the excita/on of the closedloop system with a step pulse. References [1] A. Dokoumetzidis, R. Magin, and P. Macheras. Frac/onal kine/cs in mul/compartmental systems. Journal of Pharmacokine/cs and Pharmacodynamics, 37:507–524, 2010a. G(s)= 1 k 10 1 k 21 s a +1 1 k 10 k 21 s a+1 + 1 k 10 s + k 10 +k 12 k 10 k 21 s a +1 y sp y The op/mal tuning parameters are given in the table below. The phase margin of the system was found to be 98deg and its gain margin is 43.9db! The closedloop is therefore stable and can aCenuate delays as high as 3.3 days. In the figure below we see how the system responds to a change of its setpoint. Tuning Parameter Value Kp 50.52 Ki 151.05 Kd 0.0756 λ 0.917 μ 0.759 n!= Γ(n + 1), 8n 2 N The controller needs to compensate parametric uncertain/es and fluctua/ons and modelling errors or /mevarying dynamics. A measure for the resilience of the closedloop under such uncertain condi/ons is quan/fied by the slope of the argument of the openloop func/on at the crossover frequency of the system, i.e., M z = d d! arg (G ol (ı! )) ! =! co =0.5deg · rad -1 · day Stability Margin Value Phase Margin 98deg Gain Margin 43.9db The gain of the closedloop transfer func/on at high frequencies is less than 60db which suggests that the controller can reject highfrequency noise in the closed loop and noise that accompanies the setpoint.

Controlled administration of Amiodarone using a Fractional-Order Controller

Embed Size (px)

Citation preview

Page 1: Controlled administration of Amiodarone using a Fractional-Order Controller

Controlled  Administra/on  of  Amiodarone  using  a  Frac/onal-­‐Order  Controller  

Abstract:   Amiodarone   is   an   an/arrhythmic   drug   that   exhibits   highly  complex  and  non-­‐  exponen/al  dynamics  whose  controlled  administra/on  has   important   implica/ons   for   its   clinical   use   especially   for   long-­‐term  therapies.   Its   pharmacokine/cs   has   been   accurately   modelled   using   a  frac/onal-­‐order   compartmental   model.   In   this   paper   we   design   a  frac/onal-­‐order   PID   controller   and   we   evaluate   its   dynamical  characteris/cs  in  terms  of  the  stability  margins  of  the  closed  loop  and  the  ability  of  the  controlled  system  to  aCenuate  various  sources  of  noise  and  uncertainty.      

Frac*onal  Dynamics:  One  of  the  most  exo/c  proper/es  of  non-­‐integer  order   deriva/ves   is   that   they   are   non-­‐local   operators.   They   come   as  generalisa/ons  of  classical    operators.  For   instance,  using  the  Cauchy  formula  for  the  definite  integral  operator:  

(Inf)(t) =1

(n� 1)!

Z t

0(t� ⌧)n�1f(⌧)d⌧, t � 0.

P.  Sopasakis1  &  H.  Sarimveis2  

1  IMT  Ins/tute  for  Advanced  Studies  Lucca,  Piazza  San  Ponziano  6,  Lucca  55100,    Italy  (Tel:  +39  0583  4326  710;  e-­‐mail:  [email protected]).  

2  School  of  Chemical  Engineering,  Na/onal  Technical  University  of  Athens,  9  Heroon  Polytechneiou  Street,  15780  Zografou  Campus,  Athens,    Greece  (Tel:  +30  210  7723237,  e-­‐mail:  [email protected])  

Using  the  fact  that  the  Gamma  func/on  intercepts  the  factorial  on  the  set  of  natural  numbers,  we  extend  the  above  integral  to  introduce  the  Riemann-­‐Liouville  frac1onal-­‐order  integral:  

(I↵f)(t) =1

�(↵)

Z t

0(t� ⌧)↵�1f(⌧)d⌧, t � 0.

