35
By DR KHALED SALEH ALGARIRI November 2015 HORMONE: MECHANISM & ACTION

hormones: mechanism amd action 2

Embed Size (px)

Citation preview

Page 1: hormones: mechanism amd action 2

By

DR KHALED SALEH ALGARIRI

November 2015

HORMONE: MECHANISM & ACTION

Page 2: hormones: mechanism amd action 2

HORMONEA hormone is chemical regulatory substance,

secreted by endocrine glands.It passes through blood stream to reach the

tissues on which it acts. These tissues are called “target tissues”.

Page 3: hormones: mechanism amd action 2

TARGET TISSUE

Target tissue of a certain hormone is the tissue, which contains the specific receptors of that hormone

Page 4: hormones: mechanism amd action 2

• Trophic hormone:- A hormone that has its primary function the regulation of hormone secretion by another endocrine gland

• Synergism-when different hormones work together and have a greater effect than individual hormone action

• Permissiveness-a small amount of one hormone allows a second hormone to have its full effect on a target cell; i.e. first hormone ‘permits’ the full action of the second hormone

• Antagonism-one hormone produces the opposite effect of the other• The processes involve in both negative and positive feedback. For

example, if A>B>C>D, increase in D causes inhibition of A i.e. negative feedback. If D decreases, A production is triggered, i.e. positive feedback.

GENERAL PRINCIPLES OF HORMONE ACTION

Page 5: hormones: mechanism amd action 2

Pathways Insulin Glucagon Epi T3, T4 Cortisol GH

Glycolysis

Glycogenesis

Glycogenolysis

Gluconeogenesis

Lipogenesis

Lipolysis

Protein Synthesis

Pathology

(+)

(+)

(+)

(+)

(-)

(-)

(-)

(-)

(-)

(-)

(-)

(+)

(+)

(+)

(+)

(-)

(-)

(-)

(+)

(+)

(+)

(+)

(-)

(-)

(+)

(+)

(+)

(+)

(-)

(+)

(+)

(+)

(-)

(+)

(+)

(-)

(+)

(-)

(++)

(+)

(+)

(+)

“central”

“peripheral”

“Liver” “L & M”

DM,Glucagonoma

Parkinson’s Grave’s D.MyxedemaCretinismGoiter

Cushing’sConn’sAddison’s

DwarfismGigantism

METABOLIC EFFECTS OF HORMONES

(+) Stimulated; (-) Inhibited

Page 6: hormones: mechanism amd action 2

HORMONE RECEPTORS

• Definition:Cell-associated recognition molecules which are protein in nature.• Functional sites:Two functional sites: Recognition site: It binds the hormone

specifically. Signaling site: It couples hormone binding to

intracellular effect

Page 7: hormones: mechanism amd action 2

HORMONE RECEPTORS

Location : Receptors may be: Intracellular receptors: (in the

cytosol or in the nucleus) Cell-membrane receptors: (in the

plasma membrane).

Page 8: hormones: mechanism amd action 2
Page 9: hormones: mechanism amd action 2
Page 10: hormones: mechanism amd action 2

I- CLASSIFICATION ACCORDING TO CHEMICAL NATURE

PROTEINS AMINO ACIDS DERIVED STEROIDS

Page 11: hormones: mechanism amd action 2

I- CLASSIFICATION ACCORDING TO CHEMICAL NATURE

A- PROTEIN HORMONES: Large polypeptides: e.g. insulin and

parathyroid hormone Small polypeptides: e.g. ADH (9a.a.),

oxytocin (9a.a.) Glycoprotein hormone: e.g. FSH, LH, TSH,

HCG

Page 12: hormones: mechanism amd action 2

I- CLASSIFICATION ACCORDING TO CHEMICAL NATURE

B- AMINO ACID DERIVED HORMONES:

Thyroid hormones and catecholamines are derived from tyrosine.

Melatonin is derived from tryptophan

Page 13: hormones: mechanism amd action 2

I- CLASSIFICATION ACCORDING TO CHEMICAL NATURE

C- Steroid hormones:• These hormones are derived from

cholesterol. e.g. Glucocorticoids. Mineralocorticoids. Sex hormones.

