69
Cave animals at the dawn of speleogenomics Markus Friedrich Wayne State University [email protected]

Cave animals at the dawn of speleogenomics

Embed Size (px)

Citation preview

Page 1: Cave animals at the dawn of speleogenomics

Cave animals at the dawn of speleogenomics

Markus Friedrich

Wayne State [email protected]

fix-Markus Friedrich
Page 2: Cave animals at the dawn of speleogenomics

Cave animals at the dawn of speleogenomics

● Spelling correct?

○ I think so

○ Spelleochecked this morning...

Page 3: Cave animals at the dawn of speleogenomics

Cave animals at the dawn of speleogenomics

● What does it mean?

○ Concepts and approaches

Page 4: Cave animals at the dawn of speleogenomics

Cave animals at the dawn of speleogenomics

● Transcriptome or genome sequence based analyses of cave faunas:

■ Viruses■ Bacteria■ Algae■ Plants■ Obligate cave animals

● Extant● Extinct

Page 5: Cave animals at the dawn of speleogenomics

Cave animals at the dawn of speleogenomics

● Transcriptome or genome sequence based analyses of cave faunas:

■ Specimen samples■ Environmental samples

Page 6: Cave animals at the dawn of speleogenomics

Cave animals at the dawn of speleogenomics

● Transcriptome or genome sequence based analyses of:■ Regressive traits

Protas & William R. Jeffery WIREs Dev Biol 2012. doi: 10.1002/wdev.61

Page 7: Cave animals at the dawn of speleogenomics

Cave animals at the dawn of speleogenomics

● Transcriptome or genome sequence based analyses of:■ Regressive traits■ Relaxed vs positive selection

Protas & William R. Jeffery WIREs Dev Biol 2012. doi: 10.1002/wdev.61

Page 8: Cave animals at the dawn of speleogenomics

Cave animals at the dawn of speleogenomics

● Transcriptome or genome sequence based analyses of:■ Regressive traits■ Relaxed vs positive selection■ Constructive (elaborated) traits

Protas & William R. Jeffery WIREs Dev Biol 2012. doi: 10.1002/wdev.61

Page 9: Cave animals at the dawn of speleogenomics

Cave animals at the dawn of speleogenomics

● Transcriptome or genome sequence based analyses of:■ Regressive traits■ Relaxed vs positive selection■ Constructive (elaborated) traits■ Convergent vs parallel evolution

Protas & William R. Jeffery WIREs Dev Biol 2012. doi: 10.1002/wdev.61

Page 10: Cave animals at the dawn of speleogenomics

Candidate gene studies harvesting molecular key signatures of the evolutionary process

○ Crandall, K. A., & Hillis, D. M. (1997). Rhodopsin evolution in the dark. Nature, 387(6634), 667–668.

○ Buhay, J. E., & Crandall, K. A. (2005). Subterranean phylogeography of freshwater crayfishes shows extensive gene flow and surprisingly large population sizes. Molecular Ecology, 14(14), 4259–4273.

○ Leys, R., Cooper, S. J. B., Strecker, U., & Wilkens, H. (2005). Regressive evolution of an eye pigment gene in independently evolved eyeless subterranean diving beetles. Biology Letters, 1(4), 496–499.

○ Aspiras, A. C., Prasad, R., Fong, D. W., Carlini, D. B., & Angelini, D. R. (2012). Parallel reduction in expression of the eye development gene hedgehog in separately derived cave populations of the amphipod Gammarus minus. Journal of Evolutionary Biology, 25(5), 995–1001.

○ Niemiller, M. L., Fitzpatrick, B. M., Shah, P., Schmitz, L., & Near, T. J. (2013). Evidence for repeated loss of selective constraint in rhodopsin of amblyopsid cavefishes (Teleostei: Amblyopsidae). Evolution; International Journal of Organic Evolution, 67(3), 732–748.

