55
Lecture 6 Congenital and Acquired Disorders Secondary Hemostasis

Lecture 6, coagulation fall 2014

Embed Size (px)

Citation preview

Page 1: Lecture 6, coagulation fall 2014

Lecture  6  

Congenital  and  Acquired  Disorders  Secondary  Hemostasis  

Page 2: Lecture 6, coagulation fall 2014

Groups  of  Coagula<on  Factors  •  Fibrinogen  group  

–  Fibrinogen,  V,  VIII,  XIIII  –  All  are  acted  upon  by  thrombin  –  All  are  consumed  during  coagula<on  (not  present  in  serum)  –  FV  and  FVIII  à  Labile  –  Fibrinogen  and  FVIII  à  acute  phase  reactants  

•  Increase  during  inflamma<on,  pregnancy,  estrogen  therapy,  stress    

•  Prothrombin  group  –  II,  VII,  IX,  X  ,  C,  S,  Z  –  Depend  on  vitamin  K  during  their  synthesis  –  Have  a  GLA  domain  at  the  N-­‐terminus  –  consis<ng  of  10-­‐12  glutamic  acid  (GLA)  residues    –  Vitamin  K  catalyzes  the  carboxyla<on  of  the  y-­‐carbon  of  the  glutamic  acids  à  addi<on  of  a  

second  carboxyl  group  –  These  groups  are  nega<vely  charged  à  binding  Ca2+  ions  –  necessary  for  binding  to  PF3    

•  Contact  group  –  PK,  HMWK,  XII,  XI  –  Involved  in  ac<va<on  of  the  intrinsic  pathway  of  the  plasma-­‐based  coagula<on  model  –  Moderately  stable  –  NOT  consumed  during  cloZng  (found  in  serum)  

Page 3: Lecture 6, coagulation fall 2014

Vitamin  K  Deficiency  

•  Found  in  leafy  green  plants  as  phylloquinone  and  in  bacteria  as  menaquinone    •  Required  for  the  a]achment  of  gamma-­‐carboxyglutamic  acid  (GLA)  residues  to  the  VKDFs  •  Factors  produced  in  the  absence  of  VK  lack  the  required  number  of  GLA  residues  and  are  

func<onally  inac<ve    à  PIVKAs  •  GLA  residues  facilitate  the  a]achment  of  the  factors  to  PF3  through  calcium  binding  

•  VK  deficiency  seen  in  1.  Absence  of  bile  salts  in  GI  tract  

•  VK  is  fat  soluble  à  bile  salts  are  required  for  adsorp<on  2.  Malabsorp<on  syndromes  

•  VK  is  absorbed  primarily  through  the  GI  tract  3.  Dietary  lack  of  phylloquinone    

•  Due  to  lack  of  green  leafy  vegetables  in  the  diet  4.  An<bio<c  therapy  

•  Kills  the  normal  flora  of  the  GI  tract—responsible  for  menaquinone  5.  Bowel  surgery  

•  Combina<on  of  loss  of  phylloquinone  and  menaquinone  6.  Newborn  infants  

•  Deficient  in  vitamin  K  at  birth  

3  

Page 4: Lecture 6, coagulation fall 2014

What  is  Vitamin  K?  •  Fat  soluble  compound  

–  Necessary  for  the  synthesis  of  several  proteins  required  for  blood  cloZng      1)  Vit  K  1  (Phylloquinone)  

-­‐  Natural  form  -­‐  Found  in  plants  -­‐  Provides  the  primary  source  of  vitamin  K  to  humans  through  dietary  consump<on        

2)  Vitamin  K2  compounds  (Menaquinones)  -­‐  Made  by  bacteria  in  the  human  gut  -­‐  Provide  a  smaller  amount  of  the  human  vitamin  K  requirement        

Required  for:    1)  Coagula<on  2)  Bone  Mineraliza<on  3)  Cell  growth  

Page 5: Lecture 6, coagulation fall 2014

Vitamin  K  -­‐  Carboxyglutamate  FII,  FV,  FVII,  FX,  PC,  PS  

ACTIVE  FII,  FVII,  FIX,  FX,  PC,  PS  

INACTIVE  

oxidized  reduced  

Page 6: Lecture 6, coagulation fall 2014

The  Vitamin  K  Cycle  •  Dietary  vitamin  K  à  reduced  by  vitamin  K  

reductase  to  generate  vitamin  K  hydroquinone    

•  Vitamin  K  hydroquinone  –  Serves  as  a  cofactor  for  the  vitamin  K-­‐

dependent  carboxylase  –  Converts  glutamic  acid  residues  at  the  N-­‐

termini  of  the  vitamin  K-­‐dependent  precursors  to  carboxyglutamic  acid  residues  

–  Creates  the  so-­‐called  Gla-­‐domain    

•  Gla-­‐domain  is  cri<cal  for  the  interac<on  of  the  vitamin  K-­‐dependent  cloZng  factors  with  nega<vely  charged  phospholipid  membranes  calcium  bridging  

•  During  vitamin  K-­‐dependent  carboxyla<on  1.  Vitamin  K  is  oxidized  to  vitamin  K  

epoxide  2.  Vitamin  K  epoxide  is  then  converted  to  

vitamin  K  by  vitamin  K  epoxide  reductase   6  

Page 7: Lecture 6, coagulation fall 2014

Vitamin  K  Deficiency  

•  Diagnosis  –  Prolonged  PT  and  aPTT,  normal  BT  and  TT  –  In  mild  VKD  –  aPTT  will  be  normal  because  only  FVII  will  be  decreased  (FVII  has  

shortest  ½  life)  –  Factor  assays  for  II,  VII,  IX,  and  X  

•  Note      1.  FV  is  used  to  differen<ate  between  LD  and  VKD  2.  FV  is  not  VK-­‐dependent,  but  is  synthesized  in  the  liver  3.  TT  is  normal  to  prolonged  in  LD  4.  TT  is  normal  in  VKD  

•  Treatment  –  Aquamephyton  —  colloidal  solu<on  of  vitamin  K  for  parenteral  injec<on  

•  Given  intramuscularly  and  a  normaliza<on  of  the  PT  is  seen  in  12-­‐14  hours  •  In  life-­‐threatening  situa<on—FFP  to  supply  the  missing  factors  