Page 14: hormones: mechanism amd action 2

II-CLASSIFICATION ACCORDING TO MECHANISM OF ACTION

A- Hormones, which bind to intracellular receptors.B- Hormones, which bind to membrane receptors

Page 15: hormones: mechanism amd action 2

Hormones bind to intracellular RCs

Hormones bind to cell membrane RCs

LIPOPHYLIC (are poorly soluble in water)

HYDROPHILIC (The water soluble hormone)

NEED TRANSPORT PROTEINS TO REACH TARGET TISSUES

DO NOT NEED TRANSPORTPROTEIN

LONG PLASMA HALF-LIFE (HOURS TO DAYS).

SHORT PLASMA HALF-LIFE (MINUTES).

ACTION IS MEDIATED BY FORMING HORMONE-RECEPTOR COMPLEX

ACTION IS MEDIATED BY SECOND MESSENGER.

INCLUDE: STEROID , THYROID , CALCITRIOL and Vitamin D

INCLUDE: the catecholamines (epinephrine and norepinephrine) and peptide/protein hormones

Page 16: hormones: mechanism amd action 2

THE SECOND MESSENGER Is the signal produced as a result of hormone binding to its

cell membrane receptor. It mediates the effects of the hormone. The second messenger may be: Cyclic Adenosine Monophosphate (cAMP). Cyclic Guanosine Monophosphate (cGMP). Calcium or phosphatidyl inositol or both. Protein kinase cascade.

• N.B. The hormone is considered to be the first messenger

Page 17: hormones: mechanism amd action 2

Signal Amplification Via 2nd Messenger Pathways

Initial signal is in the form of hormone which acts as ligand whose concentration is just one/per receptor. The hormonal response has got multiple steps, and each step multiplies the signal (cascading effect) that finally leading to million fold amplification, i.e. one hormone molecule mediating its effect through million of molecules. This process is known as signal amplification.

Page 18: hormones: mechanism amd action 2
Page 19: hormones: mechanism amd action 2

RECEPTOR

INTERNAL

NUCLEAR

CYTOPLASMIC

EXTERNAL CELL MEMBRANE

 TYPES OF RECEPTORS &

LOCATION

Page 20: hormones: mechanism amd action 2
Page 21: hormones: mechanism amd action 2

• Binding to specific cell receptor in the cell membrane and form hormone-cell receptor complex, which diffuses to nucleus

• The receptor is eventually released for re-use• Steroid activates a specific gene to produce mRNA • mRNA pass out into the cytoplasm and initiates protein

[enzyme] synthesis why do they penetrate the cell? the whole process is called mobile-receptor hypothesis

in which a steroid hormone is not attached to the plasma membrane, but seem to move freely in the nucleoplasm

HOW LIPID-SOLUBLE HORMONES WORK?

Page 22: hormones: mechanism amd action 2

• Step1: Free lipophilic hormone (hormone not bound with its plasma protein carrier) diffuses through the plasma membrane of the target cell and binds with the receptor which is intracellularly located inside the cytosol/or in the nucleus.

• Step2. Each receptor has specific binding region with hormone and another region with binding with DNA. Receptor alone cannot bind to DNA unless it binds to hormone. Once the hormone is bound to receptor, the hormone receptor complex binds to specific region of DNA known as Hormone response element(HRE).

• Step3: Transcription of gene• Step4: m RNA transported out of nucleus into the cytoplasm• Step5: Translation at Ribosome• Step6: Protein/enzyme released from ribosome• Step7: protein/enzyme mediate ultimate response

HOW LIPID-SOLUBLE HORMONES WORK?

Page 23: hormones: mechanism amd action 2

STEROID HORMONES: MOLECULAR ACTION

Page 24: hormones: mechanism amd action 2

Lipophilic hormone response mediated through Cytosolic receptor/nuclear receptor

Page 25: hormones: mechanism amd action 2

HOW LIPID-SOLUBLE HORMONES WORK?

Page 26: hormones: mechanism amd action 2

WATER-SOLUBLE HORMONES

Page 27: hormones: mechanism amd action 2

HOW WATER-SOLUBLE HORMONES WORK?

