56
Logic reloaded www.tudorgirba.com

04 - Sets

Embed Size (px)

DESCRIPTION

I used this set of slides for the lecture on Sets I gave at the University of Zurich for the 1st year students following the course of Formale Grundlagen der Informatik.

Citation preview

Page 1: 04 - Sets

Logicreloaded

www.tudorgirba.com

Page 2: 04 - Sets

What exactly is logic?

Page 3: 04 - Sets

What exactly is logic?the study of the principles of correct reasoning

Page 6: 04 - Sets

computerinformation information

computation

Page 7: 04 - Sets

SetA set is a group of objects.

Page 8: 04 - Sets

SetA set is a group of objects.

{10, 23, 32}

Page 9: 04 - Sets

SetA set is a group of objects.

{10, 23, 32}

N = {0, 1, 2, … }

Page 10: 04 - Sets

SetA set is a group of objects.

{10, 23, 32}

N = {0, 1, 2, … }

Z = {… , -2, -1, 0, 1, 2, … }

Page 11: 04 - Sets

SetA set is a group of objects.

{10, 23, 32}

N = {0, 1, 2, … }

Z = {… , -2, -1, 0, 1, 2, … }

Ø empty set

Page 12: 04 - Sets

SetA set is a group of objects.

{10, 23, 32}

N = {0, 1, 2, … }

Z = {… , -2, -1, 0, 1, 2, … }

Ø

U

empty set

universe

Page 13: 04 - Sets

SetA set is a group of objects.

{10, 23, 32}

N = {0, 1, 2, … }

Z = {… , -2, -1, 0, 1, 2, … }

Ø

U

empty set

universe

Membershipa is a member of set A

Page 14: 04 - Sets

SetA set is a group of objects.

{10, 23, 32}

N = {0, 1, 2, … }

Z = {… , -2, -1, 0, 1, 2, … }

10 ∈ {10, 23, 32}

Ø

U

empty set

universe

Membershipa is a member of set A

Page 15: 04 - Sets

SetA set is a group of objects.

{10, 23, 32}

N = {0, 1, 2, … }

Z = {… , -2, -1, 0, 1, 2, … }

10 ∈ {10, 23, 32}

-1 ∉ N

Ø

U

empty set

universe

Membershipa is a member of set A

Page 16: 04 - Sets

Subset A⊆BEvery member of A is also an element of B.

Page 17: 04 - Sets

Subset A⊆B

∀x:: x∈A ⇒ x∈B

Every member of A is also an element of B.

Page 18: 04 - Sets

Subset A⊆B

∀x:: x∈A ⇒ x∈B

∅ ⊆ A.A ⊆ A.A = B ⇔ A ⊆ B ∧ B ⊆ A.

Every member of A is also an element of B.

Page 19: 04 - Sets

Subset A⊆B

∀x:: x∈A ⇒ x∈B

∅ ⊆ A.A ⊆ A.A = B ⇔ A ⊆ B ∧ B ⊆ A.

Proper subset A⊂BA is a subset of B and not equal to B.

Every member of A is also an element of B.

Page 20: 04 - Sets

Subset A⊆B

∀x:: x∈A ⇒ x∈B

∅ ⊆ A.A ⊆ A.A = B ⇔ A ⊆ B ∧ B ⊆ A.

Proper subset A⊂B

∀x:: A⊆B ∧ A≠B

A is a subset of B and not equal to B.

Every member of A is also an element of B.

Page 21: 04 - Sets

Union A∪B

∀x:: x∈A ∨ x∈BA∪B={ x | x∈A or x∈B }

Page 22: 04 - Sets

Union A∪B

∀x:: x∈A ∨ x∈BA∪B={ x | x∈A or x∈B }

Page 23: 04 - Sets

Union A∪B

∀x:: x∈A ∨ x∈BA∪B={ x | x∈A or x∈B }

A ∪ B = B ∪ A.A ∪ (B ∪ C) = (A ∪ B) ∪ C.A ⊆ (A ∪ B).A ∪ A = A.A ∪ ∅ = A.A ⊆ B ⇔ A ∪ B = B.

