21
Levenberg Marquardt Algorithm Kamal Aghazade [email protected] In The Name Of God

Levenberg - Marquardt (LM) algorithm_ aghazade

Embed Size (px)

Citation preview

Page 1: Levenberg - Marquardt (LM) algorithm_ aghazade

Levenberg Marquardt Algorithm

Kamal [email protected]

In The Name Of God

Page 2: Levenberg - Marquardt (LM) algorithm_ aghazade

Introduction

Linear Inverse Problems

• The relation between unknown model parameters and observed data is Linear.

Nonlinear Inverse Problems• the relationship between the model

parameters and the data can be Nonlinear.

• Nonlinearity itself is the source of ill-posedness.

2

Nonlinear least squares problems arise when the function is not linear in the parameters. Nonlinear least squares methods involve an iterative improvement to parameter values in order to reduce the sum of the squares of the errors between the function and the measured data points.

Page 3: Levenberg - Marquardt (LM) algorithm_ aghazade

one of the main difficulty with nonlinear problems is the local minima trap.

The initial model is important for certain convergence.

3Local minima trap

Page 4: Levenberg - Marquardt (LM) algorithm_ aghazade

Jacobian Matrix :represents the local sensitivity of the calculated data to variation in the parameters .

Solution of the nonlinear problems leads to iterative procedure.

4Taylor series approximation

In local optimization manner we are looking for a solution that is optimal (either maximal or minimal) within a neighboring set of candidate solutions.

Page 5: Levenberg - Marquardt (LM) algorithm_ aghazade

Newton root finding algorithm 5

Itterative process need to resolve the unkonwns .

Page 6: Levenberg - Marquardt (LM) algorithm_ aghazade

Gauss Newton Algorithm 6

Page 7: Levenberg - Marquardt (LM) algorithm_ aghazade

7

Gauss-Newton Algorithm

Page 8: Levenberg - Marquardt (LM) algorithm_ aghazade

Challenges with nonlinear LS problems

Gradient Descent

• certain Convergence

• Slow convergence rate

Gauss Newton

• No guarantee about convergence

• good convergence rate

8

Certain Convergence & Convergence rate

Another Problem: Matrix Singularity may occur.

Page 9: Levenberg - Marquardt (LM) algorithm_ aghazade

Levenberg Marquardt Algorithm

By defining new parameter in Gauss Newton Algorithm we can deal with Convergence guarantee , Convergence rate and Matrix singularity.LM :

9

Page 10: Levenberg - Marquardt (LM) algorithm_ aghazade

10

Page 11: Levenberg - Marquardt (LM) algorithm_ aghazade

The hard part of the Levenberg–Marquardt method is determining the right value of λ. The general idea is to use small values of λ in situations where the Gauss–Newton method is working well, but to switch to larger values of λ when the Gauss–Newton method is not making progress. A very simple approach is to start with a small value of λ, and then adjust it in every iteration. If the Levenberg–Marquardt step leads to a reduction in f(m), then decrease λ by a constant factor (say 2). If the Levenberg–Marquardt step does not lead to a reduction in f(m), then do not take the step. Instead, increase λ by a constant factor (say 2), and try again. Repeat this process until a step is found which actually does decrease the value of f(m). Aster (2005)

11

Page 12: Levenberg - Marquardt (LM) algorithm_ aghazade

Gradient Descent Algorithm 12

Page 13: Levenberg - Marquardt (LM) algorithm_ aghazade

Gauss - Newton Algorithm 13

Page 14: Levenberg - Marquardt (LM) algorithm_ aghazade

Levenberg Marquardt Algorithm

14

Page 15: Levenberg - Marquardt (LM) algorithm_ aghazade

ExampleEarthquake location (Modern Global Seismology , page 231).

15

Page 16: Levenberg - Marquardt (LM) algorithm_ aghazade

Stations Location16

Page 17: Levenberg - Marquardt (LM) algorithm_ aghazade

Initial model 17

X0 21

Y0 21

Z0 12

t0 30

Page 18: Levenberg - Marquardt (LM) algorithm_ aghazade

Gradient Descent Algorithm 18

Page 19: Levenberg - Marquardt (LM) algorithm_ aghazade

Results19

Page 20: Levenberg - Marquardt (LM) algorithm_ aghazade

Iteration Newton Levenberg Marquardt

1 29.26830.7036

21.0631 34.4796

29.2612 30.7085 21.1182 34.4767

2   30.0082 30.1598 11.1419 35.0240

30.0007 30.1781 11.2455 35.0169

3 29.9522 30.1925 9.1039 34.9608

29.9405 30.2195 9.3350 34.9501

4 29.9532 30.1922 8.9268 34.9596

29.9395 30.2237 9.2259 34.9473

5   29.9533 30.1921 8.9249 34.9596

29.9394 30.2240 9.2280 34.9472

X0 21

Y0 21

Z0 12

t0 30

Initial Model

X0 30

Y0 30

Z0 8

t0 35

True Model

20

Page 21: Levenberg - Marquardt (LM) algorithm_ aghazade

Good Luck