35
Another propaga,on of ‘light’ in the heart To see a world in a grain of sand And a heaven in a wild flower Hold infinity in the palm of your hand And eternity in an hour Auguries of Innocence, by William Blake Sehun Chun

Another Propagations of "Light" in the Heart

Embed Size (px)

DESCRIPTION

 

Citation preview

Page 1: Another Propagations of "Light" in the Heart

Another  propaga,on  of  ‘light’    in  the  heart  

 To  see  a  world  in  a  grain  of  sand  And  a  heaven  in  a  wild  flower  

Hold  infinity  in  the  palm  of  your  hand  And  eternity  in  an  hour  

 -­‐  Auguries  of  Innocence,  by  William  Blake  

Sehun  Chun  

Page 2: Another Propagations of "Light" in the Heart

Big  picture  

To  gaze  up  from  the  ruins  of  the  oppressive  present  towards  the  stars  is  to  recognize  the  indestruc,ble  world  of  laws,  to  strengthen  faith  in  reason,  to  realize  the  ‘harmonia  mundi’  that  transfuses  all  phenomena,  and  that  never  has  been,  nor  will  be,  disturbed,  by  Hermann  Weyl,  1919.    DiLo  in  the  heart,  by  Sehun  Chun,  2010s    

Page 3: Another Propagations of "Light" in the Heart

Introducing  the  HEART  

•  72  beat  per  minute,  2.5  billion  ,mes  in  average  (Beat  rate  =  100%)  

•  Electrical  signal  -­‐>  contrac,on            -­‐>  Pumping  oxygenated  blood    •  Heart  model            =  Electricity  +  Mechanics  +  Elas,city  +  Fluids  •  One  of  the  hardest  Mathema,cal  and  Computa,onal  models  

 

Page 4: Another Propagations of "Light" in the Heart

How  electric  signal  propagates  

Page 5: Another Propagations of "Light" in the Heart

What  is  the  electric  signal?  •  Different  names:          Facilitated  diffusion  (biology),        Nonlinear  diffusion  equa,on  (ODE),          Diffusion-­‐reac,on  equa,on  (PDE).  •  All-­‐or-­‐nothing  non-­‐decremental          traveling  wave  •  No  conserva,onal  laws  of  energy,  momentum,  charges.  

•  Ex)  Collision  of  two  waves  =  canceling  out.  •  Refractory  area  (In-­‐excitable  region  right  behind  signal).  

 

Page 6: Another Propagations of "Light" in the Heart

Analogy  in  nature,  Forest  Fire  

1.  Energy  is  not  conserved    (Otherwise,  a  match  could  be  the  most  dangerous  weapon  !)    2.  Temperature  of  the  fire  does  not  depend  on  the  distance  from  the  origin,  but  depend  on  the  media.            

Page 7: Another Propagations of "Light" in the Heart

Electromagne,c  field  in  the  microscopic  cardiac  cells  

∇⋅di = ρ i, ∇×hi = ji + ∂di

∂t

∇⋅bi = 0, ∇× ei + ∂bi

∂t= 0

∇⋅de = ρ e, ∇×he = je + ∂de

∂t

∇⋅be = 0, ∇× ee + ∂be

∂t= 0

At  Intracellular  space  

At  Extracellular  space  

ρ i + ρ e = const., ji + je = 0 inΩi∪Ωe

Page 8: Another Propagations of "Light" in the Heart

Microscopic  To  Macroscopic  

d i = Di, h i = Hi

b i = Bi, e i = Ei

Collec,ng  several  cells  +  Averaging  the  quan,,es  

d i = Di, h i = Hi

b i = Bi, e i = Ei

Page 9: Another Propagations of "Light" in the Heart

Electromagne,c  field  in  the  macroscopic  cardiac  cells  

∇⋅Di = ρ i, ∇×Hi = J i + ∂Di

∂t

∇⋅Bi = 0, ∇×Ei +∂Bi

∂t= 0

∇⋅De = ρ e, ∇×He = J e + ∂De

∂t

∇⋅Be = 0, ∇×Ee +∂Be

∂t= 0

At  the  same  space,  but  Two  different  equa,ons  

ρ i + ρ e = const., J i + J e = 0, inΩ

Page 10: Another Propagations of "Light" in the Heart

Introducing  Bi-­‐domain  

•  Every  points  in  the  macroscopic  domain  means  two  separate  points  in  the  separate  domains.  

•  Energy  and  charges  are  conserved  in  bi-­‐domains.  

•  Intracellular  space  is  only  our  concern,  then  energy  and  charges  are  not  conserved.  

•  Diffusion-­‐reac,on  system  is  only  possible  in  bi-­‐domain.  