Page 24: 04 - Sets

Intersection A∩B

∀x:: x∈A ∧ x∈BA∩B={ x | x∈A and x∈B }

Page 25: 04 - Sets

Intersection A∩B

∀x:: x∈A ∧ x∈BA∩B={ x | x∈A and x∈B }

Page 26: 04 - Sets

Intersection A∩B

∀x:: x∈A ∧ x∈BA∩B={ x | x∈A and x∈B }

A ∩ B = B ∩ A.A ∩ (B ∩ C) = (A ∩ B) ∩ C.A ∩ B ⊆ A.A ∩ A = A.A ∩ ∅ = ∅.A ⊆ B ⇔ A ∩ B = A.

Page 27: 04 - Sets

Complements A\B, A’

∀x:: x∈A ∧ x∉BA\B={ x | x∈A and x∉B }

Page 28: 04 - Sets

Complements A\B, A’

∀x:: x∈A ∧ x∉BA\B={ x | x∈A and x∉B }

A \ B ≠ B \ A.A ∪ A′ = U.A ∩ A′ = ∅.(A′)′ = A.A \ A = ∅.U′ = ∅.∅′ = U.A \ B = A ∩ B′.

Page 29: 04 - Sets
Page 30: 04 - Sets

A ∩ U = AA ∪ ∅ = A

Neutral elements

Page 31: 04 - Sets

A ∩ U = AA ∪ ∅ = A

Neutral elements

A ∩ ∅ = ∅

A ∪ U = U

Zero elements

Page 32: 04 - Sets

A ∩ U = AA ∪ ∅ = A

Neutral elements

A ∩ ∅ = ∅

A ∪ U = U

Zero elements

A ∩ A = AA ∪ A = A

Idempotence

Page 33: 04 - Sets

A ∩ U = AA ∪ ∅ = A

Neutral elements

A ∩ ∅ = ∅

A ∪ U = U

Zero elements

A ∩ A = AA ∪ A = A

Idempotence

A ∪ B = B ∪ AA ∩ B = B ∩ A

Commutativity

Page 34: 04 - Sets

A ∩ U = AA ∪ ∅ = A

Neutral elements

A ∩ ∅ = ∅

A ∪ U = U

Zero elements

A ∩ A = AA ∪ A = A

Idempotence

A ∪ B = B ∪ AA ∩ B = B ∩ A

Commutativity

A ∩ (B ∩ C) = (A ∩ B) ∩ CA ∪ (B ∪ C) = (A ∪ B) ∪ C

Associativity

Page 35: 04 - Sets

A ∩ U = AA ∪ ∅ = A

Neutral elements

A ∩ ∅ = ∅

A ∪ U = U

Zero elements

A ∩ A = AA ∪ A = A

Idempotence

A ∪ B = B ∪ AA ∩ B = B ∩ A

Commutativity

A ∩ (B ∩ C) = (A ∩ B) ∩ CA ∪ (B ∪ C) = (A ∪ B) ∪ C

Associativity

A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C)

Distributivity

Page 36: 04 - Sets

A ∩ U = AA ∪ ∅ = A

Neutral elements

A ∩ ∅ = ∅

A ∪ U = U

Zero elements

A ∩ A = AA ∪ A = A

Idempotence

A ∩ A’ = ∅

A ∪ A’ = U

Complement

A ∪ B = B ∪ AA ∩ B = B ∩ A

Commutativity

A ∩ (B ∩ C) = (A ∩ B) ∩ CA ∪ (B ∪ C) = (A ∪ B) ∪ C

Associativity

A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C)

Distributivity

Page 37: 04 - Sets

Similar to boolean algebra

a ∧ 1 = aa ∨ 0 = a

Neutral elements

a ∧ 0 = 0a ∨ 1 = 1

Zero elements

a ∧ a = aa ∨ a = a

Idempotence

a ∧ ¬ a = 0a ∨ ¬ a = 1

Negation

a ∨ b = b ∨ aa ∧ b = b ∧ a

Commutativity

a ∧ (b ∧ c) = (a ∧ b) ∧ ca ∨ (b ∨ c) = (a ∨ b) ∨ c

Associativity

a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c)a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c)

