66
What is a Quantumbit? PD Dr. Kilian Singer Universität Mainz www.quantenbit.de/#/teach/Public%20Outreach/ start

Ldb Convergenze Parallele_12

Embed Size (px)

Citation preview

Page 1: Ldb Convergenze Parallele_12

What

is a Quantumbit?

PD Dr. Kilian Singer

Universität Mainz

www.quantenbit.de/#/teach/Public%20Outreach/

start

Page 2: Ldb Convergenze Parallele_12

Overview

• Classical information processing

• Quantum information processing

• Scalable quantum information processing

Page 3: Ldb Convergenze Parallele_12

Overview

Classical information processing

• Quantum information processing

• Scalable quantum information processing

Page 4: Ldb Convergenze Parallele_12

What is a Bit ?

• Bit is smallest classical information carrier: 0 or 1

– e.g.: TTL 0Volt, 5 Volt

Combination of Bits with Gattes => Computer

NOT NAND

74LS00

With this you can build an universal computer!

Try it:http://www.nand2tetris.org/

Page 5: Ldb Convergenze Parallele_12

How do you build a gate? NAND

74LS00

With this you can build an universal computer!

Try it:http://www.nand2tetris.org/

Page 6: Ldb Convergenze Parallele_12

Relais in Z1 Zuse (1938)

Through miniaturization from

the Bit to the computer

6 01.08.2013

Vaccum tube computer Collosus (1944)

Transistor Computer IBM 7090(1959) First micro chip byJack Kilby (1958)

Page 7: Ldb Convergenze Parallele_12

Overview

Classical information processing

Quantum information processing

• Scalable quantum information processing

Page 8: Ldb Convergenze Parallele_12

What is a quantumbit ?

What is quantummechanics?

What is classical mechanics?

Page 9: Ldb Convergenze Parallele_12

Newton mechanics Bdescribes the movement of one particle

Newton’s law

Trampoline?

Page 10: Ldb Convergenze Parallele_12

Newton mechanics describes movement of plantsn

Page 11: Ldb Convergenze Parallele_12

Quantum mechanics describes the movement of a small particle

Questions:

• Where do the spectral lines come from?

• Why are they at these wavelength?

• Why does the electron not fall into the atom core?

(as moved charge transmits electromagnetical radiation)

Page 12: Ldb Convergenze Parallele_12

Bohr’s atom modell Niels Bohr (1913)

Centrifugal force=Coloumb force

Coulomb potential => Coloumb force

Questions:

Where do the spectral lines come from?

• Why are they at these wavelength?

• Why does the electron not fall into the atom core?

(as moved charge transmits electromagnetical radiation)

Page 13: Ldb Convergenze Parallele_12

Interference with lightwaves

Page 14: Ldb Convergenze Parallele_12

Interference with lightwaves

Page 15: Ldb Convergenze Parallele_12

Complex numbers

(for first semesters)

• Application

– Electronics

– Quantum mechanic

– Fractals: e.g. Mandelbrot:

fractals.bat

Page 16: Ldb Convergenze Parallele_12

Complex numbers

• Solution of equation

• Imaginary number i:

• General complex number:

Page 17: Ldb Convergenze Parallele_12

Complex numbers

• Solution of equation

• Imaginary number i:

• General complex number:

Page 18: Ldb Convergenze Parallele_12

Euler’s formula

Page 19: Ldb Convergenze Parallele_12

What is the relation between ex and

sin(x) & cos(z) ?

Taylor series:

Taylor series also work for complex numbers:

Maxima-File

http://maxima.sourceforge.net/

Page 20: Ldb Convergenze Parallele_12

What is light? Photo effect

(1905 Albert Einstein)

Existency of photons with energy

Short wavelength

UV light

Alcali metal

electrode

Monochromatic

light

Quarz window

Page 21: Ldb Convergenze Parallele_12

Do single photons interfere?

Page 22: Ldb Convergenze Parallele_12

DeBroglie (1929)

Wave character of particles

Page 23: Ldb Convergenze Parallele_12

Bohr’s atom model

Multiples of the DeBroglie-wave length have to fit on

circumference

Questions:

Where do the spectral lines come from?

Why are they at these wavelength?

• Why does the electron not fall into the atom core?

(as moved charge transmits electromagnetical radiation)

Page 24: Ldb Convergenze Parallele_12

Why does the electron not fall

into the atom core?

Schrödinger equation

(1926)