7  

Page 8: Lecture 6, coagulation fall 2014

Renal  Dysfunc<on  

•  Recognize  >  200  years  ago  •  Underlying  pathophysiology  

–  Impaired  platelet  func<on  à  one  of  the  main  determinants  of  uremic  bleeding  

–  Mul<factorial  •  Intrinsic  platelet  defects  •  Abnormal  platelet  –endothelial  interac<on    •  Uremic  toxins  and  anemia  also  contribute  

•  Levels  of  circula<ng  coagula<on  factors  are  normal  –  Normal  PT/aPTT  –  Unless  there  is  a  coexis<ng  coagulopathy  

8  

Page 9: Lecture 6, coagulation fall 2014

Renal  Disease  

•  Bleeding    from  uremia  is  major  cause  of  morbidity  in  pa<ents  with  end-­‐stage  renal  disease  

•  Focus  a.  Platelet  dysfunc<on  b.  Abnormal  platelet-­‐vessel  wall  interac<ons  c.  Reten<on  of  uremic  toxins  d.  Increased  levels  of  nitrous  oxide  

•  Correc<on  of  the  anemia  with  RBC  transfusions  or  rEPO  à  improve  the  bleeding  tendency  

•  Hemodialysis  par<ally  corrects  the  BT  

9  

Page 10: Lecture 6, coagulation fall 2014

Pathophysiology  of  Renal  Disease      

•  Platelet  dysfunc<on  is  the  most  important  –  Decreased  platelet  aggrega<on  and  impaired  adhesiveness  

•  Impaired  IIb/IIIa  gp  receptor    •  Altered  release  of  ADP  and  serotonin  from  α-­‐granules    •  Decreased  TXA2  genera<on  •  Abnormal  platelet  cytoskeletal    assembly    

–  Uremic  toxins    •  Uremic  platelets  mixed  with  normal  plasma  func<on  normally  •  Uremic  plasma  with  normal  platelets  à  impaired  func<on  •  Guanidinosuccinic  acid  and  methylguanidine  may  be  poten<al  contributors    

–  Urea  does  not  appear  to  be  –  No  correla<on  with  azotemia  (BUN)  and  platelet  dysfunc<on  

10  

Page 11: Lecture 6, coagulation fall 2014

Pathophysiology  of  Renal  Disease      

•  Anemia  –  Common  finding  in  chronic  kidney  disease  

–  Due  to  decreased  produc<on  of  erythropoie<n  

–  Rheologic  factors  play  an  important  role  •  HCT  of  30%  à  RBCs  primarily  occupy  the  center  of  the  vessel  •  Where  platelets    are  in  a  skimming  layer  at  the  endothelial  surface  •  Close  proximity  of  platelets  to  the  endothelium  promotes  adherence  and  platelet  plug  forma<on  

•  HCT  less  than  30%  platelets  are  more  dispersed  à  impaired  adherence  to  the  endothelium  

–  Nitric  Oxide    •  NO  synthesis  is  increased  in  uremic  pa<ents  à  inhibitor  of  aggrega<on  

•  Increased  NO  synthesis  may  be  due  to  guanidinosuccinic  acid  (a  uremic  toxin)  

11  

Page 12: Lecture 6, coagulation fall 2014

Congenital  Disorders  of  Secondary  Hemostasis  Factor   Deficiency     ½  Life  

Hours  Lab  Finding   Clinical  Finding  

I   1.  Afibrinogenemia   No  clot,  Prolonged  PT,  aPTT,  TT,    No  Fibrinogen    

Umbilical  stump  bleeding,  easy  bruising,  ecchymoses,  oozing,  poor  wound  healing,  hematuria    

2.  Hypofibrinogenemia   Prolonged  PT,  aPTT,  TT,  Low  Fibrinogen  

Mild  bleeding    

3.  Dysfibrinogenemia   Normal  Fib  an<gen  with  low  ac<vity  (clot)    

Possible  hemorrhage/thrombosis  Possibly  asymptoma<c  

II   Hypoprothrombinemia   100   Prolonged  PT,  aPTT   Postopera<ve  bleeding,  epistaxis,  menorrhagia,  easy  bruising  

V   Parahemophilia   25   Prolonged  PT,  aPTT,  BT   Epistaxis,  menorrhagia,  easy  bruising  

VII   Hypoproconver<nemia   5   Prolonged  PT,  aPTT   Epistaxis,  menorrhagia,  cerebral  hemorrhage  

VIII   Hemophilia  A   8-­‐12   Prolonged  aPTT,  normal  PT,  BT   Mild,  moderate,  severe  

vWF     16-­‐24   Variable  aPTT  and  BT,  normal  PT   Mild,  moderate,  severe  

IX   Hemophilia  B  (Christmas  Disease)   20   Prolonged  aPTT,  normal  PT   Mild,  moderate,  severe    

X   Stuart-­‐Prower  Deficiency   65   Prolonged  aPTT,  normal  PT   Menorrhagia,  bruising,  epistaxis,  CNS  bleeding  

XI   (Hemophilia  C)   65   Prolonged  aPTT,  normal  PT     Mild  bleeding,  bruising,  epistaxis    

XII   Hageman  Trait   60   Prolonged  aPTT,  normal  PT   Thrombo<c  tendency,  NO  bleeding  

XIII   Factor  XIII  Deficiency   150   Normal  aPTT  and  PT,  abnormal  5M  Urea  Solubility  Assay    

Umbilical  stump  bleeding,  poor  wound  healing,  excessive  fibrinolysis,  male  sterility,  difficulty  conceiving,  intracranial  hemorrhage  

PK   Prekallikrein  (Flecther  Factor)   35   Normal  aPTT  and  PT     Thrombo<c  tendency,  NO  bleeding  

HMWK   Fitzgerald  Factor   156   Normal  aPTT  and  PT     Thrombo<c  tendency,  NO  bleeding     12  