Page 11: Cave animals at the dawn of speleogenomics

Speleogenomic studies harvest molecular signatures of evolutionary change

○ Cave-adaptive loss of function:■ Ortholog of surface genes not detectable

Gene x

Page 12: Cave animals at the dawn of speleogenomics

○ Cave-adaptive loss of function:■ Ortholog of surface genes not detectable

Gene x

Speleogenomic studies harvest molecular signatures of evolutionary change

Page 13: Cave animals at the dawn of speleogenomics

○ Cave-adaptive loss of function:■ Orthologs of surface genes not detectable■ Transcripts with deletions, nonsense or frameshift

mutations

Gene x

Gene x

Speleogenomic studies harvest molecular signatures of evolutionary change

Page 14: Cave animals at the dawn of speleogenomics

○ Cave-adaptive loss of function:■ Orthologs of surface genes not detectable■ Transcripts with deletions, nonsense or frameshift

mutations■ Equal numbers of replacement (dN) vs silent

substitutions (dS) mutation ratio (dN/dS = 1)

Gene x

Gene x

dN/dS = 1

dN/dS < 0.2

Speleogenomic studies harvest molecular signatures of evolutionary change

Page 15: Cave animals at the dawn of speleogenomics

○ Cave-adaptive gain of function:■ Orthologs of surface genes expressed at higher level

Gene x

Gene x

Speleogenomic studies harvest molecular signatures of evolutionary change

Page 16: Cave animals at the dawn of speleogenomics

○ Cave-adaptive gain of function:■ Orthologs of surface genes expressed at higher level

Gene x

Gene x

Speleogenomic studies harvest molecular signatures of evolutionary change

Page 17: Cave animals at the dawn of speleogenomics

○ Cave-adaptive gain of function:■ Orthologs of surface genes expressed at higher level■ Gene family expansions compared to surface forms

Gene x

Gene x 1

Gene x 2

Speleogenomic studies harvest molecular signatures of evolutionary change

Page 18: Cave animals at the dawn of speleogenomics

○ Cave-adaptive gain of function:■ Orthologs of surface genes expressed at higher level■ Gene family expansions compared to surface forms■ High replacement vs silent substitution ratio

Gene x

Gene x

dN/dS > 2

dN/dS < 0.2

Speleogenomic studies harvest molecular signatures of evolutionary change

Page 19: Cave animals at the dawn of speleogenomics

○ Cave-adaptive gain of function:■ Orthologs of surface genes expressed at higher level■ Gene family expansions compared to surface forms■ High replacement vs silent substitution ratio■ Selective sweep patterns

Speleogenomic studies harvest molecular signatures of evolutionary change

Page 20: Cave animals at the dawn of speleogenomics

○ Purifying selection:■ Orthologs of surface genes intact■ Expressed at similar levels■ Low replacement vs silent substitution ratio

Speleogenomic studies harvest molecular signatures of evolutionary change or conservation

Gene x

Gene x

dN/dS < 0.2

dN/dS < 0.2

Page 21: Cave animals at the dawn of speleogenomics

○ Cave-adaptive loss of function■ Orthologs of surface genes not detectable■ Transcripts with deletions, nonsense or frameshift

mutations■ Equal replacement vs silent substitution mutation ratio

○ Cave-adaptive gain of function■ Orthologs of surface genes expressed at higher level■ Gene family expansions compared to surface forms■ High replacement vs silent substitution ratio■ Selective sweep patterns

○ Purifying selection○ All of the above identify candidate trait changes

-> Predictive genomics across >5,000 genes

From sequence read to trait discovery:Predictive speleogenomics

Page 22: Cave animals at the dawn of speleogenomics

Cave animals at the dawn of speleogenomics

● Spelling correct● Transcriptome or genome sequence based analyses of

cave adaptation● What have we learned so far?

Page 23: Cave animals at the dawn of speleogenomics

Welcome to the age of Next Generation Sequencing!

http://www.slideshare.net/AlagarSuresh/ngs-introduction-51560394/2

2005

Page 24: Cave animals at the dawn of speleogenomics

2005 2006 2007 2008 2009 2010

Page 25: Cave animals at the dawn of speleogenomics

http://www.cnn.com/2016/03/28/health/cave-man-neanderthal-dna/index.html

2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016

Homo n+s

Page 26: Cave animals at the dawn of speleogenomics

(Gross and Wilkens 2013; Bilandžija et al. 2013; Protas et al. 2006)

2005 2006 2007 2008 2009 2010 2011

OCA2 His615Arg

OCA2

OCA2

OCA2 1252G

Convergent evolution of pigment reduction in human and cavefish populations

Humans

Astyanax

Page 27: Cave animals at the dawn of speleogenomics

2005 2006 2007 2008 2009 2010

Green et al. (2010)