Distributivity

Page 38: 04 - Sets

A ∩ U = AA ∪ ∅ = A

Neutral elements

A ∩ ∅ = ∅

A ∪ U = U

Zero elements

A ∩ A = AA ∪ A = A

Idempotence

A ∩ A’ = ∅

A ∪ A’ = U

Complement

A ∪ B = B ∪ AA ∩ B = B ∩ A

Commutativity

A ∩ (B ∩ C) = (A ∩ B) ∩ CA ∪ (B ∪ C) = (A ∪ B) ∪ C

Associativity

A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C)

Distributivity

Page 39: 04 - Sets

A ∩ U = A A ∪ B = B ∪ AA ∪ ∅ = A

A ∩ ∅ = ∅

A ∪ U = U

A ∩ A = AA ∪ A = A

A ∩ A’ = ∅

A ∪ A’ = U

Neutral elements

Zero elements

Idempotence

Complement

A ∩ (B ∩ C) = (A ∩ B) ∩ C

A ∩ B = B ∩ A

A ∪ (B ∪ C) = (A ∪ B) ∪ C

A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C)

(A ∩ B)’ = (A’) ∪ (B’)(A ∪ B)’ = (A’) ∩ (B’)

Commutativity

Associativity

Distributivity

DeMorgan’s

Page 40: 04 - Sets

A ⊆ A.

A ⊆ B ∧ B ⊆ A ⇔ A = B.

A ⊆ B ∧ B ⊆ C ⇔ A ⊆ C

Reflexivity

Anti-symmetry

Transitivity

Page 41: 04 - Sets

Scissors

Paper

Stone

Page 42: 04 - Sets

Scissors

Paper

Stone

beats

beats

beats

Page 43: 04 - Sets

Scissors

Paper

Stone

beats

beats

beats

Page 44: 04 - Sets

Scissors

Paper

Stone

beats

beats

beats

beats Scissors Paper StoneScissors FALSE TRUE FALSEPaper FALSE FALSE TRUEStone TRUE FALSE FALSE

Page 45: 04 - Sets

Scissors

Paper

Stone

beats

beats

beats

beats Scissors Paper StoneScissors FALSE TRUE FALSEPaper FALSE FALSE TRUEStone TRUE FALSE FALSE

Page 46: 04 - Sets

Scissors

Paper

Stone

beats

beats

beats

beats Scissors Paper StoneScissors FALSE TRUE FALSEPaper FALSE FALSE TRUEStone TRUE FALSE FALSE

Page 47: 04 - Sets

Scissors

Paper

Stone

beats

beats

beats

beats Scissors Paper StoneScissors FALSE TRUE FALSEPaper FALSE FALSE TRUEStone TRUE FALSE FALSE

Page 48: 04 - Sets

beats Scissors Paper StoneScissors FALSE TRUE FALSEPaper FALSE FALSE TRUEStone TRUE FALSE FALSE

beats = {(Scissors, Paper), (Paper, Stone), (Stone, Scissors)}

Page 49: 04 - Sets

beats Scissors Paper StoneScissors FALSE TRUE FALSEPaper FALSE FALSE TRUEStone TRUE FALSE FALSE

beats = {(Scissors, Paper), (Paper, Stone), (Stone, Scissors)}

beats ⊆ {Scissor, Paper, Stone} x {Scissor, Paper, Stone}

Page 50: 04 - Sets

Cartesian product AxB

AxB={ (a,b) | a∈A and b∈B }

Page 51: 04 - Sets

Cartesian product AxB

AxB={ (a,b) | a∈A and b∈B }

A × ∅ = ∅.A × (B ∪ C) = (A × B) ∪ (A × C).(A ∪ B) × C = (A × C) ∪ (B × C).

Page 52: 04 - Sets

N-ary Relation

A1, A2, ..., AnR ⊆ A1 x A2 x...x An

Page 53: 04 - Sets

N-ary Relation

A1, A2, ..., AnR ⊆ A1 x A2 x...x An

Binary Relation

Page 54: 04 - Sets

N-ary Relation

A1, A2, ..., AnR ⊆ A1 x A2 x...x An

Binary Relation

A1, A2R ⊆ A1 x A2

(a,b) ∈ RaRb

Page 55: 04 - Sets

N-ary Relation

A1, A2, ..., AnR ⊆ A1 x A2 x...x An

Binary Relation

A1, A2R ⊆ A1 x A2

(a,b) ∈ RaRb