Page 13: Lecture 6, coagulation fall 2014

  The  Talmud  (2nd  century  AD)  states  that  male  babies  do  not  have  to  be  circumcised  if  two  brothers  have  died  from  the  procedure         In  12th  century  Albucasis,  an  Arab  physician,  wrote  about  a   family   in  which  males  died    of  excessive  bleeding  from  minor  injuries         In   1803,   Dr.   John   O]o,   Philadelphia,   wrote   about   an   inherited   hemorrhagic  disposi<on  affec<ng  males         In   1828   at   the   University   of   Zurich,   “hemophilia"   was   first   used   to   describe   a  bleeding  disorder                                      

Bleeding  disorders  have  been  recognized  since  ancient  <mes…  

Page 14: Lecture 6, coagulation fall 2014

Congenital  Factor  Deficiencies  •  Most  common  

–  Hemophilia  A  –  deficiency  of  FVIII  –  Hemophilia  B  –  deficiency  of  FIX  Occur  very  early  in  life  

•  Characterized:  1.  Sow  <ssue  bleeds  2.  Joint  bleeds    3.  Bleeding  into  body  cavi<es  4.  Bleeding  into  CNS  

•  Manifest:  –  Awer  minor  trauma,  surgery,  tooth  extrac<ons    –  May  be  spontaneous    

•  Physical  Exam:  –  Petechiae,  ecchymoses,  hematomas,  joint  deformi<es  

•  Lab  Exam:  –  CBC  including  platelet  count,  PT,  aPTT,  Fibrinogen,  Thrombin  Time  

Page 15: Lecture 6, coagulation fall 2014

Hemophilia  •  The  hemophilias  are  a  group  of  related  bleeding  disorders  

that  most  commonly  are  inherited  •  “Hemophilia"  is  used,  it  most  owen  refers  to  the  following  two  

disorders  –  Factor  VIII  deficiency  (Hemophilia  A)  –  Factor  IX  deficiency  (Hemophilia  B  à    Christmas  disease)  

 •  Hemophilia  A  and  B  are  X-­‐linked  recessive  diseases  •  They  exhibit  a  range  of  clinical  severity  that  correlates  well  

with  assayed  factor  levels    

Page 16: Lecture 6, coagulation fall 2014

Disorders  of  Secondary  Hemostasis  

•  Hemophilia  A  and  B  –  Sex-­‐linked  recessive  disorders  first  described  in  the  Talmud  in  the  5th  century  –  By  the  end  of  the  19th  century  the  cloZng  <mes  of  plasma  from  persons  with  

hemophilia  were  found  to  be  greatly  prolonged  compared  with  the  cloZng  <mes  in  nonbleeders  

–  By  1947  hemophilia  was  a]ributed  to  a  single  protein  deficiency  –  Pavlovsky  showed  that  plasma  of  some  hemophilic  pa<ents  could  correct  the  in  

vitro  or  in  vivo  defects  of  other  pa<ents  with  clinically  iden<cal  bleeding  disorders  à  led  to  recogni<on  of  mulLple  types  of  hemophilia  

–  Hemophilias  A  and  B  together  occur  in  about  1/5,000  of  the  general  popula<on  –  Hemophilia  A  is  about  4-­‐6x  more  common  than  Hemophilia  B  

–  Defect  in  hemophilia  is  due  to  a  muta<on  located  on  the  “X”  chromosome  •  Females  can  be  carriers    

–  One  normal  +  one  defecLve  “X”  chromosome  •  Females  are  asymptoma<c    

1.  Transmit  one  abnormal  X  chromosome  to  each  male  offspring  2.  Male  offspring  would  have  hemophilia    

16  

Page 17: Lecture 6, coagulation fall 2014

Disorders  of  Secondary  Hemostasis  

•  Hemophilia  A  and  B  –  Sex-­‐linked  recessive  disorders  first  described  in  the  Talmud  in  the  5th  century  –  By  the  end  of  the  19th  century  the  cloZng  <mes  of  plasma  from  persons  with  

hemophilia  were  found  to  be  greatly  prolonged  compared  with  the  cloZng  <mes  in  nonbleeders  

–  By  1947  hemophilia  was  a]ributed  to  a  single  protein  deficiency  –  Pavlovsky  showed  that  plasma  of  some  hemophilic  pa<ents  could  correct  the  in  

vitro  or  in  vivo  defects  of  other  pa<ents  with  clinically  iden<cal  bleeding  disorders  à  led  to  recogni<on  of  mulLple  types  of  hemophilia  

–  Hemophilias  A  and  B  together  occur  in  about  1/5,000  of  the  general  popula<on  –  Hemophilia  A  is  about  4-­‐6x  more  common  than  Hemophilia  B  

–  Defect  in  hemophilia  is  due  to  a  muta<on  located  on  the  “X”  chromosome  •  Females  can  be  carriers    

–  One  normal  +  one  defecLve  “X”  chromosome  •  Females  are  asymptoma<c    

1.  Transmit  one  abnormal  X  chromosome  to  each  male  offspring  2.  Male  offspring  would  have  hemophilia    

17  

Page 18: Lecture 6, coagulation fall 2014

Hemophilia  •  Hemophilia  A  and  hemophilia  B  are  clinically  idenLcal  and  must  be  dis<nguished  from  

von  Willebrand  disease  –  Hemophilia  A  demonstrates  sex-­‐linked  inheritance  

•  Muta<on  occurs  on    the  FVIII  gene  located  on  Xq28  

–  Hemophilia  B  (Christmas  disease)  demonstrates  sex-­‐linked  inheritance  •  Muta<on  occurs  on  the  FIX  gene  located  on  Xq27  

•  Primarily  a  disease  of  males—females  carry  the  defec<ve  gene  (asymptoma3c)  

•  Hemophilic  females  are  exceedingly  rare  •  Carriers  possess  ~  50%  factor  levels  –  protec<ve  against  bleeding    –  Hemophilic  females    

1.  Doubly  heterozygotes  –  affected  inherited  from  a  carrier  mother  and  an  affected  father  

2.  Carriers  with  a  defec<ve  allele  on  one  X  chromosome  and  the  normal  allele  on  the  other  X  chromosome  undergoes  inacLvaLon  (lyoniza3on)    

3.  Turner’s  Syndrome  –  loss  of  one  X  chromosome      

18  

Page 19: Lecture 6, coagulation fall 2014

X-­‐Linked  Recessive  Inheritance  

Carrier  female  

Affected  male  

Normal  male  

•  Affected males (XY): – sons unaffected (no male to male transmission) – daughters obligate carriers

•  Carrier female (XX): – ½ sons affected; ½ daughters carriers

•  Affected females: very rare.

