26
Thermal Analysis of Passive Radiator for Inter-Planetary Space Applications Presented By Shailesh Kumar Singh Rajput Abhishek Dorik Yash Dave Bijank Modi Dipak Patel Guided By Prof. Harshal Shukla 1

Passive radiators for satellites for Space Explorations

Embed Size (px)

Citation preview

Page 1: Passive radiators for satellites for Space Explorations

1

Thermal Analysis of Passive Radiator for Inter-Planetary Space Applications

Presented By

Shailesh Kumar Singh Rajput

Abhishek DorikYash Dave

Bijank ModiDipak Patel

Guided ByProf. Harshal Shukla

Page 2: Passive radiators for satellites for Space Explorations

OverviewLiterature SurveyPaper PresentedObjectiveIntroductionATCS & PTCSEnvironmental LoadsGoverning Equations Modeling, Simulation and Boundary ConditionsResultsConclusionsAnnexure

2

Page 3: Passive radiators for satellites for Space Explorations

3

Sr. Paper / Book Author / Editor Conclusions

1Spacecraft Thermal Control HandbookVol. 1: Fundamental Technologies.

David G. Gilmore

Basics of Thermal control systems, Space Radiators and Environmental Loads and Operating conditions of the Satellite.

2Design of Geosynchronous Spacecraft

Brij N. Agrawal

Thermal control of Spacecraft, Heat Transfer governing laws and different types of Thermal Control Strategies.

3Thermal Control System of the Moon Mineralogy Mapper Instrument

Jose I. Rodriguez(JPL)

Passive Thermal Cooling Systems, Coatings, MLI

4The Moon Mineralogy Mapper (M3) on Chandrayaan-1

Alok Chatterjee (JPL)

Multi Layer Insulation (MLI)

Literature survey

Page 4: Passive radiators for satellites for Space Explorations

4

Paper PresentedPresented Paper Titled:

“Thermal Analysis of Passive Radiators for Inter-Planetary Space Applications”

In the International Conference:“Engineering: Issues, Opportunities and

Challenges for Development”On: Saturday, 9th April, 2016

ISBN: 978-81-929339-3-1

Page 5: Passive radiators for satellites for Space Explorations

objective

5

Conduct Parametric analysis to understand the effects of change in the values of parameters like Radiator Area and Thickness over the heat transfer rate from a Satellite.

We aim at providing suitable design guidelines for maximizing the dissipation of heat generated inside the satellite to space by using passive radiators.

Page 6: Passive radiators for satellites for Space Explorations

6

Introduction

Thermal Control SystemActive Thermal Control System

Passive Thermal Control System

Allowable Temperature LimitsHeat Produced by Electronic Systems

Heat MUST be dissipated to spaceHOW??

Page 7: Passive radiators for satellites for Space Explorations

7

Active THERMAL CONTROL SYSTEM(ATCS)

Used where Narrow Temperature range are to be maintained

Uses electric power input

Heaters, coolers, coolant storage system used

Moving Parts and fluids involved

Heavy and costly cooling system

Page 8: Passive radiators for satellites for Space Explorations

8

PASSIVE THERMAL CONTROL SYSTEM(PTCS)

NO Moving Parts

NO Moving Fluids

NO Electric Power Input

Geometrical Configurations

Thermo-Optical Properties of Surface

Thermal Insulations

Page 9: Passive radiators for satellites for Space Explorations

9

Environmental LoadsSolar Flux

Direct sunlight is the dominating source of heating on the satellite surface.

AlbedoIt is the sunlight reflected off a planet’s surface.

Planet ShineInfrared energy emitted by a planet by the virtue of its own temperature.

Page 10: Passive radiators for satellites for Space Explorations

SOLAR FLUX

PLANET SHINE

ALBEDO

Page 11: Passive radiators for satellites for Space Explorations

11

Governing EquationsSteady - stateHeat Balance Equation:

[Heat Radiated] = [Heat Absorbed]+[Instrumental Heat Dissipation]

Page 12: Passive radiators for satellites for Space Explorations

12

Governing EquationsTransient state

Based on Lumped Parameter Analytical Method, Heat Balance equation for each node:

Neglecting Albedo and Earth Radiation

Page 13: Passive radiators for satellites for Space Explorations

13

Case Study: Flat Plate Radiator Modeling of Radiator

DissipatorFlat Plate Radiator

Thermal StrapPackage bodyWith MLI

Page 14: Passive radiators for satellites for Space Explorations

14

Device Material Dimensions (mm)

