64
The Yoneda lemma and String diagrams Ray D. Sameshima total 54 pages 1

The Yoneda lemma and String diagrams

Embed Size (px)

DESCRIPTION

The Yoneda lemma and string diagrams When we study the categorical theory, to check the commutativity is a routine work. Using a string diagrammatic notation, the commutativity is replaced by more intuitive gadgets, the elevator rules. I choose the Yoneda lemma as a mile stone of categorical theory, and will explain the equation-based proof using the string diagrams. reference: 1: Category theory: a programming language-oriented introduction (Pierre-Louis Curien) (especially in section 2.6) You can get the pdf file in the below link: http://www.pps.univ-paris-diderot.fr/~mellies/mpri/mpri-ens/articles/curien-category-theory.pdf 2: The Joy of String Diagrams (Pierre-Louis Curien) http://hal.archives-ouvertes.fr/docs/00/69/71/15/PDF/csl-2008.pdf 3: (in progress) Cat (Ray D. Sameshima) 4: Physics, Topology, Logic and Computation: A Rosetta Stone (John C. Baez, Mike Stay) http://math.ucr.edu/home/baez/rosetta.pdf If you are physicist, this is a good introduction to category theory and its application on physics. His string diagrams, however, differ from our one little. 5: Category Theory Using String Diagrams (Dan Marsden) http://jp.arxiv.org/abs/1401.7220 outlines 1 Category, functor, and natural transformation 2 Examples 3 String diagrams 4 Yoneda lemma and string diagrams 5 and more...

Citation preview

Page 1: The Yoneda lemma and String diagrams

The Yoneda lemma and

String diagrams

Ray D. Sameshima total 54 pages

1

Page 2: The Yoneda lemma and String diagrams

OutlinesCategory theory (categories, functors, and natural transformations)

Examples

String diagrams

Diagrammatic proof Yoneda lemma

and more…

2

Page 3: The Yoneda lemma and String diagrams

References

Handbook of Categorical Algebra (F. Borceux)

The Joy of String Diagrams (P. L. Curien)

Category theory (P. L. Curien)

(in progress) Cat (R. D. Sameshima)

3

Page 4: The Yoneda lemma and String diagrams

CategoriesA Category is like a network of arrows with identities and associativity.

(We ignore the size problem now!)

4

Page 5: The Yoneda lemma and String diagrams

Functors

A functor is a structure preserving mapping between categories (homomorphisms of categories).

5

Page 6: The Yoneda lemma and String diagrams

Natural transformations

A homotopy of categories.

6

Page 7: The Yoneda lemma and String diagrams

Natural transformations

7

A natural transformation consists of a class (family, set, or collection) of

arrows.

s.t.

Page 8: The Yoneda lemma and String diagrams

Natural transformations

7

A natural transformation consists of a class (family, set, or collection) of

arrows.

s.t.

Page 9: The Yoneda lemma and String diagrams

Natural transformations

8

We call this commutativity the naturality of the natural transformations.

Page 10: The Yoneda lemma and String diagrams

Natural transformations

8

We call this commutativity the naturality of the natural transformations.

Page 11: The Yoneda lemma and String diagrams

OutlinesCategory theory (categories, functors, and natural transformations)

Examples

String diagrams

Diagrammatic proof Yoneda lemma

and more…

9

Page 12: The Yoneda lemma and String diagrams

OutlinesCategory theory (categories, functors, and natural transformations)

Examples

String diagrams

Diagrammatic proof Yoneda lemma

and more…

9

Page 13: The Yoneda lemma and String diagrams

Examples0

1

A category of sets and mappings

A class change method

Representable functors

Natural transformations

10

Page 14: The Yoneda lemma and String diagrams

An empty categoryThe empty category: No object and no arrow.

11

Page 15: The Yoneda lemma and String diagrams

A singleton category

Discrete categories: objects with identities.

E.g., the singleton (one-point set) can be seen as a discrete category 1.

12

Page 16: The Yoneda lemma and String diagrams

The mappings satisfy the associativity law.

!

The identities are identity mappings.

13

Setf : A ! B; a 7! f(a)

g : B ! C; b 7! g(b)

h : C ! D; c 7! h(c)

h � (g � f)(a) = h(g(f(a))) = (h � g) � f(a)

1A : A ! A; a 7! a

Page 17: The Yoneda lemma and String diagrams

A class change method

A class change method: we can always view an arbitrary arrow as a natural transformation.

14

8f 2 C(A,B)

) 9f 2 Nat(A, B)

where A, B 2 Func(1,C)

Page 18: The Yoneda lemma and String diagrams

This is just pointing mappings of both objects and arrows in the category that we consider.

15

Func(1,C)

C 2 Func(1,C)C(⇤) := C 2 |C|

C(1⇤) := 1CSo we can identify all objects as functors from 1 to the category.

Page 19: The Yoneda lemma and String diagrams

Under the identifications, the arrow in the category can be seen as the natural transformation between the objects.

16

Nat(A,B 2 Func(1,C))

8f 2 C(A,B)

f 2 Nat(A,B) : ⇤ 7! f⇤ := f

This is, I call, a class change method.

Page 20: The Yoneda lemma and String diagrams

Representable functors

The functor represented by the object C.

