23
Hargreeves [1969]: Part 1 A Review of Results from the First Decade of Riometry Auroral Absorption of HF Radio Waves in the Ionosphere: Kevin Urban, NJIT, 2015Feb20 Riometer Paper Reviews, Spring 2015

2015-02-20: Review of Hargreaves [1969]: Auroral Absorption of HF Radio Waves in the Ionosphere

Embed Size (px)

Citation preview

Page 1: 2015-02-20: Review of Hargreaves [1969]: Auroral Absorption of HF Radio Waves in the Ionosphere

Hargreeves [1969]: Part 1

A Review of Results from the First Decade of Riometry

Auroral Absorption of HF Radio Waves in the Ionosphere:

Kevin  Urban,  NJIT,  2015-­‐Feb-­‐20  

Riometer  Paper  Reviews,  Spring  2015  

Page 2: 2015-02-20: Review of Hargreaves [1969]: Auroral Absorption of HF Radio Waves in the Ionosphere

MoAvaAon:  What  is  a  Riometer  used  to  study?  

Riometer_RF  =  20-­‐50  MHz                                                                      à  Riometer_λ  =  6  –  15  m    

Directly:            Short-­‐:me  varia:ons  in  cosmic  radio  noise  intensity  Indirectly:      Ionospheric  electron  density,  conduc:vity    Indirectly:      Par:cle  precipita:on    

Causes  of  this  cosmic  noise  varia:on  differ  at  equatorial  (diurnal  solar-­‐control)  and  polar  la:tudes  (geomagne:c  and  solar  events)  

*  With  a  riometer,  we  measure  the  absorp:on  of  cosmic  radio  waves,  but  we  do  so  as  a  means  to  infer  ionospheric  parameters,  such  as  electron  density    *  In  other  words:    absorp:on  is  a  quan:ta:ve  observable  (it  can  be  measured!)  that  can  then  be  used  to  deduce  informa:on  about  other  physical  parameters  of  interest  that  might  not  be  directly  or  easily  measurable,  at  least  from  the  ground    

Page 3: 2015-02-20: Review of Hargreaves [1969]: Auroral Absorption of HF Radio Waves in the Ionosphere

Riometers  at  High  LaAtudes  Picture  it:    You’re  on  a  navy  vessel  in  the  1930s,  rounding  the  :p  of  Antarc:ca;  you’re  closing  in  on  the  enemy  and  -­‐-­‐-­‐  suddenly,  your  communica:ons  are  wiped  out.    

Two  major  types  of  ionospheric  radio  wave  absorp:on  events:  

1.  Auroral  Absorp:on  [AA]  2.  Polar  Cap  Absorp:on  [PCA]  

 

Both  can  produce  over  10  dB  of  absorp:on  on  a  30MHz  riometer,  so  before  satellite  era  the  categories  were  dis:nguished  by  :me  and  geographic  signatures.        

*  Time:  PCAs  lasted  several  days  while  AA  was  reserved  for  rela:vely  frequent,  shorter-­‐lived  and  irregular  absorp:on  events.  *  Geography:  PCA  covers  the  en:re  polar  cap,  while  AA  is  limited  to  auroral  zone.  

A  recommended  3rd  category  by  Hargreaves  and  others  circa  1969:  3.  Sudden  Commencement  Absorp:on  [SCA]  

Page 4: 2015-02-20: Review of Hargreaves [1969]: Auroral Absorption of HF Radio Waves in the Ionosphere

Auroral  AbsorpAon  *  Most  frequent  and  most  complex  high-­‐la:tude  type  of  absorp:on  event  

Sporadic  and  non-­‐obvious:    grows  and  decays  with  auroral  and  magne:c  ac:vity,  yet  does  so  without  any  exact  correspondence  

 *  First  iden:fied  in  Appleton  et  al  [1933]:  “Ionospheric  inves:ga:ons  in  high  la:tudes”  

 They  no:ced  that  reflected  radio  waves  were  weakened  or  wiped  out  during  periods  of  auroral  and  magne:c  ac:vity    

*  Produced  by  the  entry  of  auroral  electrons      Appleton  [1933]  inferred  the  cause  to  be  "ionizing  charged  par:cles  [which]  produce  electrifica:on  below  the  normal  lower  region  [i.e.,  the  E  region].”    