New  muta<on  in  germ  cell  

New  muta<on  in  maternal  or  paternal  germ  

cell  

Page 20: Lecture 6, coagulation fall 2014

20  

X-­‐linked  recessive  inheritance  of  hemophilia.  Asterisk  (*)  designates  affected  chromosome  

XX  

What’s  wrong  with  this  picture?  

Page 21: Lecture 6, coagulation fall 2014

Thrombin  Genera<on  in  Normal  Individuals  •  Normal  individuals  

1.  Forma<on  of  TF/VIIa  complex  following  vascular  injury    2.  Extrinsic  pathway  ac<va<on  of  FX  via  Extrinsic  Tenase  complex  

[TF:FVIIa:PF3:Ca2+]    3.  Ini<al  burst  of  thrombin  4.  TFPI  is  released  from  endothelial  cells  and  down-­‐regulates  the  

[TF:VIIa:FXa]  complex  à  turns  off  the  extrinsic  genera<on  of  thrombin  

5.  Thrombin  generated  from  the  Extrinsic  Pathway  à  thrombin  genera<on  

6.  Thrombin  converts  FVIII  à  FVIIIa  7.  FVIIIa  is  a  cofactor  for  the  forma<on  of  the  Intrinsic  Tenase  complex  

[VIIIa:IXa:PF3:Ca2+]    

8.  Intrinsic  tenase  complex  is  responsible  for  con$nued  thrombin  genera<on  

Page 22: Lecture 6, coagulation fall 2014

Pathophysiology  Hemophilia  A  •  Insufficient  genera<on  of  thrombin  by  

–  FIXa/VIIIa  complex  through  the  intrinsic  pathway  of  coagula<on  cascade  

–  Bleeding  severity  complicated  by  excessive  fibrinolysis    1.  IIa  cannot  feedback  to  ac<vate  VIII  à  VIIIa—VIII  is  defec3ve  

[Hemophilia  A]    2.  As  a  result  —VIIIa  cannot  bind  to  FIX  (FIX  is  normal  but  

nonfunc3onal)    3.  Due  to  lack  of  thrombin  ac<va<on  of  TAFI  

–  IIa  à  genera<on  of  TAFI  –  In  normal  TAFI  turns  OFF  fibrinolysis  –  In  hemophilia    there  is  a  decrease  in  TAFI  so  TAFI  cannot  turn  off  fibrinolysis  

»  Decreased  cloZng  due  to  decreased  FVIII/FIX  »  Increase  in  fibrinolysis  

Page 23: Lecture 6, coagulation fall 2014

Pathophysiology  Hemophilia  B  

•  Insufficient  genera<on  of  thrombin  by  –  FIXa/VIIIa  complex  through  the  intrinsic  pathway  of  coagula<on  cascade  

–  Bleeding  severity  complicated  by  excessive  fibrinolysis    1.  IIa  feedbacks  to  ac<vate  VIII  à  VIIIa  —FVIIIa    serves  

as  a  cofactor  to  orient  FIXa  in  forming  the  intrinsic  tenase  complex    

2.  As  a  result  —FIX  cannot  bind  form  the  intrinsic  tenase  complex  to  ac3vate  FX  [FIX  is  defec3ve]  – In  hemophilia  TAFI  cannot  turnoff  fibrinolysis  

» Decreased  cloZng  due  to  decreased  FVIII/FIX  » Increase  in  fibrinolysis  

Page 24: Lecture 6, coagulation fall 2014

Hemophilia  •  Pathophysiology  of  hemophilia  A  and  hemophilia  B  is  based  on  

–  Insufficient  generaLon  of  thrombin  by  the  FIXa/FVIIIa  complex  in  the  intrinsic  pathway  of  the  coagula<on  cascade  –  defec3ve  intrinsic  tenase  complex  forma3on    

24  

Hemophilia  A    

Defec$ve  FVIII  

Hemophilia  B    

DefecLve  FIX  

Intrinsic  Tenase  Defec$ve  

Extrinsic  Tenase  Normal  

Page 25: Lecture 6, coagulation fall 2014

Disorders  of  Secondary  Hemostasis  

•  Clinical  Symptoms  of  Hemophilia  A  and  B  –  Clinical  symptoms  are  iden$cal  1.  Deep  muscle  hematomas  2.  Hemarthroses  3.  Intracranial  bleeding  4.  Delayed  bleeding  5.  Prolonged  oozing  awer  injuries  and  tooth  extrac<on      ???  6.  Superficial  ecchymoses  

•  Hemophilia  A  and  B  can  be  divided  into  3  groups  

25  

Severe  cases  

ClassificaLon   ConcentraLon    of  factor  

Symptoms     Age  at    diagnosis  

Mild   6-­‐30%  (FVIII)  4-­‐50%  (FIX)  

1.  Bleeding  awer  major  trauma,  surgery,  dental  extrac<on  2.  No  spontaneous  bleeding  seen  

 

Owen  in  adulthood  

Moderate   1-­‐5%   1.  Muscle  and  joint  bleeding  awer  minor  trauma  2.  Excessive  bleeding  awer  minor  surgery  and  dental  

extrac<ons  3.  Occasional  spontaneous  bleeding  may  occur  

<5-­‐6  yrs  

Severe   ≤1%   1.  Frequent  spontaneous  bleeding  2.  Deep  muscle  bleeds,  hemarthroses,  intracranial  bleeds  3.  Profuse  bleeding  awer  trauma,  minor  surgery,  dental  

extrac<ons  

Page 26: Lecture 6, coagulation fall 2014

Factor  VIII  Deficiency  (An<hemophilic  Factor)    

•  Deficiency  of  the  FVIII:C    por<on  of  the  circula<on  FVIII:vWF  complex  –  In  Hemophilia  A—the  FVIII  component  is  missing  or  defec$ve  while  the  vWF  

component  is  normal  –  In  vWD—the  vWF  component  is  defecLve  while  the  FVIII  component  is  NORMAL  

•  FVIII:C    may  be  decreased  since  vWF  is  not  protec<ng  the  circula<ng  FVIII    •  Defect  in  secondary  hemostasis  à  unable  to  form  stable  fibrin  clot  