Page 28: hormones: mechanism amd action 2

HOW WATER-SOLUBLE HORMONES WORK?

• ●1 A water-soluble hormone (the first messenger) diffuses from the blood through interstitial fluid and then binds to its receptor at the exterior surface of a target cell’s plasma membrane. The hormone–receptor complex activates a membrane protein called a G protein. The activated G protein in turn activates adenylate cyclase.

• ●2 Adenylate cyclase converts ATP into cyclic AMP (cAMP). Because the enzyme’s active site is on the inner surface of the plasma membrane, this reaction occurs in the cytosol of the cell.

• ●3 Cyclic AMP (the second messenger) activates one or more protein kinases, which may be free in the cytosol or bound to the plasma membrane. A protein kinase is an enzyme that phosphorylates (adds a phosphate group to) other cellular proteins (such as enzymes). The donor of the phosphate group is ATP, which is converted to ADP.

Page 29: hormones: mechanism amd action 2

HOW WATER-SOLUBLE HORMONES WORK?

• ●4 Activated protein kinases phosphorylate one or more cellular proteins. Phosphorylation activates some of these proteins and inactivates others, rather like turning a switch on or off.

• ●5 Phosphorylated proteins in turn cause reactions that produce physiological responses. Different protein kinases exist within different target cells and within different organelles of the same target cell. Thus, one protein kinase might trigger glycogen synthesis, a second might cause the breakdown of triglyceride, a third may promote protein synthesis, and so forth. As noted in step ●4 phosphorylation by a protein kinase can also inhibit certain proteins. For example, some of the kinases unleashed when epinephrine binds to liver cells inactivate an enzyme needed for glycogen synthesis

.• ●6 After a brief period, an enzyme called phosphodiesterase inactivates

cAMP. Thus, the cell’s response is turned off unless new hormone molecules continue to bind to their receptors in the plasma membrane

CHIMWEMWE
Page 30: hormones: mechanism amd action 2

REGULATION OF HORMONE SECRETION

FEEDBACK CONTROL

involve the secretion of catecholamines by adrenal medulla.

NEGATIVE FEEDBACK

POSITIVE FEEDBACK

Page 31: hormones: mechanism amd action 2

FEEDBACK CONTROL

Page 32: hormones: mechanism amd action 2

REGULATION OF HORMONE SECRETION

Hormone Metabolism

Feedback Control

NEGATIVE FEEDBACK

HPT Axis

HypothalamusTRH

TSH

T3 , T4

+-

+

+

-

AnteriorPituitary

Thyroid

Increasedmetabolism

T3 and T4 inhibits secretion of TRH and TSH

Long loop feedback involves the hormone feedback all the way back to the hypothalamic-pituitary axis

Short loop feedback involves the anterior pituitary hormone feedback on the hypothalamus to inhibit the hypothalamic releasing hormones

Page 33: hormones: mechanism amd action 2

Hormone Metabolism

Female HPG Axis

+

+

Hypothalamus+

AnteriorPituitary

Ovaries

Estrogen Progesterone

+

++

-- FSHLH

GnRH

REGULATION OF HORMONE SECRETION

Feedback Control

involve the effect of estrogen on secretion of FSH and LH by anterior pituitary as well as the effect of oxytocin.

Hypothalamic Pituitary Gonada Axis HPG Axis

POSITIVE FEEDBACK

The increase in contractions causes more oxytocin to be released and the cycle goes on until the baby is born. The birth ends the release of oxytocin and ends the positive feedback mechanism.

Page 34: hormones: mechanism amd action 2

CLEARANCE OF HORMONESHormones are cleared by:1.Metabolic destruction by tissues/ target cells.2.Binding with the tissues3.Excretion by liver into bile.4.Excretion by kidneys into urine.Water soluble hormones(peptides and catecholamines) are degraded by enzymes in the blood or tissues and are excreted by kidneys or liver. They have a short half life.Lipid soluble hormones(steroids) are protein bound and are cleared slowly.

Page 35: hormones: mechanism amd action 2