 

hfp://spears.lancs.ac.uk/data/summary/interpret/  

Page 5: 2015-02-20: Review of Hargreaves [1969]: Auroral Absorption of HF Radio Waves in the Ionosphere

Polar  Cap  AbsorpAon  *  Due  to  abnormal  ioniza:on  produced  by  the  incidence  of  solar  protons  ajer  an  intense  solar  flare.              *  Hargreeves  [1969]  says  PCA  was  prefy  well  understood  (solar  energe:c  protons  from  solar  flares),  unlike  AA  

hfp://www-­‐istp.gsfc.nasa.gov/istp/outreach/workshop/img/nicky/slide14.jpg  hfp://spears.lancs.ac.uk/data/summary/interpret/  

Page 6: 2015-02-20: Review of Hargreaves [1969]: Auroral Absorption of HF Radio Waves in the Ionosphere

To  understand  riometers,  one  must  understand  the  physics  they  purport  to  study!            

Radio  Wave  PropagaAon  in  the  Ionosphere  

Higher  ioniza:on  rate  in  atmosphere  à  higher  electron  density  à  more  electrons  to  steal  energy  from  radio  waves    à  less  radio  wave  energy  at  riometer  site  

30  MHz  

Page 7: 2015-02-20: Review of Hargreaves [1969]: Auroral Absorption of HF Radio Waves in the Ionosphere

Radio  Wave  PropagaAon:      Appleton-­‐Hartree  Quasi-­‐Longitudinal  ApproximaAon  

Page 8: 2015-02-20: Review of Hargreaves [1969]: Auroral Absorption of HF Radio Waves in the Ionosphere

Radio  Wave  PropagaAon:      Appleton-­‐Hartree  Quasi-­‐Longitudinal  ApproximaAon  

Np  =  Neper  

Page 9: 2015-02-20: Review of Hargreaves [1969]: Auroral Absorption of HF Radio Waves in the Ionosphere

Radio  Wave  PropagaAon:      Appleton-­‐Hartree  Quasi-­‐Longitudinal  ApproximaAon  

If  one  sets  µ=1  for  the  lower  ionosphere,  one  can  compute  the  "total  absorp:on"  over  a  path  for  both  E-­‐mode  (-­‐)  and  O-­‐mode  radio  waves  (+):  

IntuiAve.  Easily  interpreted.  For  the  general  case:  Overly  simplisAc!  

Page 10: 2015-02-20: Review of Hargreaves [1969]: Auroral Absorption of HF Radio Waves in the Ionosphere

Radio  Wave  PropagaAon:      Sen-­‐Wyller  FormulaAon  

At  low  al:tudes,  where  ν≫ω,  the  generalized  Sen-­‐Wyller  formula  recovers  the  Appleton-­‐Hartree  approxima:on  by  sesng  

At  high  al:tudes,  where  ν≪ω,  the  Appleton-­‐Hartree  formula  is  recovered  from  the  generalized  (Sen-­‐Wyller)  formula  by  sesng  

Page 11: 2015-02-20: Review of Hargreaves [1969]: Auroral Absorption of HF Radio Waves in the Ionosphere

Finally …

WHAT IS A RIOMETER?

Page 12: 2015-02-20: Review of Hargreaves [1969]: Auroral Absorption of HF Radio Waves in the Ionosphere

What  advantage  did  the  riometer  have  over  other  popular  techniques  at  the  Ame?  Riometer  •  Before  the  riometer,  auroral  absorp:on  was  studied  mainly  by  radio  reflec:on  methods:  

(i)  pulse-­‐amplitude  methods  (ii)  polar  communica:on  circuit  monitoring  (iii)  “blackout”  records  from  ionosondes  

