33
LumiLab Department of Solid State Sciences Ghent University Belgium iCom, Budva, Montenegro September 4, 2015 Jonas J. Joos , Dirk Poelman, Philippe F. Smet Jonas Joos Nonequivalent lanthanide defects: energy level modeling Nonequivalent lanthanide defects: energy level modeling

Nonequivalent lanthanide defects: energy level modeling

Embed Size (px)

Citation preview

Page 1: Nonequivalent lanthanide defects: energy level modeling

LumiLab Department of Solid State Sciences

Ghent UniversityBelgium

iCom, Budva, MontenegroSeptember 4, 2015

Jonas J. Joos, Dirk Poelman, Philippe F. Smet

Jonas Joos Nonequivalent lanthanide defects: energy level modeling

Nonequivalent lanthanide defects: energy level modeling

Page 2: Nonequivalent lanthanide defects: energy level modeling

Energy levels, a tool for spectroscopy

1

Jonas Joos Nonequivalent lanthanide defects: energy level modeling

4f2 4f5d CT host*

many-body diagram

Pr3+

Page 3: Nonequivalent lanthanide defects: energy level modeling

Energy levels, a tool for spectroscopy

1

Jonas Joos Nonequivalent lanthanide defects: energy level modeling

4f2 4f5d CT host*

many-body diagram

Pr3+

Page 4: Nonequivalent lanthanide defects: energy level modeling

Energy levels, a tool for spectroscopy

1

Jonas Joos Nonequivalent lanthanide defects: energy level modeling

4f2 4f5d CT host*

many-body diagramone-electron diagram

Pr3+

Page 5: Nonequivalent lanthanide defects: energy level modeling

Energy levels, a tool for spectroscopy

1

Jonas Joos Nonequivalent lanthanide defects: energy level modeling

4f2 4f5d CT host*

many-body diagramone-electron diagramcharge-state transition level

Pr3+

Page 6: Nonequivalent lanthanide defects: energy level modeling

Empirical energy level schemes

2

CaGa2S4

Jonas Joos Nonequivalent lanthanide defects: energy level modeling

Page 7: Nonequivalent lanthanide defects: energy level modeling

Empirical energy level schemes

2

CaGa2S4

Jonas Joos Nonequivalent lanthanide defects: energy level modeling

Page 8: Nonequivalent lanthanide defects: energy level modeling

Empirical energy level schemes

2

CaGa2S4

Jonas Joos Nonequivalent lanthanide defects: energy level modeling

easy!

Page 9: Nonequivalent lanthanide defects: energy level modeling

Multiple defects

3

Jonas Joos Nonequivalent lanthanide defects: energy level modeling

Easy: All lanthanide ions do the same

example: CaGa2S4

Harder: All lanthanides do the same

example: SrAl2O4

Hard: Some lanthanides act “special”

example: SrGa2S4

Sr1 Sr2

Eu2+ Ce3+

Page 10: Nonequivalent lanthanide defects: energy level modeling

Multiple defects

3

Jonas Joos Nonequivalent lanthanide defects: energy level modeling

Easy: All lanthanide ions do the same

example: CaGa2S4

Harder: All lanthanides do the same

example: SrAl2O4

Hard: Some lanthanides act “special”