Erwin Schrödinger

http://vergil.chemistry.gatech.edu/notes/quantrev/node8.html

Page 25: Ldb Convergenze Parallele_12

Schrödinger’s equation

http://vergil.chemistry.gatech.edu/notes/quantrev/node8.html

Page 26: Ldb Convergenze Parallele_12

Schrödinger’s equation

http://vergil.chemistry.gatech.edu/notes/quantrev/node8.html

Page 27: Ldb Convergenze Parallele_12

Schrödinger’s equation

http://vergil.chemistry.gatech.edu/notes/quantrev/node8.html

Page 28: Ldb Convergenze Parallele_12

Schrödinger’s equation

http://vergil.chemistry.gatech.edu/notes/quantrev/node8.html

Page 29: Ldb Convergenze Parallele_12

Schrödinger’s equation

http://vergil.chemistry.gatech.edu/notes/quantrev/node8.html

Page 30: Ldb Convergenze Parallele_12

Schrödinger’s equation

http://vergil.chemistry.gatech.edu/notes/quantrev/node8.html

Page 31: Ldb Convergenze Parallele_12

Schrödinger’s equation

http://vergil.chemistry.gatech.edu/notes/quantrev/node8.html

Page 32: Ldb Convergenze Parallele_12

Schrödinger’s equation

http://vergil.chemistry.gatech.edu/notes/quantrev/node8.html

Page 33: Ldb Convergenze Parallele_12

Schrödinger’s equation

http://vergil.chemistry.gatech.edu/notes/quantrev/node8.html

Page 34: Ldb Convergenze Parallele_12

Schrödinger’s equation

http://vergil.chemistry.gatech.edu/notes/quantrev/node8.html

Page 35: Ldb Convergenze Parallele_12

Schrödinger’s equation

http://vergil.chemistry.gatech.edu/notes/quantrev/node8.html

Page 36: Ldb Convergenze Parallele_12

Interpretation

Probability density in analogy

to the light intensity:

Page 37: Ldb Convergenze Parallele_12

Quantized Energy levels as a

consequence of boundary conditions

Page 38: Ldb Convergenze Parallele_12

1d

2dbox

2dcirc

2dharmonic

coulomb

1dbox

http://www.falstad.com/mathphysics.html

Quantized Energy levels as a

consequence of boundary conditions

Page 39: Ldb Convergenze Parallele_12

What is a quantumbit ?

• QBit is smallest quantunmechanical information

carrier:

Page 40: Ldb Convergenze Parallele_12

What is a quantumbit ?

• QBit is smallest quantunmechanical information

carrier:

• Mathematical representation with vectors:

Measurement 50%

50%

Page 41: Ldb Convergenze Parallele_12
Page 42: Ldb Convergenze Parallele_12

Through lower temperatures

from quantum bits to quantum computers Nuclear spins in

silicon

Molecular

NMR

photons nanomechanical

oscillators superconducting

qubits Rydberg

atoms

Atoms

in optical

dipol traps

Trapped ions

Atoms

in cavities

Quantum dots NV color centers

Quantum bits

Page 43: Ldb Convergenze Parallele_12

Temperature scales

Anders Celsius

(1701- 1744)

Daniel Fahrenheit

(1686 – 1736)

William Thomson

Baron Kelvin

(1824 – 1907)

Absolute temperature scale:

Atoms and molecules at rest: 0 °K = - 273,15 °C

Melting point of ice: 0 °C = 273,15 °K

Evaporation point of water: 100 °C = = 373,15 °K

Page 44: Ldb Convergenze Parallele_12

Gas thermometer

pressure p and volume V increase

with increasing temperature T

N : Amount of gas molecules in mol

kB : Boltzmann‘s constant 1,38 · 10−23 J/K

Boyle-Mariotte‘s law

p . V = N . kB . T

What happens at T=0 ???

Page 45: Ldb Convergenze Parallele_12

Interessante Effekte bei Tiefen

Temperaturen

• Supraconductivity

• Suprafluidity

• Nuclear magnetic resonance

tomography

• Quantumcomputing

Page 48: Ldb Convergenze Parallele_12

What is the lowest temperature

reached?

Inner core of sun: 15 000 000 K

Human: 300 K

Cold atoms: 0.000 000 001 K

Page 49: Ldb Convergenze Parallele_12

Doppler cooling

Page 50: Ldb Convergenze Parallele_12

Optical molasses

Page 51: Ldb Convergenze Parallele_12

Magnetic trap

Page 52: Ldb Convergenze Parallele_12

Magneto-optical trap

Page 53: Ldb Convergenze Parallele_12

Magneto-optical trap

Page 54: Ldb Convergenze Parallele_12

Sisyphus cooling

Nobelprice1997 (Chu, Cohen-Tannoudji, Phillips)

Page 55: Ldb Convergenze Parallele_12

Bose Einstein condensate

Page 56: Ldb Convergenze Parallele_12

Bose Einstein condensate

Nobelprice 2001 (Wieman, Ketterle, Cornell)

Page 57: Ldb Convergenze Parallele_12

Bose Einstein condensate: Matter-wave interference

with macroscopic wavefunction

Page 58: Ldb Convergenze Parallele_12

Atom-Laser

Thermal cloud ….. Bose-condensate

Page 59: Ldb Convergenze Parallele_12

Linear Paul trap

Wolfgang Paul

(Nobel price1989)

RF RF

DC

DC

Page 60: Ldb Convergenze Parallele_12

Harmonic Oscillator

Linear Paul Trap: Axial Confinement

(DC potential)

In the ground state:

Page 61: Ldb Convergenze Parallele_12

Lineare Paul-Trap: radial confinement

by Wolfgang Lange

Page 62: Ldb Convergenze Parallele_12

P1/2

S1/2

t = 7 ns

397 nm

Doppler cooling D5/2

t = 1 s

Energ

y

Level scheme of Calcium+

866 nm Repumping

Page 63: Ldb Convergenze Parallele_12

Doppler Cooling

Atom at Rest

n Laser frequency as seen by atom

Page 64: Ldb Convergenze Parallele_12

Doppler Cooling

Moving atom

n Laser frequency as seen by atom

Page 65: Ldb Convergenze Parallele_12

Doppler Cooling

n Laser frequency as seen by atom

Page 66: Ldb Convergenze Parallele_12

Laser cooled ion crystall

Mainz, 40Ca+