Page 28: Cave animals at the dawn of speleogenomics

Kim et al. (2011): Genome sequencing reveals insights into physiology and longevity of the naked mole rat. Nature, doi:10.1038/nature10533

● Strictly subterraneanoTolerate low oxygen and high carbon dioxide concentrations

● EusocialoReside in large colonies with a single breeding female (queen), who

suppresses the sexual maturity of her subordinate. ● Extraordinarily long-lived (>30 years)

oNegligible senescence▪No age-related increase in mortality▪High fecundity until death▪Resistant to both spontaneous cancer and experimentally induced

tumorigenesis● Unable to sustain thermogenesis● Insensitivity to certain types of pain● Microphthalmic

2005 2006 2007 2008 2009 2010 2011

Page 29: Cave animals at the dawn of speleogenomics

● 2,4 Gb large genome● 22,500 genes● Apparent lack of age related expression level changes● 39 Proteins with unique amino acid changes

compared to 36 vertebrate genomes○ Thermoregulation○ DNA repair○ Oncogenesis○ Vision

2005 2006 2007 2008 2009 2010 2011

Kim et al. (2011): Genome sequencing reveals insights into physiology and longevity of the naked mole rat. Nature, doi:10.1038/nature10533

Page 30: Cave animals at the dawn of speleogenomics

● Pain reception related neuropeptide gene ACT1 intact but ancestral promoter missing

● 244 pseudogenes:○ 183 frameshift events○ 119 premature termination events

Functional categories enriched for pseudogenes:SpermatogenesisOlfactory receptor activity    Visual perception

2005 2006 2007 2008 2009 2010 2011

Kim et al. (2011): Genome sequencing reveals insights into physiology and longevity of the naked mole rat. Nature, doi:10.1038/nature10533

Page 31: Cave animals at the dawn of speleogenomics

Kim et al. (2011): Genome sequencing reveals insights into physiology and longevity of the naked mole rat. Nature, doi:10.1038/nature10533

2005 2006 2007 2008 2009 2010 2011

Lack of function mutations in visual system genes:

Page 32: Cave animals at the dawn of speleogenomics

2005 2006 2007 2008 2009 2010 2011

Friedrich et al. (2011): SB. 2011. Phototransduction and clock gene expression in the troglobiont beetle Ptomaphagus hirtus of Mammoth cave. J Exp Biol 214:3532–41.

Page 33: Cave animals at the dawn of speleogenomics

2005 2006 2007 2008 2009 2010 2011

Friedrich et al. (2011): Phototransduction and clock gene expression in the troglobiont beetle Ptomaphagus hirtus of Mammoth cave. J Exp Biol 214:3532–41.

Bottom

Surface

Page 34: Cave animals at the dawn of speleogenomics

Academy

1839-1905

Alpheus Spring Packard 1888. The cave fauna of North America, with remarks in the anatomy of brain and the origin of blind species. Memoirs of the National Academy of Sciences (USA) 4, 1-156

Page 35: Cave animals at the dawn of speleogenomics

Academy

Alpheus Spring Packard 1888. The cave fauna of North America, with remarks in the anatomy of brain and the origin of blind species. Memoirs of the National Academy of Sciences (USA) 4, 1-156

"Transverse and horizontal sections of the head of Adelops (=Ptomaphagus) hirtus, from Mammoth Cave, reveal no traces of the optic ganglia or the optic nerve."

Page 36: Cave animals at the dawn of speleogenomics

Academy

Alpheus Spring Packard 1888. The cave fauna of North America, with remarks in the anatomy of brain and the origin of blind species. Memoirs of the National Academy of Sciences (USA) 4, 1-156

"Transverse and horizontal sections of the head of Adelops (=Ptomaphagus) hirtus, from Mammoth Cave, reveal no traces of the optic ganglia or the optic nerve."

"It thus appears that Adelops must be blind though the eyes exist in a degenerate state."

Page 37: Cave animals at the dawn of speleogenomics

Ommatidium

Schistocerca

Tribolium

Drosophila

A lens without photoreceptors?

Page 38: Cave animals at the dawn of speleogenomics

A lens without photoreceptors?