Thermo-optical Properties

IR Solar

Package Aluminium 6061

300×150×300 - -

Dissipator Stainless Steel 30×40×50 - -Thermal

Strap Copper - - -

Radiator Aluminium 6061 (Variable) ε =

0.85 α = 0.4

MLI - - ε = 0.7 α = 0.45

model specifications

Page 15: Passive radiators for satellites for Space Explorations

15

Meshing and simulation

Page 16: Passive radiators for satellites for Space Explorations

16

Bottom face of Package = 20o CThermal Coupling between Dissipator and base

of package: R= 60 C/WThermal Coupling between Dissipator and

Thermal Strap: h= 300 W/m2 CThermal Coupling between Thermal Strap and

Radiator: h= 300 W/m2 CCoupling between MLI and Package: h=0.03

W/m2 C

Boundary conditions applied

Page 17: Passive radiators for satellites for Space Explorations

300×150×2; Q=3.75 WSr. No. Part Min. Temp Max. Temp

1 Radiator 596.70 602.432 Dissipator 514.15 544.053 Thermal Strap 547.22 581.224 Package 20.00 59.00

results

Page 18: Passive radiators for satellites for Space Explorations

18

resultsSr. Dimension Part

Steady State Condition Transient ConditionsDissipation

Min. Temp Max. Temp Min. Temp Max. Temp

1 300*150*2

Radiator 596.70 602.43 20.00 208.02

3.75Dissipator 514.15 544.05 20.00 189.18

Thermal Strap 547.22 581.22 20.00 197.53

Package 20.00 59.00 20.00 72.17

2 300*150*2

Radiator 1299.19 1304.88 20.00 412.61

15Dissipator 1182.87 1254.07 20.00 442.06

Thermal Strap 1255.83 1283.72 20.00 420.57

Package 21.52 59.00 20.00 72.17

3 300*150*3

Radiator 596.85 600.64 20.00 218.95

3.75Dissipator 514.15 544.05 20.00 204.79

Thermal Strap 547.22 581.22 20.00 213.78

Package 20.00 59.00 20.00 72.17

4 300*150*3

Radiator 1299.33 1303.12 20.00 401.73

15Dissipator 1182.86 1254.06 20.00 441.77

Thermal Strap 1248.06 1283.70 20.00 419.45

Package 20.00 59.00 20.00 72.17

Page 19: Passive radiators for satellites for Space Explorations

19

resultsSr. Dimension Part

Steady State Condition Transient ConditionsDissipation

Min. Temp Max. Temp Min. Temp Max. Temp

5 350*200*2

Radiator 725.24 733.14 20.00 240.82

3.75Dissipator 612.27 653.20 20.00 221.75

Package 20.00 58.30 20.00 71.60

Thermal Strap 667.76 704.12 20.00 233.65

6 350*200*3

Radiator 725.44 730.664 20.00 229.62

3.75Dissipator 612.26 653.19 20.00 215.28

Package 20.00 58.30 20.00 71.60

Thermal Strap 657.76 704.11 20.00 224.12

7 350*200*3

Radiator 1426.30 1431.52 20.00 403.00

15Dissipator 1281.50 1360.46 20.00 448.73

Package 20.00 58.30 20.00 71.60

Thermal Strap 1357.05 1404.97 20.00 426.49

8 500*300*2

Radiator 1394.21 1420.11 20.00 417.74

3.75Dissipator 1192.14 1295.43 20.00 372.99

Package 20.00 57.46 20.00 70.85

Thermal Strap 1306.80 1339.83 20.00 389.14

Page 20: Passive radiators for satellites for Space Explorations

20

resultsSr. Dimension Part

Steady State Condition Transient ConditionsDissipation

Min. Temp Max. Temp Min. Temp Max. Temp

9 500*300*2

Radiator 2092.17 2109.45 20.00 515.14

15Dissipator 1861.90 1988.10 20.00 520.01

Package 20 57.46 20.00 70.85

Thermal Strap 2003.82 2037.24 20.00 505.82

10 500*300*3

Radiator 1394.75 1412.03 20.00 374.09

3.75Dissipator 1192.14 1285.43 20.00 339.37

Package 20.00 57.46 20.00 70.85

Thermal Strap 1306.80 1339.82 20.00 353.07

11 500*300*3

Radiator 2092.17 2109.45 20.00 515.14

15Dissipator 1861.90 1988.10 20.00 520.01

Package 20 57.46 20.00 70.85

Thermal Strap 2003.82 2037.24 20.00 505.82

Page 21: Passive radiators for satellites for Space Explorations

21

Conclusions1. For small Heat Dissipation from Instruments, Passive

Radiator cooling can be very effective and economical.

2. Increasing the surface area of the radiator does not increase the heat transfer from the satellite.

3. Increased Surface Area Increased Incident Load Reduced Heat Transfer.

4. Increasing the thickness of the radiator does not increase the heat transfer from the satellite.

Page 22: Passive radiators for satellites for Space Explorations

22

Validation of Results and Conclusions

Spacecraft Thermal Vacuum Test

Infrared Simulation

Page 23: Passive radiators for satellites for Space Explorations

23

references1. Spacecraft Thermal Control Handbook, Vol.1; Fundamental Technologies,

Chapter 1-6, David G. Gilmore, Pages 1-222.2. Thermal Control System of the Moon Mineralogy Mapper Instrument, Josh I

Rodriguez, Jet Propulsion Laboratory, California Institute of Technology.3. “The Moon Mineralogy Mapper (M3) on Chandrayaan-1” by Alok Chatterjee,

Padma Varanasi.4. “The Moon Mineralogy Mapper (M3) for lunar science” by A. Chatterjee,

Padma Varanasi, A.S.K Kumar.5. “Thermal Control System of the Moon Mineralogy Mapper Instrument” by

Jose I. Rodriguez, Jet Propulsion Laboratory, California Institute of Technology.

Page 24: Passive radiators for satellites for Space Explorations

24

Radiator size calculator (Java netbeans 8.0.1)

Page 25: Passive radiators for satellites for Space Explorations

25

Code for radiator

Page 26: Passive radiators for satellites for Space Explorations

26

Thank You.