17

C(C,�) 2 Func(C, Set)

Page 21: The Yoneda lemma and String diagrams

Now we ignore the size problems but…

18

C(C,�) 2 Func(C, Set)

Page 22: The Yoneda lemma and String diagrams

By definition

19

↵ 2 Nat(C(C,�), F )

8B,C 2 |C|↵C � C(A, g) = Fg � ↵B

8f 2 C(A,B)

↵C � C(A, g)(f) = Fg � ↵B(f)

Page 23: The Yoneda lemma and String diagrams

Let me see

Now we get all gadgets for the Yoneda lemma.

20

Page 24: The Yoneda lemma and String diagrams

Yoneda lemmaA milestone of category theory.

21

Page 25: The Yoneda lemma and String diagrams

Yoneda lemmaA milestone of category theory.

21

Page 26: The Yoneda lemma and String diagrams

An equation based proof

Basically, I traces the proof in this handbook ->.

See my notes.

22

Page 27: The Yoneda lemma and String diagrams

So many commutative diagrams

Diagram chasing are routine tasks in the category theory.

23

Page 28: The Yoneda lemma and String diagrams

OutlinesCategory theory (categories, functors, and natural transformations)

Examples

String diagrams

Diagrammatic proof Yoneda lemma

and more…

24

Page 29: The Yoneda lemma and String diagrams

OutlinesCategory theory (categories, functors, and natural transformations)

Examples

String diagrams

Diagrammatic proof Yoneda lemma

and more…

24

Page 30: The Yoneda lemma and String diagrams

String diagrams

25

Flipping the diagrams!

Page 31: The Yoneda lemma and String diagrams

String diagrams

Two categories, two functors(objects), and a n.t. (an arrow.)

26

Af! B

Page 32: The Yoneda lemma and String diagrams

Point it

From above we can see…

27

8f 2 C(A,B)

f 2 Nat(A,B) : ⇤ 7! f⇤ := f

f : ⇤ ! C(A,B) = C(A,�)B

Page 33: The Yoneda lemma and String diagrams

Compositions

28

These are good examples of vertical compositions.

Page 34: The Yoneda lemma and String diagrams

Compositions

29

These are good examples of horizontal compositions.

Page 35: The Yoneda lemma and String diagrams

Basically, that’s all.

30

Page 36: The Yoneda lemma and String diagrams

No Standard Committees

… Enjoy!

31

Category Theory Using String Diagrams (Dan Marsden)

Page 37: The Yoneda lemma and String diagrams

OutlinesCategory theory (categories, functors, and natural transformations)

Examples

String diagrams

Diagrammatic proof Yoneda lemma

and more…

32

Page 38: The Yoneda lemma and String diagrams

OutlinesCategory theory (categories, functors, and natural transformations)

Examples

String diagrams

Diagrammatic proof Yoneda lemma

and more…

32

Page 39: The Yoneda lemma and String diagrams

Diagrammatic proof

The basic gadget is the elevator rule.

33

Page 40: The Yoneda lemma and String diagrams

Yoneda lemmaA milestone of category theory.

34

Page 41: The Yoneda lemma and String diagrams

Yoneda lemmaA milestone of category theory.

34

Page 42: The Yoneda lemma and String diagrams

Choose wisely

35

✓F,A(↵) := ↵A(1A)

Page 43: The Yoneda lemma and String diagrams

Flip it

36

⌧(a)(f) := Ff(a)

⌧ = �xy.Fy(x); a 7! �y.Fy(a); f 7! Ff(a)

Page 44: The Yoneda lemma and String diagrams

Naturality of tau

The Adventure of the Dancing Men

37

Page 45: The Yoneda lemma and String diagrams

38

Page 46: The Yoneda lemma and String diagrams

Step by step

39

Page 47: The Yoneda lemma and String diagrams

F is a functor

40

Page 48: The Yoneda lemma and String diagrams

by def. of tau

41

Page 49: The Yoneda lemma and String diagrams

a composition and the def. of tau for gf

42

Page 50: The Yoneda lemma and String diagrams

tricky part

43

Page 51: The Yoneda lemma and String diagrams

a representable

functor

44

Page 52: The Yoneda lemma and String diagrams

45

Page 53: The Yoneda lemma and String diagrams

We have proved the

naturality of tau:

46

⌧(a) 2 Nat (A(A,�), F )

Page 54: The Yoneda lemma and String diagrams

The right inverse

47

✓F,A � ⌧

Page 55: The Yoneda lemma and String diagrams

48

Page 56: The Yoneda lemma and String diagrams

The left inverse

49

⌧ � ✓F,A

Page 57: The Yoneda lemma and String diagrams

50

Page 58: The Yoneda lemma and String diagrams

Finally, we have proved that theta and tau are the inverse

pair.

51

⌧ � ✓F,A = 1Nat(A(A,�),F )

✓F,A � ⌧ = 1FA

Page 59: The Yoneda lemma and String diagrams

String diagrams are fun!

52

Page 60: The Yoneda lemma and String diagrams

OutlinesCategory theory (categories, functors, and natural transformations)

Examples

String diagrams

Diagrammatic proof Yoneda lemma

and more…

53

Page 61: The Yoneda lemma and String diagrams

OutlinesCategory theory (categories, functors, and natural transformations)

Examples

String diagrams

Diagrammatic proof Yoneda lemma

and more…

53

Page 62: The Yoneda lemma and String diagrams

Thank you!

54

Page 63: The Yoneda lemma and String diagrams

55

Page 64: The Yoneda lemma and String diagrams

Godement products and elevator rules

Commutativity and elevator rules

56