–  Primary  hemostasis  is  normal  –  Abnormal  bleeding  is  due  to  delayed  fibrin  forma<on  and  results  in  inadequate  fibrin  

forma<on    •  Factor  VIII  has  molecular  weight  of  330,000  D  

–  Gene  was  first  characterized  in  1980  and  located  near  the  <p  of  the  long  arm  of  the  X  chromosome  

–  Glycoprotein  that  par<cipates  in  the  middle  phase  of  the  intrinsic  pathway  –  Synthesized  in  the  liver  (and  endothelium)  and  secreted  into  plasma  where  it  

complexes  with  vWF  

26  

Page 27: Lecture 6, coagulation fall 2014

Structure  FVIII  •  Factor  VIII  gene  is  located  on  the  X  chromosome  –  Xq28  •  One  of  the  largest  known  genes  •  Divided  into  26  exons  that  span  186,000  base  pairs  •  Synthesized  as  a  single  chain  polypep<de  of  2351  amino  acids  •  A  19-­‐amino  acid  signal  pep<de  is  cleaved  by  a  protease  shortly  awer  synthesis  so  

that  circula<ng  plasma  factor  VIII  is  a  heterodimer    •  FVIII  circulates  in  plasma  in  a  noncovalent  complex  with  von  Willebrand  factor  

Page 28: Lecture 6, coagulation fall 2014

•  The  func<ons  of  factor  VIII  reflect  binding  at  specific  sites  within  the  molecule  

•  Factor  VIII  consists  of  –  A  heavy  chain  with  A1  and  A2  domains  

•  A2  domain  is  a  site  of  factor  IXa  binding,  the  ac<ve  enzyme  in  the  X-­‐ase  pathway  

–  A  connec3ng  region  with  a  B  domain  •  Connec<ng  region  that  separates  

the  second  and  the  third  A  domains  but  is  not  required  for  cloZng  ac<vity  

–  A  light  chain  with  A3,  C1,  and  C2  domains    

•  C2  domain  binds  to  the  procoagulant  phospholipid  phospha<dylserine  on  ac<vated  platelets  and  endothelial  cells  and  to  von  Willebrand  factor  

www.tankonyvtar.hu/hu/tartalom/tamop425/0011_1A_Molekularis_te  

Page 29: Lecture 6, coagulation fall 2014

FVIII  Deficiency  •  Most  muta<ons  occur  in  intron  22  

1.  Most  defects  are  point  muta<ons  2.  Dele<ons  and  nonsense  muta<ons  lead  to  truncated  molecules  of  FVIII  –  High  frequency  of  intron  22  inversions  may  relate  in  part  to  the  flexibility  

of  the  telomeric  end  of  the  long  arm  of  the  X  chromosome—called  flip-­‐Lp  mutaLon  

–  Intron  22  inversions  are  responsible  for  ~43%  of  severe  hemophilia  A  cases    

29  

Page 30: Lecture 6, coagulation fall 2014

Clinical  Manifesta<ons  •  Hallmark  of  hemophilia  is  hemorrhage  into  the  joints  

–  Resul<ng  in  •  Permanent  deformi<es  

–  Painful  and  lead  to  long-­‐term  inflamma<on  and  deteriora<on  of  the  joint  1.  Misalignment  2.  Loss  of  mobility  3.  Extremi<es  of  unequal  lengths    

–  Intracranial  hemorrhage  –  Hemorrhage  into  sow  <ssue  around  vital  areas  

•  Pathophysiology  –  Bleeding  probably  starts  from  synovial  vessels  into  the  synovial  space  –  Reabsorp<on  of  blood  is  owen  incomplete  à  chronic  prolifera<ve  synovi<s  à  

thickening  of  the  snynovium  crea<ng  a  “target  joint”  with  recurrence  of  bleeding  –  Destruc<on  of  surrounding  structures  and  bone  necrosis  with  cyst  formaLon  and  

osteophytes  

Page 31: Lecture 6, coagulation fall 2014

Clinical  manifesta<ons  Intracranial  hemorrhage  

•  Leading  cause  of  death  of  hemophiliacs  

•  Spontaneous  or  following  trauma  

•  May  be  subdural,  epidural  or  intracerebral  

•  Suspect  always  in  hemophilic  pa<ent  that  presents  with  unusual  headache  

•  If  suspected-­‐  FIRST  TREAT,  then  pursue  diagnos<c  workup  

•  LP  only  when  fVIII  has  been  replaced  to  more  than  50%  

Page 32: Lecture 6, coagulation fall 2014

Clinical  manifesta<ons  Pseudotumors  

•  Dangerous  and  rare  complica<on  

•  Blood  filled  cysts  that  are  gradually  expanding  

•  Occur  in  sow  <ssues  or  bones.  •  Most  commonly  in  the  thigh  •  As  they  increase  in  size  they  

erode  con<guous  structures.  •  May  require  radical  surgeries  

or  amputa<on,  and  surgery  is  owen  complicated  with  infec<on  

A  pseudotumor  is  deforming  the  cortex  of  the  femur  (arrow).    Other  ossified  masses  in  the  sow  <ssues  (arrowheads)  are  probably  sow-­‐<ssue  pseudotumors.    

Page 33: Lecture 6, coagulation fall 2014

•  Queen  Victoria  was  a  carrier  –  Queen  of  England  (1837-­‐1901)  –  Spontaneous  muta3on  

•  Her  father  (Duke  of  Kent)  was  not  affected  

•  Her  mother  did  not  have  any  affected  children  from  the  previous  marriage  

•  Leopold  (her  8th  child)  had  hemophilia  –  Died  brain  hemorrhage  (age  31)  –  Had  children  –  Alice  (carrier)  

•  Beatrice  (QV  youngest  child)  had  2  hemophilic  sons  and  a  daughter  (Victoria  Eugene)  who  was  a  carrier)  

–  Victoria  Eugene  introduced  hemophilia  into  the  Spanish  royal  family  by  marrying  king  Alfonso  XIII  

•  Alexandra  (QV  granddaughter)  married  Nicholas  –  Tsar  of  Russia  

–  Alexandra  was  a  carrier  –  her  1st  son  Alexei  had  hemophilia  

•  Raspu<n  (monk)  used  hypnosis  to  relieve  Alexei’s  pain  

 