•  These  methods  were  too  sensi:ve:  the  amount  of  absorp:on  at  high  la:tudes  leads  to  “blackouts”  all  too  readily  -­‐-­‐-­‐  blackouts  are  essen:ally  instrument  satura:on,  so  measurements  ceased  to  be  quan:ta:ve    More  popular  circa  1969  for  absorp:on  studies  were:  (i)  the  cosmic-­‐noise  method  (ii)  the  riometer  technique  (a  type  of  cosmic-­‐noise  method)  

Page 13: 2015-02-20: Review of Hargreaves [1969]: Auroral Absorption of HF Radio Waves in the Ionosphere

1.  The  apparent   intensity  of   the  cosmic   radio  emission   is  monitored  con:nuously  on  a  stable  receiver.  2.   The   gala:c   radio   flux   is   contant   over   long   periods   of   :me,   so   presumably   any  changes   in   the  apparent   intensity   from  one  day   to   the  next   at   the   same   sidereal  :me  represent  corresponding  varia:ons  of  ionospheric  absorp:on.  3.   Since   this  method   depends   on  wave   propaga:on   through   the   ionosphere,   the  frequency  must   be   comfortably   above   f0F2.   In   the  mid-­‐la:tudes,   the   amount   of  absorp:on  at  these  frequencies  is  small  and  varies  slowly  throughout  the  day  (it  is  "solar  controlled");  given  that  there  ojen  exists  ``receiver  drij,''  it  is  fairly  tough  to  parse   out  what   the   cosmic-­‐noise   intensity   is,   versus   the   drij,   versus   ionospheric  absorp:on.  At  high  la:tudes,  however,  this  is  not  the  case:  the  absorp:on  is  strong  and  structured.  This  allows  one  to  determine  the  background  level  (ojen  called  the  "quiet-­‐day  curve").    

Using  a  regular  receiver  and  frequent  calibra:ons,  researchers  were  able  to  use  this  technique…however,  this  technique  became  extremely  powerful  when  the  riometer  was  developed.  

Pre-­‐Cursor  to  the  Riometer:    the  Cosmic  Noise  Method  

Page 14: 2015-02-20: Review of Hargreaves [1969]: Auroral Absorption of HF Radio Waves in the Ionosphere

What  is  a  Riometer?  

Rela:ve  Ionospheric  Opac:city  Meter    1.  The  riometer  achieves  high  gain  stability  by  

switching  rapidly  between  the  antenna  and  a  local  noise  source.  

2.  The   local   noise   source   is   con:nuously  adjusted   so   that   its   power   output   equals  that  received  by  the  antenna.  

3.  Thus   the   receiver   acts   as   a   sensi:ve   null  indicator,   in   which   gain   varia:ons   are  unimportant.  

4.  Ul:mately,   a   recording   is   made   of   the  current   through   the   noise   source,   the  current  being   linearly   related   to   the  power  output.  

See:  Block  Diagram  (Fig.1)  

Page 15: 2015-02-20: Review of Hargreaves [1969]: Auroral Absorption of HF Radio Waves in the Ionosphere

Yagi  Antennas  Yagis  are  those  antennas  you  see  on  roojops  that  get  people  their  TV  channels…  The  crazier  ones  on  roojops  are  log-­‐periodic  antennas…    Never  seen  an  antenna  on  a  roojop,  you  say?    You  callin’  me  old?!  

Riometer  antennas  were  ojen  of  simple  design,  e.g.,  a  Yagi  or  a  simple  broadside  array  over  a  ground  plane.    PRO:  At  typical  frequencies  of  ~30MHz,  these  antennas  are  conveniently  small  CON:  they  have  rather  broad  beamwidths  (~  +/-­‐  30*  between  half-­‐power  points)  

3-­‐element  Yagi  

4-­‐element    Yagi  

Riometer  Design  Circa  1969  

Log-­‐Periodic  Antenna  

Broadside  Array  Antenna  

Page 16: 2015-02-20: Review of Hargreaves [1969]: Auroral Absorption of HF Radio Waves in the Ionosphere