example: SrGa2S4

Sr1 Sr2

Eu2+ Ce3+

Page 11: Nonequivalent lanthanide defects: energy level modeling

Site-selective PL spectroscopy

4

Eu2+

J. Botterman, J. J. Joos, P. F. Smet, Phys. Rev. B 90, 085147 (2014)

Sr1 Sr2

Jonas Joos Nonequivalent lanthanide defects: energy level modeling

Page 12: Nonequivalent lanthanide defects: energy level modeling

Site-selective PL spectroscopy

4

Eu2+

Ce3+

D. D. Jia, J. Lumin. 117, 170 (2006)

Sr1 Sr2

Jonas Joos Nonequivalent lanthanide defects: energy level modeling

Page 13: Nonequivalent lanthanide defects: energy level modeling

Site-selective PL spectroscopy

4 J. Botterman, J. J. Joos, P. F. Smet, Phys. Rev. B 90, 085147 (2014)

VB

Eu2+

Ce3+

Eu3+

Jonas Joos Nonequivalent lanthanide defects: energy level modeling

Page 14: Nonequivalent lanthanide defects: energy level modeling

Site-selective PL spectroscopy

4 J. Botterman, J. J. Joos, P. F. Smet, Phys. Rev. B 90, 085147 (2014)

VB

vacuum

EuSr1 EuSr2

Eu2+

Ce3+

Eu3+

Sr1 Sr2

Jonas Joos Nonequivalent lanthanide defects: energy level modeling

Page 15: Nonequivalent lanthanide defects: energy level modeling

Two-site energy level scheme

5

Trivalent lanthanides

Sr1Sr2

J. Botterman, J. J. Joos, P. F. Smet, Phys. Rev. B 90, 085147 (2014)

Jonas Joos Nonequivalent lanthanide defects: energy level modeling

Page 16: Nonequivalent lanthanide defects: energy level modeling

Two-site energy level scheme

6

Divalent lanthanides

Sr1Sr2Sr1

Sr2

J. Botterman, J. J. Joos, P. F. Smet, Phys. Rev. B 90, 085147 (2014)

Jonas Joos Nonequivalent lanthanide defects: energy level modeling

Page 17: Nonequivalent lanthanide defects: energy level modeling

Two-site energy level scheme

7

Divalent lanthanides

J. Botterman, J. J. Joos, P. F. Smet, Phys. Rev. B 90, 085147 (2014)

Jonas Joos Nonequivalent lanthanide defects: energy level modeling

Sr1Sr2

Page 18: Nonequivalent lanthanide defects: energy level modeling

Two-site energy level scheme

7

Divalent lanthanides

J. Botterman, J. J. Joos, P. F. Smet, Phys. Rev. B 90, 085147 (2014)

Jonas Joos Nonequivalent lanthanide defects: energy level modeling

Page 19: Nonequivalent lanthanide defects: energy level modeling

Multiple defects

3

Jonas Joos Nonequivalent lanthanide defects: energy level modeling

Easy: All lanthanide ions do the same

example: CaGa2S4

Harder: All lanthanides do the same

example: SrAl2O4

Hard: Some lanthanides act “special”

example: SrGa2S4

Sr1 Sr2

Eu2+ Ce3+

Page 20: Nonequivalent lanthanide defects: energy level modeling

Multiple defects

3

Jonas Joos Nonequivalent lanthanide defects: energy level modeling

Easy: All lanthanide ions do the same

example: CaGa2S4

Harder: All lanthanides do the same

example: SrAl2O4

Hard: Some lanthanides act “special”

example: SrGa2S4

Sr1 Sr2

Eu2+ Ce3+

Page 21: Nonequivalent lanthanide defects: energy level modeling

PL spectroscopy Eu2+ and Ce3+

8

Jonas Joos Nonequivalent lanthanide defects: energy level modeling

energy (eV)

Page 22: Nonequivalent lanthanide defects: energy level modeling

PL spectroscopy Eu2+ and Ce3+

8

Jonas Joos Nonequivalent lanthanide defects: energy level modeling

energy (eV)

Page 23: Nonequivalent lanthanide defects: energy level modeling

PL spectroscopy Eu2+ and Ce3+

Jonas Joos Nonequivalent lanthanide defects: energy level modeling

8 energy (eV)

Page 24: Nonequivalent lanthanide defects: energy level modeling

PL spectroscopy Eu2+ and Ce3+

Jonas Joos Nonequivalent lanthanide defects: energy level modeling

8 energy (eV)

Page 25: Nonequivalent lanthanide defects: energy level modeling

PL spectroscopy Eu2+ and Ce3+

Jonas Joos Nonequivalent lanthanide defects: energy level modeling

8 energy (eV)

Page 26: Nonequivalent lanthanide defects: energy level modeling

PL spectroscopy Eu2+ and Ce3+

Jonas Joos Nonequivalent lanthanide defects: energy level modeling

8 energy (eV)

Page 27: Nonequivalent lanthanide defects: energy level modeling

PL spectroscopy Eu2+ and Ce3+

Jonas Joos Nonequivalent lanthanide defects: energy level modeling

8 energy (eV)

Page 28: Nonequivalent lanthanide defects: energy level modeling

Local environment from EPR

9

SrGa2S4:Eu2+ SrGa2S4:Ce3+

W. L. Warren et al., Appl. Phys. Lett. 70, 478 (1997)

Jonas Joos Nonequivalent lanthanide defects: energy level modeling

SrGa2S4:Ce3+

Page 29: Nonequivalent lanthanide defects: energy level modeling

Repercussions on E-level scheme

10

Jonas Joos Nonequivalent lanthanide defects: energy level modeling

Page 30: Nonequivalent lanthanide defects: energy level modeling

Repercussions on E-level scheme

10

Jonas Joos Nonequivalent lanthanide defects: energy level modeling

Page 31: Nonequivalent lanthanide defects: energy level modeling

Multiple defects

3

Jonas Joos Nonequivalent lanthanide defects: energy level modeling

Easy: All lanthanide ions do the same

example: CaGa2S4

Harder: All lanthanides do the same

example: SrAl2O4

Hard: Some lanthanides act “special”

example: SrGa2S4

Sr1 Sr2

Eu2+ Ce3+

Page 32: Nonequivalent lanthanide defects: energy level modeling

Conclusions

11

Realistic materials often require more complex models

Very distinct experimental features burried in uncertainty intervals

General physical insight most important merit

Jonas Joos Nonequivalent lanthanide defects: energy level modeling

Page 33: Nonequivalent lanthanide defects: energy level modeling

LumiLab Department of Solid State Sciences

Ghent UniversityBelgium

iCom, Budva, MontenegroSeptember 4, 2015

Jonas J. Joos, Dirk Poelman, Philippe F. Smet

Jonas Joos Nonequivalent lanthanide defects: energy level modeling

Nonequivalent lanthanide defects: energy level modeling