Page 34: Lecture 6, coagulation fall 2014

Complica<ons  of  Treatment  

•  Inhibitors/an<body  development    –  Defini<on    

•  IgG  an<body  to  infused  factor  VIII  or  IX  concentrates,  which  occurs  awer  exposure  to  the  extraneous  VIII  or  IX  protein  

–  Prevalence  •  20-­‐30%  of  pa<ents  with  severe  hemophilia  A  •  1-­‐4%  of  pa<ents  with  severe  hemophilia  B  

•  Hepa<<s  A  •  Hepa<<s  B  •  Hepa<<s  C  

•  HIV  

Page 35: Lecture 6, coagulation fall 2014

Inhibitors  •  Inhibitors  are  alloan<bodies  directed  against  a  specific  factor  –  

neutralizing  the  effect  of  replacement  therapy  •  Directed  against  specific  epitopes  on  the  factor  VIII  molecule  •   FVIII  Inhibitors  

•  Usually  IgG  –  IgG4  subclass  •  Occur  in  ~30-­‐40%  of  pa<ents  with  large  dele3ons  or  missense  muta3ons  •  Lead  to  severe  deficiency  of  FVIII  •  Overall  occurrence  in  all  types  of  FVIII  deficiencies  is  ~20%  

•  Low  Responders  –  <  5-­‐10  BU  –  Titers  do  NOT  increase  in  response  to  exposure  to  FVIII  

•  High  Responders  –  >  10  BU  –  Titers  increase  with  exposure  to  FVIII  

•  FIX  Inhibitors  –  Less  common  –  occurring  in  ~3%  of  cases  

 

Dived  these  into  

two  grou

ps  

Page 36: Lecture 6, coagulation fall 2014

Inhibitors  

•  Inhibitors  are  iden<fied  by  performing  mixing  study  – Corrects  in  the  immediate  and  prolongs  in  the  incubated  •  FVIII  inhibitors  are  IgG  –  warm-­‐reac<ng  an<bodies  –  $me  dependent  

•  FIX  inhibitors  are  IgG  –  usually  immediate-­‐ac<ng  inhibitors  

– Bethesda  Assay  is  used  to  determine  the  amount  of  inhibitor  present  

 

Page 37: Lecture 6, coagulation fall 2014

Acquired  Hemophilia  •  Rare,  poten<ally  life-­‐threatening  bleeding  disorder  •  Development  of  autoan<bodies  directed  against  FVIII  –spontaneous  autoimmune  

disorder  –  FIX  autoan<bodies  are  less  common  –  Alloan<bodies  in  congenital  hemophilia  –  Autoan<bodies  in  acquired  hemophilia  

•  Type  II  kine<cs  –  complex  –  Ini<al  rapid  inac<va<on  followed  by  a  slower  inac<va<on  curve  and  resul<ng  in  some  level  of  residual  FVIII    

•  Associated  with:    –  Idiophathic,  pregnancy,  autoimmune  disorders  –  Inflammatory  bowel  disease,  ulcera<ve  coli<s  –  Rheumatoid  arthri<s,  systemic  lupus  mul<ple  sclerosis,  Graves  disease,  

Sjogren  syndrome    –  Drugs  –  Some  hematologic  malignancies  

Page 38: Lecture 6, coagulation fall 2014

Treatment  of  Hemophilia  •  Replacement  therapy  

–  Plasma  •  FFP  –  did  not  raise  FVIII  levels  too  high,  many  suffered  volume  overload,  pa<ents  spent  a  lot  of  <me  in  hospital    

•  Before  1985  all  plasma  derived  products  were  highly  contaminated  by  blood  borne  virus  such  as  HIV,  HBV  and  HCV  à  not  so  much  not  due  to  screening    of  donors  and  viral  inac<va<on  techniques  such  as  pasteuriza<on,  solvent  detergent  treatment  and  ultrafiltra<on    

•  Some  theore<cal  concern  about  non  lipid  coated  parvovirus,  HAV  and  prion  disease  such  as  Creutzfeld-­‐Jakob  

Page 39: Lecture 6, coagulation fall 2014

Treatment  of  Hemophilia  •  Cryoprecipitate    

–  Contains  high  levels  of  FVIII,  Fibrinogen,  vWF,  and  FXIII  –  1  unit  of  FFP  prepared  by  cryoprecipitate  contains  50-­‐120  U  of  VIII  

•  Plasma  derived  FVIII  using  monoclonal  an<bodies  

•  Recombinant  FVIII    •  First  genera<on  –  hamster  cell  culture  –  contains  albumin  for  stabiliza<on  –  possible  source  of  viral  contamina<on    

•  Second  Genera<on  –  mutated  FVIII  lacking  the  B  domain  (no  role  in  cloZng)  –  stabilized  by  sucrose  (albumin-­‐free)    

•  Porcine  FVIII  

Page 40: Lecture 6, coagulation fall 2014

Treatment  of  Hemophilia  •  Replacement  of  missing  cloZng  protein  

–  On  demand  –  Prophylaxis    

•  Prophylac<c  transfusions  must  be  started  at  age  2  to  3  –  Need  central  access,  risk  of  bacteriemia,  costly  

–  Humate-­‐P,  Alphanate,  Mononine    •  DDAVP  /  S<mate  –  release  of  vWF  and  FVIII  

•  An<fibrinoly<c  Agents  –  Amicar  

•  Suppor<ve  measures  –  Icing,  immobiliza<on,  rest  

•  Prophylac<c  transfusions  must  be  started  at  age  2  to  3  –  Need  central  access,  risk  of  bacteremia,  costly    

Page 41: Lecture 6, coagulation fall 2014

Hemophilia  is  an  ideal  disease  for  gene  therapy:    •   caused  by  a  single  malfunc<oning  gene    •   just  small  increase  in  factor  level  will  provide  great  benefit:      raising  factor  by  2%  will  prevent  spontaneous  hemorrhages  into  joints,  brain  and  other  organs;  levels  greater  than  20%  to  30%  will  prevent  bleeding  in  most  injuries  

Page 42: Lecture 6, coagulation fall 2014

Recombinant  FactorVIII:        Inser<on  of  human  factor  VIII  DNA  into  vector  system  allowing  incorpora<on  into  non-­‐human  mammalian  cell  

lines  for  con<nued  propaga<on  

Page 43: Lecture 6, coagulation fall 2014

Financial  &  Insurance  Issues•  >  70%  of  cloZng  factor  distribu<on  is  by  for-­‐profit  companies  average  cost/yr  for  human  plasma  derived  or  recombinant  factor  is  $50,000  -­‐  $100,000  

•     Prophylaxis  requires  about  150,000  units/yr  for  a    65-­‐pound  child  cos<ng  $85,000  per  year  

•       Prophylaxis  is  covered  by  insurance  on  a  case-­‐by-­‐case  basis.    