Improvements  upon  the  classical  riometer  technique  circa  1969  1.  Narrow  beam  antenna  systems  vs  broadbeam    When  a  broadbeam  antenna  is  used,  the  noise  power  is  from  a  large  area  of  the  sky,  and  so  if  an  absorp:on  event  occurs,  one  can  only  say  “it  happened  somewhere  in  this  huge  region  of  the  sky.”  So  Just  around  this  :me,  some  larger  antenna  arrays  were  being  used  to  try  to  study  the  finer  structure  in  absorp:on:    For  example:  Ansari  [1965]  used  a  36MHz,    narrow-­‐beam    (7*  beamwidth,  symmetrical)  antenna  system  comprised  of  a  6x8  (Mag  EW  x  Mag  NS)  array  of    3-­‐element  Yagi  antennas  to  study  absorp:on  in  two  direc:ons  (6*MS  and  6*MN  from  the  site  zenith).  Such  a  system  allowed  them  to  make  ini:al  es:mates  of  the  absorp:on  distribu:on  across  the  sky.  Prior  to,  most  narrow-­‐beam  antennas  were  narrow  only  in  the  magne:c  NS  plane,  and  fairly  broad  in  the  magne:c  EW  plane.  To  measure  auroral-­‐ionospheric  absorp:on  in  the  two  chosen  direc:ons,  they  swung  the  main  beam  of  the  array  every  10  seconds.  Their  primary  goal  was  to  study  thin  auroral  arcs.  

Ansari,  1965:  A  Narrow-­‐Beam  Antenna  Array  for  Radio  Wave  Absorp:on  Studies  in  the  Auroral  Zone  

Riometer  Design  Circa  1969:    Room  for  Improvement  

Page 17: 2015-02-20: Review of Hargreaves [1969]: Auroral Absorption of HF Radio Waves in the Ionosphere

Why  narrow  beams  are  becer  

*  For  an  antenna  w/  finite  beamwidth,   i.e.   for  any  antenna  whose   beamwidth   is   not   a   3D   dirac   impulse,   i.e.,   for   any  antenna   in   real   life,   the  measured   absorp:on   is   called   the  “apparent  absorpAon”  *  Due  to  oblique  waves,  the  apparent  absorp:on  is  greater  than   the   value   that   we   actually   want,   which   is   called   the  “zenithal  absorpAon”  

-­‐-­‐   that   is,   we   want   to   determine   the   absorp:on   of   a  plane   wave   passing   ver:cally   through   a   horizontally-­‐stra:fied  absorp:on  region  

Page 18: 2015-02-20: Review of Hargreaves [1969]: Auroral Absorption of HF Radio Waves in the Ionosphere

*   To   compute   the   zenithal  absorp:on,   some   assump:ons  must   be   made,   and   a   correc:on  must   be   computed   and   applied   to  t h e   m e a s u r e d   ( a p p a r e n t )  absorp:on  *   The   typical   assump:ons   (at   least  circa  1969)  are:       (i)   if   spa:ally-­‐distributed  observa:ons   are   NOT   available,  then   the   absorp:on   layer   is  assumed  horizontally  uniform       (ii)   if   spa:ally-­‐distributed  observa:ons   are   available,   then   it  possible   to   take   large-­‐scale  horizontal  gradients  into  account  

Fig.  3:      NORMALIZATION  FACTORS:    ZENITHAL  ANTENNA  Curves  for  correc:ng  apparent  absorp:on  to  zenithal  absorp:on.  These  were  computed  for  an  antenna  pointed  ver:cally  and  having  beamwidth  +/-­‐  32  to  half-­‐power  points  in  both  planes.  

CompuAng  the  Zenithal  AbsorpAon  

Page 19: 2015-02-20: Review of Hargreaves [1969]: Auroral Absorption of HF Radio Waves in the Ionosphere

Why  narrow  beams  are  becer:  Conclusion  

Why  narrow  beams  are  worse  

A  broad-­‐beam  zenithal  absorp:on  :me  series  represents  the  actual  zenithal  absorp:on  very  poorly  in  that  the  broadbeam  includes  events  from  a  wide  patch  of  the  sky!  