Drosophila

Schistocerca

Tribolium

Page 39: Cave animals at the dawn of speleogenomics

Schistocerca

Tribolium

Drosophila

A lens without photoreceptors?

Page 40: Cave animals at the dawn of speleogenomics

RNA-seq: Deep sequencing transcriptome analysis

• NSF award NSF Award #0951886: Pax6 and the genetic regulation of eye development in Tribolium • Rui Chen, Bryce Daines (Baylor College)

Page 41: Cave animals at the dawn of speleogenomics

25 dissected P. hirtus heads minus antennae

Deep sequencing of the P. hirtus head transcriptome

• NSF award NSF Award #0951886: Pax6 and the genetic regulation of eye development in Tribolium • Rui Chen, Bryce Daines (Baylor College)

Page 42: Cave animals at the dawn of speleogenomics

● 27,428,409 short reads (75 bp) produced● 5,476,803 (19.97%) aligned by blastx to Tribolium refseq proteins● Orthologs of 8718 Tribolium transcripts observed with >10 reads● Concatemerization of blastx hit group reads

Drosophila (Adams et al 2000)

Ptomaphagus

Tribolium (TGSC 2008)

100200300 Mya

Deep sequencing of the P. hirtus head transcriptome

Page 43: Cave animals at the dawn of speleogenomics

The insect phototransduction protein machinery

R opsin

Gqα

β

PLCβ PKC 53E

γINAD INAD

5

Arrestin 1

Arrestin 2

Gqα Gqα

R opsin

R opsin

PLCβ PKC 53E

2

TRP

4

3

1

5

2

4

3

1

Ca2+

Page 44: Cave animals at the dawn of speleogenomics

The insect phototransduction protein machinery

R opsin

Gqα

β

PLCβ PKC 53E

γINAD INAD

5

Arrestin 1

Arrestin 2

Gqα Gqα

R opsin

R opsin

PLCβ PKC 53E

2

TRP

4

3

1

5

2

4

3

1

Ca2+

Page 45: Cave animals at the dawn of speleogenomics

Conserved expression of the insect phototransduction protein machinery in P. hirtus

R opsin

Gqα

β

PLCβ PKC 53E

γINAD INAD

5

Arrestin 1

Arrestin 2

Gqα Gqα

R opsin

R opsin

PLCβ PKC 53E

2

4

3

1

5

2

4

3

1

TRP

Ca2+

Page 46: Cave animals at the dawn of speleogenomics

Transcript conservation predicts a functional visual system in P. hirtus

•Structural evidence

•Behavioral evidence

Phototaxis

Circadian rhythm

Page 47: Cave animals at the dawn of speleogenomics

Our first light-dark choice assay

Friedrich et al. (2011) The Journal of Experimental Biology 214: 3532-3541.

Page 48: Cave animals at the dawn of speleogenomics

Light vs dark choice of P. hirtus in response to desktop lamp illumination

Friedrich et al. (2011) The Journal of Experimental Biology 214: 3532-3541.

Page 49: Cave animals at the dawn of speleogenomics

Speleogenomic approach revealed:

Conservation of functional visionPresence of photoreceptor cellsNegative photoresponseDifferential wavelength specificity

Conservation of circadian gene expressionPreliminary evidence of circadian activity

rhythmsGenetic regression of the visual system:

Loss of UV opsinLoss of eye specific pigmentation genes:

cinnabarscarlet white

2005 2006 2007 2008 2009 2010 2011

Friedrich et al. (2011): Phototransduction and clock gene expression in the troglobiont beetle Ptomaphagus hirtus of Mammoth cave. J Exp Biol 214:3532–41.

Page 50: Cave animals at the dawn of speleogenomics

2005 2006 2007 2008 2009 2010 2011 2012

● Genome size: 174 Mb● ~13,500 genes● “Dark-fly”: Drosophila melanogaster maintained in constant darkness > 60 years =

1,500 years○ Dark-fly produce more offspring in dark than in light○ Preserved strong phototactic behavior and circadian locomotor rhythm○ Nonsense mutation in the Rhodopsin7 (not expressed in eye) ○ Functional conservation of Rhodopsin 1-6 (all expressed in the eye)

Izutsu et al. (2012): Genome features of "Dark-fly", a Drosophila line reared long-term in a dark environment. PLoS One. 7(3):e33288.