Page 44: Lecture 6, coagulation fall 2014

Summary  Hemophilia  A  and  B  

Hemophilia  A  -­‐  (Classic  Hemophilia)   Hemophilia  B  -­‐  (Christmas  Disease)  

Factor  Deficiency   Factor  VIII   Factor  IX  

Inheritance   X-­‐linked  recessive   X-­‐linked  recessive  

Gene   1.  FVIII  gene  on  X  chromosome  –cloned  1984  

2.  Large  gene—187kb,  26  exons  3.  98%  of  pa<ents  have  muta<on  –  on  locus  

Xq28,  48%  of  individuals  with  severe  have  inversion  of  intron  22  

1.  FIX  gene  on  X  chromosome  –  cloned  1982  

2.  34  kb,  8  exons  3.  99%  of  muta<ons  –  on  Xq27.1-­‐q27.2  

Incidence   1/10,000  males   1/50,000  males  

Severity   Related  to  Factor  Level  

1.   Severe  =  <1%  ac<vity   Bleeding  awer  major  trauma,  major  surgery,  dental  extrac<on;  no  spontaneous  bleeding  seen,  owen  seen  in  early  infancy  (<1  year)  

2.   Moderately  Severe  =  1-­‐5%  ac<vity  

Muscle  and  joint  bleeding  awer  minor,  trauma;  excessive  bleeding  awer  minor,  surgery  and  dental  extrac<ons;  occasional  spontaneous  bleeding  occurs,  owen  seen  <5-­‐6  years  of  age  

3.   Mild  =  6-­‐30%  ac<vity   Bleeding  awer  major  trauma,  major  surgery,  dental  extrac<on;  no  spontaneous  bleeding  seen,  owen  seen  only  in  adulthood  

Complica<ons   •  Sow  <ssue  bleed,  Intramuscular  bleed,  Hemarthrosis,  Urinary  tract  bleeding,  CNS  (major  life  threatening  bleed)   44  

Page 45: Lecture 6, coagulation fall 2014

Lab  Diagnosis  in  Hemophilia  A  and  B  

•  Laboratory  Diagnosis  

 

1.  Why  do  hemophiliacs  bleed?  2.  Delayed  bleeding    (secondary  hemosta<c  defects)  3.  Rapid  bleeding  (primary  hemosta<c  defects  4.  Oozing  

 45  

Hemophilia  A   Hemophilia  B  

PT   Normal   Normal  

aPTT   1.  Prolonged  2.  May  be  normal  in  mild  cases  

1.  Prolonged  2.  May  be  normal  in  mild  cases  

Platelet  Ct   Normal   Normal    

PFA/BT   Normal     Normal    

Mixing  Study   1.  Corrects  immediately  and  awer  incuba<on  

2.  Time-­‐dependent  inhibitor  

1.  Corrects  immediately  and  awer  incuba<on  

2.  Immediate-­‐ac3ng  inhibitor  

vWF   Normal     Normal    

FVIII  Decreased   FIX  Decreased    

How  do  these  differ?  

Page 46: Lecture 6, coagulation fall 2014

Factor  XI  Deficiency  

•  Hemophilia  C  ––  (Plasma  Thromboplas<n  Antecedent)  •  Also  called  Rosenthal  Syndrome  (described  in  1953)  

•  Autosomal  dominant  or  recessive  à  occurs  in  males  and  females    –  2  common  muta<ons  (one  nonsense,  one  missense)  –  Allele  frequency  as  high  as  10%,  0.1-­‐0.3%  homozygous  –  Most  affected  pa<ents  compound  heterozygotes  with  low  but  

measurable  levels  of  XI  ac<vity  

–  Different  from  hemophilias  A  and  B  which  are  sex-­‐liked  

•  Rare  in  the  general  popula<on  1  in  million  –  More  common  in  the  Ashkenazi  Jewish  popula<on  1  in  450  

•  In  vivo  FXI  is  ac<vated  by  thrombin  •  in  vitro  FXI  is  ac<vated  by  XIIa    

•  aPTT  is  abnormal  with  normal  PT,  FIX  levels  are  decreased    

46  

Page 47: Lecture 6, coagulation fall 2014

Factor  XI  Deficiency  

•  50%  of  pa<ents  with  FXI  deficiency  bleed  and  50%  do  not  bleed  –  Bleeding  is  associated  with  <ssues  high  in  fibrinoly<c  ac<vity  –  Variable,  generally  mild  bleeding  tendency  

•  Bleeding  awer  trauma  &  surgery  •  Spontaneous  bleeding  uncommon  •  Bleeding  risk  does  not  correlate  well  with  XI  level  

•  Mucous  membranes,  oral  cavity  •  FXI  is  a  nega3ve  regula<on  of  TAFI  –  this  may  explain  why  a  deficiency  leads  to  bleeding  in  some  pa<ents  

•  Treatment    •  FFP,  cryoprecipitate,  FXI  concentrates,  and  an<fibrinoly<c  agents  

47  

Page 48: Lecture 6, coagulation fall 2014

Congenital  Deficiency  of  the  Contact  Factors  

•  FXII  Deficiency  –  Markedly  prolonged  aPTT  –  Pa<ents  do  NOT  exhibit  a  bleeding  tendency  –  Pa<ents  have  thrombo<c  tendency  

•  Due  to  a  defect  in  contact  ac<va<on  of  the  fibrinoly<c  system  –  requires  FXII  and  PK  