A  narrow-­‐beam  zenithal  absorp:on  :me  series  represents  the  actual  zenithal  absorp:on  much  befer,  however  you  only  know  about  a  fairly  small  patch  of  the  sky!  

Page 20: 2015-02-20: Review of Hargreaves [1969]: Auroral Absorption of HF Radio Waves in the Ionosphere

AddiAonal  improvements  upon  the  classical  riometer  technique  (e.g.,  that  used  in  late  1950s,  early  1960s)  circa  1969:  1.   Groups  of  closely-­‐spaced    riometer  sites  2.   Groups  of  closely-­‐spaced  riometers  at  one  site  3.   Use  of  mulAple  frequencies  

Closely-­‐spaced  riometers  at  one  site  greatly  eases  logis:cs.  The  small  setback  is  one  needs  to  know  the  height  of  the  absorp:on  before  horizontal  separa:on  can  be  es:mated.        When  absorp:on  is  to  be  measured  on  mul:ple  frequencies,  Hargreaves  recommends  allosng  one  riometer  per  frequency,  making  sure  to  scale  the  antennas  so  that  each  one  has  the  same  beam  pafern.  (Swept-­‐frequency  and  stepped-­‐frequency  riometers  proved  to  not  be  very  successful  riometer  designs.)  

Riometer  Design  Circa  1969:    Room  for  Improvement  

SPA  

MCM  

Page 21: 2015-02-20: Review of Hargreaves [1969]: Auroral Absorption of HF Radio Waves in the Ionosphere

(1)   Automated,  unmanned  riometer  staAons:      

“Riometers  which  can  operate  una2ended  for  long  periods  of  7me  at  deserted  sites  without  mains  power  are  needed  but  have  not  yet  been  developed  as  far  as  the  author  is  aware.”  

Riometers  Circa  1969:  Further  Goals  

38.2  MHz  imaging  riometers  are  housed  at  several  Automated  Geophysical  Observatories  [AGOs]  and  at  SPA  and  MCM.    For  more  info:    (1)  hfp://www.sienageospace.dreamhosters.com/  (2)  hfp://www.polar.umd.edu/instruments.html)  

Mission  Complete!  

SPA  

MCM  

Page 22: 2015-02-20: Review of Hargreaves [1969]: Auroral Absorption of HF Radio Waves in the Ionosphere

(2)  Becer  data  products:  There  existed  a  need  to  “simplify  the  data  processing  by  which  the  nega:ve  deflec:on  on  a  chart  that  is  nonlinear  in  decibels  (see  Fig.  2)  is  converted  to  a  linear  scale  of  decibels…a  means  of  removing  the  quiet-­‐day  curve  at  the  instrument  and  of  producing  on  the  spot  a  record  [that  is]  linear  in  absorp:on  against  :me    would  be  [AWESOME!]”  

Riometers  Circa  1969:  Goals  

 Two  methods  had  already  been  put  forward  circa  1969:  (i)  Con:nuous  es:mates  of  quiet-­‐day  curve  given  la:tude  and  eleva:on  of  the  antenna  beam  (ii)  Es:mates  of  the  quiet-­‐day  curve    by  comparing  O-­‐  and  E-­‐modes  of  the  received  signal  [2]  

[1]  Chivers  and  Prescof,  1967:  Applica:ons  of  a  new  technique  for  the  detec:on  of  absorp:on  events  using  a  riometer  [2]  Benediktov,  1959:  On  a  radioastronomical  method  for  determina:on  of  the  absorp:on  of  radio  waves  in  the  ionosphere  

Page 23: 2015-02-20: Review of Hargreaves [1969]: Auroral Absorption of HF Radio Waves in the Ionosphere

In  the  future:  

Forget  single-­‐beam  or  single-­‐frequency  riometers.  Check  out  this  sweet  riometer  (a  la  Detrick,  Rosenberg,  Weatherwax,  Lutz)  

hfp://www.polar.umd.edu/haarp/riometer_paper/haarp.html  

The  IRIS  Riometer!