Page 51: Cave animals at the dawn of speleogenomics

2005 2006 2007 2008 2009 2010 2011 2012 2013

Hinaux et al (2011): De novo sequencing of Astyanax mexicanus surface fish and Pachón cavefish transcriptomes reveals enrichment of mutations in cavefish putative eye genes. PLoS One. 8(1):e53553.Gross et al. (2011): An integrated transcriptome-wide analysis of cave and surface dwelling Astyanax mexicanus. PLoS One. 8(2):e55659

Page 52: Cave animals at the dawn of speleogenomics

2005 2006 2007 2008 2009 2010 2011 2012 2013

● 44,145 contigs assembled from expressed sequence tags generated by Sanger sequencing

● 8 eight cDNA libraries■ 4 from a surface stream population■ 4 from the Pachon cave population

● For both populations, libraries were generated from four developmental stages.

Hinaux et al (2011): De novo sequencing of Astyanax mexicanus surface fish and Pachón cavefish transcriptomes reveals enrichment of mutations in cavefish putative eye genes. PLoS One. 8(1):e53553.

Page 53: Cave animals at the dawn of speleogenomics

2005 2006 2007 2008 2009 2010 2011 2012 2013

Hinaux et al (2011): De novo sequencing of Astyanax mexicanus surface fish and Pachón cavefish transcriptomes reveals enrichment of mutations in cavefish putative eye genes. PLoS One. 8(1):e53553.

● 31 non-conservative amino-acid changes specific to the lineage of the cave population.○ The significant majority function in carbohydrate

metabolism○ No enrichment of eye developmental genes

● 79 non-conservative amino-acid differences between the genes of surface and cave morphotypes tentative evidence of suggested accelerated evolution of vision genes

Page 54: Cave animals at the dawn of speleogenomics

2005 2006 2007 2008 2009 2010 2011 2012 2013

Gross et al. (2011): An integrated transcriptome-wide analysis of cave and surface dwelling Astyanax mexicanus. PLoS One. 8(2):e55659

● 22,596 contigs from 454 sequencing data from Pachon and surface animals ○ > 600 transcripts were unique to cave or surface

populations■ 10% of which were related to genes known from

zebrafish○ Two classes of gene functions overrepresented in

the conserved population-specific subsamples:■ Metabolic genes were specific for, or

transcriptionally elevated in cave morphotype■ 16 homologs associated with visual functions

specifically missing or reduced in the cave morphotype

Page 55: Cave animals at the dawn of speleogenomics

2005 2006 2007 2008 2009 2010 2011 2012 2013

Meng et al. (2013): Evolution of the eye transcriptome under constant darkness in Sinocyclocheilus cavefish. Molecular Biology and Evolution 30 :1527-1543

● Compared the mature retinal histology of surface and cave species○ Reduction in number and length of photoreceptor cells

● Generated transcriptomes for surface and cave species● Transcriptional downregulation of eye fate promoting

transcriptional factors

Page 56: Cave animals at the dawn of speleogenomics

2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016

Yang et al. (2016): The Sinocyclocheilus cavefish genome provides insights into cave adaptation. BMC Biol. 2016 Jan 4;14:1.

●Whole-genome sequencing and comparative analysis of:○ Macrophthalmous S. grahami, 1.75 Gb○ Micophthalmous S. rhinocerous 1.73 Gb ○ Anophthalmous S. anshuiensis.and 1.68 Gb

●~40,000 genes in each species●Several opsin genes missing in all three species:

○ Lws2, Rh2-1 and Rh2-2 (middle wavelength-sensitive)

Page 57: Cave animals at the dawn of speleogenomics

2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016

Yang et al. (2016): The Sinocyclocheilus cavefish genome provides insights into cave adaptation. BMC Biol. 2016 Jan 4;14:1.

● Anophthalmous S. anshuiensis:○ Genetic regression related to pigmentation:

■ Reduced transcript levels of Oca2 and melanogenesis pathway genes

■ Loss of Mpv17○ Genetic regression related to vision:

■ Opsin gene Rh2-4 lost specifically in anophthalmic species (Sa)

■ Nine eye developmental regulators transcriptionally downregulated

Page 58: Cave animals at the dawn of speleogenomics

2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016

Yang et al. (2016): The Sinocyclocheilus cavefish genome provides insights into cave adaptation. BMC Biol. 2016 Jan 4;14:1.