We  now  define  the  Caputo  frac1onal-­‐order  deriva1ve  as  follows:  

(D↵f)(t) = Im�↵ dmf(t)

dtm, where m = d↵e

L [D↵f ] (s) = s↵F (s)�m�1X

k=0

s↵�k�1 dkf

dtk

����0

,

where F (s) = (Lf)(s)

It  is  of  fundamental  importance  that  it  is  possible  to  have  an  analy/cal  expresion   for   the   Laplace   transforma/on   of   the   Caputo   frac/onal-­‐order  deriva/ve:  

This  enables  us  to  represent  frac/onal-­‐order  dynamical  systems  in  the  Laplace  domain  using   transfer   func/ons   and  design   controllers   using  frequen/st  criteria  (such  as  the  Bode  stability  criterion).    In   this  study  we  consider   the  compartmental  pharmacokine/c  model  for   the   distribu/on   of   Amiodarone,   an   an/arrhythmic   agent.   The  compartmental  topology  is  shown  in  the  figure  below  [1]:  

We   consider   that   Amiodarone   is   administered   to   the   pa/ent   intravenously   and  con/nuously,   the  controller  has  access   to  plasma  measurements  of   the  concentra/on  of  Amiodarone   and   that   the   administra/on   rate   can   be   adjusted   in   real   /me   by   the  controller.   We   use   a   frac/onal-­‐PID   feedback   controller   to   control   the   concentra/on   of  Amiodarone   in  the  pa/ent’s  plasma.  The  trea/ng  doctor  can  modify  the  set  point   in  real  /me   to  achieve   the  desired   therapeu/c  effect.   The   controller’s  dynamics   is   given  by   the  following  transfer  func/on:  

Gc(s) = Kp +Ki

s�+Kds

µ

Jitae =

Z 1

0⌧✏(⌧)d⌧

In   order   to   tune   the   controller   we   selected  those   parameters   that   minimise   the   Integral  Time  Absolute  Error  (ITAE)   index  following  the  excita/on   of   the   closed-­‐loop   system   with   a  step  pulse.  

References  [1]  A.  Dokoumetzidis,  R.  Magin,  and  P.  Macheras.  Frac/onal  kine/cs  in  mul/-­‐compartmental  systems.  Journal  of  Pharmacokine/cs  and  Pharmacodynamics,  37:507–524,  2010a.    

G(s) =

1k10

⇣1

k21sa + 1

1k10k21

sa+1 + 1k10

s+ k10+k12k10k21

sa + 1

✏ysp y

The  op/mal  tuning  parameters  are  given  in  the  table  below.  The  phase  margin  of  the  system  was  found  to  be  98deg  and  its  gain  margin  is  43.9db!  The  closed-­‐loop  is   therefore   stable   and   can   aCenuate   delays   as   high   as   3.3   days.   In   the   figure  below  we  see  how  the  system  responds  to  a  change  of  its  set-­‐point.  

Tuning  Parameter  

Value  

Kp   50.52  Ki   151.05  Kd   0.0756  λ   0.917  μ   0.759  

n! = �(n+ 1),

8n 2 N

The  controller  needs  to  compensate  parametric  uncertain/es  and  fluctua/ons  and  modelling   errors   or   /me-­‐varying   dynamics.   A   measure   for   the   resilience   of   the  closed-­‐loop   under   such   uncertain   condi/ons   is   quan/fied   by   the   slope   of   the  argument   of   the   open-­‐loop   func/on   at   the   cross-­‐over   frequency   of   the   system,  i.e.,    

Mz =d

d!arg (G

ol

(ı!))

����!=!

co

= 0.5deg · rad�1 · day

Stability  Margin   Value  Phase  Margin   98deg  Gain  Margin   43.9db  

The  gain  of  the  closed-­‐loop  transfer  func/on  at  high  frequencies  is  less  than  -­‐60db  which   suggests   that   the   controller   can   reject   high-­‐frequency   noise   in   the   closed  loop  and  noise  that  accompanies  the  set-­‐point.