•  Tendency  to  develop  thromboemboli  par<cularly  following  trauma  or  surgery  

•  Prekallikrein  Deficiency  (Fletcher  Trait)  –  Prolonged  aPTT  –  Pa<ents  do  NOT  exhibit  a  bleeding  tendency  –  Pa<ents  have  a  thrombo<c  tendency  –  Defect  in  contact  ac<va<on  of  the  fibrinoly<c  system  requiring  PK  –  Prolonged  aPTT  will  normalize  by  increasing  the  incuba$on  $me  

•  High  Molecular  Weight  Kininogen  (Fitzgerald  Factor)  –  Markedly  prolonged  aPTT  –  Pa<ents  do  NOT  exhibit  a  bleeding  tendency  –  Pa<ents  have  thrombo<c  tendency  

•  Due  to  a  defect  in  contact  ac<va<on  of  the  fibrinoly<c  system  –  requires  FXII  and  PK  

 

Page 49: Lecture 6, coagulation fall 2014

FXIII  Deficiency  •  FXIII  is  a  tetrameric  zymogen  that  is  

converted  into  an  ac<ve  transglutaminase  by  thrombin  and  Ca2+  in  the  terminal  phase  of  the  cloZng  cascade  

•  Hallmarks  of  FXIII  deficiency  1.  Umbilical  stump  bleeding  in  

neonatal  period  2.  Intracranial  hemorrhage  with  li]le  

or  no  trauma  3.  Recurrent  sow  <ssue  hemorrhage  4.  Recurrent  spontaneous  abor<on    5.  Impaired  wound  healing  and  

spontaneous  abor<on  

•  Bleeding  –  Usually  associated  with  trauma  –  Bleeding  at  <me  of  surgery  is  not  

excessive  •  Delayed  bleeding  can  occur  

Page 50: Lecture 6, coagulation fall 2014

Inherited  factor  XIII  deficiency  •  Autosomal  recessive,  rare  (consanguineous  parents)  •  Heterozygous  woman  may  have  higher  incidence  of  spontaneous  abor<on  •  Most  have  absent  or  defec<ve  A  subunit  

•  F  XIII  ac<vity  <  1%    (1-­‐2%  is  adequate  for  hemostasis)  –  Bleeding  begins  in  infancy  (umbilical  cord)  –  Poor  wound  healing  –  Intracranial  hemorrhage  –  Oligospermia,  infer<lity  

•  Diagnosis:  –  Urea  solubility  test  –  Quan<ta<ve  measurement  of  XIII  ac<vity  –  Rule  out  acquired  deficiency  due  to  autoan<body  

•  F  XIII  concentrates  available  (long  half  life,  can  administer  every  4-­‐6  weeks  as  prophylaxis)  

Page 51: Lecture 6, coagulation fall 2014

Clinical Testing for Factor XIII

Urea  Clot  Solubility  Test  •  Qualita<ve  assay  •  Pa<ent  sample  is  clo]ed  and  then  clot  is  placed  in  5  M  urea  for  24  hours  at  

room  temperature  –  Clots  formed  by  normal  individuals  remain  stable  –  Clots  from  factor  XIII  deficient  pa<ents  dissolve  

•  Detects  only  the  most  severely  affected  homozygous  pa<ents  with  1%  to  2%  factor  XIII  ac<vity  or  less  

•  Urea  solubility  assay  •  Factor  XIII  forms  covalent  cross  links  between  fibrin  chains  •  In  the  absence  of  Factor  XIII  à  the  fibrin  clot  will  be  dissolved  by  5  M  urea  which  disrupts  the  hydrogen  bonds  

•  This  assay  will  be  abnormal  only  if  the  factor  XIII  level  is  <2-­‐5%  

Page 52: Lecture 6, coagulation fall 2014

FXIII  Deficiency  •  Laboratory  results  

–  Normal  PT,  APTT,  TT,  BT  despite  history  of  bleeding  –  Solubility  of  fibrin  clots  in  5  M  urea  or  1%  monochloroace<c  acid  –  Minimal  ac<vity  (2-­‐5%)  needed  to  maintain  hemostasis  –  Therapy  if  needed  

•  FFP,  cryoprecipitate,  FXIII  concentrates  are  available  in  Europe    •  Acquired  factor  XIII  deficiency  

–  Autoan<body-­‐mediated  •  Very  rare  •  Most  pa<ents  elderly  •  May  be  drug-­‐induced  (isoniazid,  other  an<bio<cs)  •  Bleeding  may  be  severe  •  Diagnosis:  

–  Urea  solubility  –  F  XIII  ac<vity  –  Mixing  study?  

Page 53: Lecture 6, coagulation fall 2014

Factor  Assays  

•  Principle  –  Ability  of  the  pa<ent’s  plasma  to  correct  a  prolonged  PT  or  APTT  of  a  known  factor  

deficient  plasma  –  Normal  ac<vity  range  is  50-­‐150%  or  50%  factor  ac<vity  

•  Determines  type  of  factor  deficiency  and  ac<vity  •  Targets  either  

–   PT:  Factors  VII,  X,V,  III  and  II  –   APTT:  Factors  XII,  XI,IX  and    VIII  

•  Methodology  –  Factor  deficient  plasmas  are  used  that  contain  100%  of  all  factors  except  the  one  in  

ques<on  –  1:10,  1:20,  1:40  dilu<ons  are  made,  1:10  is  considered  100%  –  A  control  to  compare  results  to,  normal  plasma  (containing  100%  of  all  factors)  is  added  

to  the  commercially  prepared  factor  deficient  plasma  in  the  same  way  –  Pa<ent  sample  and  control  are  compared  to  a  standard  curve  where  the  cloZng  <mes  

have  been  established  using  known  concentra<on  

Page 54: Lecture 6, coagulation fall 2014

FIGURE 40-4 Factor activity curve. The factor activity curve is prepared by plotting the clotting time in seconds for each reference plasma dilution on the y-axis and the percent factor activity for each dilution on the x-axis. (Reprinted, with permission, from Brown BA. Hematology: Principles and Procedures, 6th ed. Philadelphia: Lea & Febiger; 1993.)

Page 55: Lecture 6, coagulation fall 2014

Coagulation Screening Test Results in Congenital Deficiencies

McKenzie