19
Equivalence of published GLS solutions to comparison analysis John Clare and Annette Koo Measurement Standards Laboratory of New Zealand, IRL

14.20 o2 j clare

  • Upload
    nzip

  • View
    159

  • Download
    1

Embed Size (px)

DESCRIPTION

Research 2: J Clare

Citation preview

Page 1: 14.20 o2 j clare

Equivalence of published GLS solutions to comparison analysis

John Clare and Annette KooMeasurement Standards Laboratory

of New Zealand, IRL

Page 2: 14.20 o2 j clare

2

Synopsis

• Measurement standards, comparisons• Comparison data, model, analysis• Least squares• Published approaches to comparison analysis

using GLS• Result 1: equality of estimates from these

approaches• Result 2: equality of variances/covariances of

estimates

Page 3: 14.20 o2 j clare

3

Measurement standards

• Measurement standards: realization• Comparisons: purpose, nature, complexity• Aim: biases of participant laboratories

(degree of equivalence), uncertainties• Participants report: measurements,

uncertainties, correlations• Complexity: multiple artefacts, star, linked

loops

Pilot1

2

3

4 5 6

7

8

9

Page 4: 14.20 o2 j clare

4

CCPR.K6-2010

MSL

NMIJNPL

NIST

A*STAR

KRISS

VNIIOFI

LNE-INM

NMISA

MKEH

NRC

PTB

Page 5: 14.20 o2 j clare

5

CCT-K3

7 artefacts, 15 laboratories, two sub pilots, cascaded loops, mixed numbers of artefacts, different numbers of repeats difficult to audit, difficult to confirm minimum uncertainty

NIST

VSL

NRC

IMGC

NML

KRISS

NIMNRLM

MSL

PTB

BIPM

NPL

VNIIM

BNM SMU

3, 1

1

3, 1, 1

1

3

3, 1

3, 1, 1

1

24

2

3, 1

1, 1

3, 1

3, 1

1, 1

1, 1, 1, 1, 1

1, 1, 1, 1

33

3

4

3

2

3

2

2

Page 6: 14.20 o2 j clare

6

Data and analysis

• ( participant, j artefact, r repeat)

• model • weights based on • one artefact

– = weighted average– differences from

• multiple artefacts– step-by-step, or– least-squares fit — minimize

rjy ,,

2ˆ ii yy

rjjrj ey ,,,,

rje ,,w

Page 7: 14.20 o2 j clare

7

Model for data

• unknowns • values taken • random variables • design matrix• fully linked column rank • no unique solution • constraint required

• key comparison, reference value, KCRV• add constraint new full column rank

,,, jβ

eβy X

E βY Xnm

rjjrj ey ,,,,

bwL

1

0b

X~

X

LJn

m

1nX

Page 8: 14.20 o2 j clare

8

Model for data

• Inclusion of constraint– (1) use it to eliminate one or

– (2) form a matrix such that• is orthonormal,

• vector of weights,

• has full column rank,

S

Sv

vXS

E βY

XS

Page 9: 14.20 o2 j clare

9

Least-squares regression

• covariance matrix of measurements • OLS --- no weighting

• WLS --- weights on diagonal of • GLS --- full covariance matrix

• covariance estimates

• uncertainty estimates

V

yyβ RVXXVX 111 )(ˆ

yβ XXX 1)(ˆ

V

RRV )ˆcov(β

JJRRVu ,2 ˆ

V

Page 10: 14.20 o2 j clare

10

Comparison run by MSL

• our need, simulations• GLS: auditable, complexity, correlations, sound• 3 differing implementations• role of systematic-error estimates

• Sutton:

• Woolliams:

• White:

• Find: estimates and uncertainties same in each case

yβ RSuttonˆ RRV Sutton)ˆcov(β

yβ 0Woolliamsˆ R 00Woolliams)ˆcov( RVR β

yβ 0Whiteˆ R

L

JJ duwduwRVRu

,1

2222,000

2 )()()1()()ˆ(

yy 10

1100 )( VXXVXR

Page 11: 14.20 o2 j clare

11

Errors

• Uncertainties encompass errors:– random– “round-dependent”– intra-participant– inter-participant

Γ

Φ

ΦΓ E

LLL ,,,,,,,,,,,, 222111 Φ

VVyV 0ˆcov ΦΦΓΓ EEE EE

random errors

systematic errors

Page 12: 14.20 o2 j clare

12

Measurement covariance matrix

96444

69444

44855

44585

44558

44444

44444

44444

44444

44444

22

22

111

111

111

3

3

3

3

3

random dependentround systematic

192

115

511

213

16

96444

69444

44855

44585

44558

V

Page 13: 14.20 o2 j clare

13

Proof (1) Estimators equal

• Postulate: • Define • There exists non-singular such that • R = (X'V -1X)-1X'V -1

= (X'WW -1V -1X)-1G-1GX'WW -1V -1

= (GX'WW -1V -1X)-1GX'WW -1V -1

= (GX'WW -1V -1X)-1GX'WW -1V -1

= (X' V0-1X)-1X' V0

-1

= R0

0RR VVW 1

01

G XWXG

Page 14: 14.20 o2 j clare

14

Proof (2) Estimators equal

• condensed

• model

• Rao (1967, Corollary to Lemma 5a)

if

then

LLL ,,,,,,,,,,,, 222111 Φ

L,,,,0,,0 21 Φ LJ

ΓΦββY XXX

ΓβΓΦβ XXXAXXX covcov

yy 0RR

Page 15: 14.20 o2 j clare

15

Uncertainties equal• variances, covariances of

• Sutton, Woolliams:

• White:

• Proof: column space within column space of

– projection operator projectson to self

– symmetries of

,ˆ,ˆ,ˆ j

RRVRVRRR 000ˆcov

UURVRRRVRRV 00

V X

XXXXH

HVHVVH

11 XXXVXXXRVRU

UVXUX

V

Page 16: 14.20 o2 j clare

16

Symmetry of

*****

*****

*****

*****

*****

yyy

xxx

www

vvv

uuu

fedcbaaa

fedcbaaa

fedcbaaa

U

U

Page 17: 14.20 o2 j clare

17

Uncertainties equal• variances, covariances of

• Sutton, Woolliams:

• White:

• Proof: column space within column space of

– projection operator projectson to self

– deduce symmetries of

,ˆ,ˆ,ˆ j

RRVRVRRR 000ˆcov

UURVRRRVRRV 00

V X

XXXXH

HVHVVH

L

JJ duwduwRVRu

,1

2222,000

2 )()()1()()ˆ(

U

L

k

L

k

L

k

kkkkkkkk awwawwawUu

1 1,1

2,4

2 )1(2)1(ˆ

11 XXXVXXXRVRU

VXUX

V

Page 18: 14.20 o2 j clare

18

Degrees of equivalence

• unilateral degree of equivalence = bias

• bilateral degree of equivalence =

• GLS result can be written

which matches ‘step-by-step’ formalism

JJRRVu ,2 ˆ

ˆˆBD

JJJJJJ RRVRRVRRVDu ,,,B2 2

cuwcucuu 2KCRV

222total 2ˆ

Page 19: 14.20 o2 j clare

19

END

Pilot1

2

3

4 5 6

7

8

9