● Anophthalmous S. anshuiensis:○ Gain of function changes related to taste reception:

■ Duplication of taste receptor genes, such as Tas1r1 and Tas2r200-2

○ Gain of function changes related to taste reception:■ Hsp90α1

● Duplicated● Higher expression level

Page 59: Cave animals at the dawn of speleogenomics

2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

Tierney et al. (2013): Opsin transcripts of predatory diving beetles: a comparison of surface and subterranean photic niches. R Soc Open Sci. 2015 Jan 28;2(1):140386.

Page 60: Cave animals at the dawn of speleogenomics

2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

● Identified transcripts for UV, LW, and c-opsins from surface beetle transcriptomes

● 3 out of 3 subterranean beetles presented evidence of parallel loss of all opsin transcription

● Documents genetic regression of the visual system

Tierney et al. (2013): Opsin transcripts of predatory diving beetles: a comparison of surface and subterranean photic niches. R Soc Open Sci. 2015 Jan 28;2(1):140386.

Page 61: Cave animals at the dawn of speleogenomics

2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

McGaugh et al. (2014): The cavefish genome reveals candidate genes for eye loss. Nat Communications 5:5307. doi: 10.1038/ncomms6307

● First de novo genome assembly for Astyanax mexicanus○ ~1 Gb large genome○ ~23,000 genes

■ ~16,000 1:1 orthologs to zebrafish● Identifies candidate genes underlying previously mapped quantitative trait

loci (QTL)

Page 62: Cave animals at the dawn of speleogenomics

2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

McGaugh et al. (2014): The cavefish genome reveals candidate genes for eye loss. Nat Communications 5:5307. doi: 10.1038/ncomms6307

● Identifies and tests developmental eye reduction candidate genes● Assays cave adaptive candidate genes for potential functional and

expression differences between surface and cave morphotype○ RT-PCR experiments define morphotype candidate gene losses as

false negatives

Page 63: Cave animals at the dawn of speleogenomics

2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

McGaugh et al. (2014): The cavefish genome reveals candidate genes for eye loss. Nat Communications 5:5307. doi: 10.1038/ncomms6307

● RT-PCR confirmation of species-generic candidate gene losses in several gene families:○ Retinol dehydrogenases○ Crystallins○ Sine oculis homeoboxes○ Opsins○ Fibroblast growth factors○ Gamma-aminobutyric acid A○ Dopamine receptors

Vision

Sleep and circadian clock

Page 64: Cave animals at the dawn of speleogenomics

2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

Stahl et al. (2015): A Transcriptomic Analysis of Cave, Surface, and Hybrid Isopod Crustaceans of the Species Asellus aquaticus. PLoS One. 10:e0140484.

● Deep sequenced cDNA libraries○ Cave morphotype○ Surface morphotype○ Hybrid

● ~25,000 transcripts○ >4,000 with orthologs in “other” or non-model

species● Identifies candidate morphotype-specific alleles

Page 65: Cave animals at the dawn of speleogenomics

Welcome to the tree of speleogenomic animal life!

Astyanax mexicanus SinocyclocheilusHeterocephalus

glaber

P. hirtus

Paroster macrosturtensis

Asellus aquaticus

Homo n+s

Page 66: Cave animals at the dawn of speleogenomics

Speleogenomic coverage of cave animal species so far

2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016

Page 67: Cave animals at the dawn of speleogenomics

2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016

Speleogenomic coverage of cave animal species so far

Page 68: Cave animals at the dawn of speleogenomics

Coverage of animal genomes so far

2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016

http://www.ncbi.nlm.nih.gov/genome/browse/

Page 69: Cave animals at the dawn of speleogenomics

Cave animals at the dawn of speleogenomics

● What have we learned so far?○ A lot

● What is the future holding?○ Genetic surveys of vanishing diversity○ High resolution genetic analysis of cave invasion○ High resolution analysis of troglomorphism○ Value of close relationship to model organisms○ Impact of genetic drift: population genomics○ Impact of time: Young vs old troglobites○ Quest for the oldest and the youngest troglobite...