Page 11: Another Propagations of "Light" in the Heart

Anisotropy  in  Cardiac  ,ssue  

•  Cable-­‐like,  cylindrical,  100  um  long  and  15um  •  Cardiac  ,ssue  is  strongly  anisotropic,  with  wave  speeds  that  differ  substan,ally  depending  on  their  direc,on.  

•  0.5  m/s  along  fibers  and  about  0.17  m/s  transverse  the  fibers.  

Page 12: Another Propagations of "Light" in the Heart

Anisotropy  in  Mathema,cs  

•  d:  Diffusion  tensor,  variable  coefficient  

•  In  the  direc,on  of  characteris,cs  •  A  liLle  misplacement  leads  to  the  shock  of  waves.  •  Related  to  the  way  the  heart  is  folded  for  contrac,on  

•  Only  God  is  allowed  to  put  anisotropy  in  the  heart  -­‐>  Another  beauty  of  the  heart  

∇⋅ d∇φ( )

Page 13: Another Propagations of "Light" in the Heart

How  to  simula,on  the  electrophysiology  phenomena  on  complex  anisotropic  geometry  

•  Method  of  Moving  Frames  •  Originally  developed  by  É.  Cartan  in  1920’s  •  Represent  a  geometry  with  oscula,on  Euclidean  planes  by  inheri,ng  the  metric  tensor.  

•  Different  Euclidean  axis  for  each  points  with  various  length  of  the  axis.  

Page 14: Another Propagations of "Light" in the Heart

Rough  meaning  of  Geometry  Op-cs   Electrophysiology  

Role  of  geometry  

Passive  role  for  the  wave  (deflec,on,    

reflec,on,  absorp,on)  

Ac,ve  delivering  of  the  wave  

Meaning   Mass  distribu,on   Cell  distribu,on?  (what  is  equivalent  to  mass  

in  biology?)  Propaga,on   Anything  to  change  

the  propaga,on  of  the  light  

Anything  to  change  the  

cardiac  electric  signal  

Page 15: Another Propagations of "Light" in the Heart

Defini,on  of  geometry  in  electrophysiology  

•  Geometry  =  the  combina,on  of  the  followings:          1)  Loca,on  of  the  star,ng  point          2)  Conduc,ng  proper,es  of  the  media          3)  3D  shape  of  the  heart      -­‐>  Geometry  is  taken  in  the  sense  of                                                                                                        the  Field  theory.    •  Electric  signal  only  depends  on  geometry.  •  Electric  signal  has  negligible  kine,c  energy.    •  Heart  works  100%  according  to  its  design.  •  Analogous  to  the  light  as  a  signal  

Page 16: Another Propagations of "Light" in the Heart

Good  geometry  and  Bad  geometry  •  Good  geometry  =  to  guide  the  electrical  signal  propaga,on  for  “efficient”  cardiac  contrac,on,  i.e.,  star,ng  from  one  point  to  converge  to  one  or  two  points  in  the  atrium.  

•  Bad  geometry  =  To  change  its  original  design    •  Examples  of  bad  geometry:  change  of  loca,on  or  turn-­‐off  of  SAN,  scar  ,ssue  (infarc,on),  change  of  ,ssue  proper,es,  enlarged  3D  shape,  but  the  worst  of  all  is  the  mul,ple  self-­‐ini,ators  (though  they  are  all  correlated)  

Page 17: Another Propagations of "Light" in the Heart

How  atrial  fibrilla,on  (AF)  happens?  

§   Normal  propaga,on  starts  from  a  point      and  converges  to  a  point.  §   AF  only  happens  when  the  propaga,on  deviates        from  its  original  track  and  comes  back  to  excite        cardiac  ,ssue  again  (Reentry)  §   Reentry  requires  unidirec,onal  pathway.      

Unidirec,onal  pathway  

Page 18: Another Propagations of "Light" in the Heart

Clinical  observa,ons  and  conjectures  •  The  role  of  PVs  on  AF:                  -­‐  Spontaneous  Ini,a,on  of  atrial  fibrilla,on  by  ectopic  beats  origina,ng  in  the  pulmonary  vein,  The  New  England  

Journal  of  Medicine,  1998,  by  M.  Haissaguerre  et  al                  -­‐  Arrhythmogenic  substrate  of  the  Pulmonary  Veins  Assessed  by  High-­‐Resolu,on  Op,cal  Mapping,  Circula,on  

2003,  by  R.  Arora  et  al.                  -­‐  Atrial  Fibrilla,on  Begets  Atrial  Fibrilla,on  in  the  Pulmonary  Veins:  On  the  Impact  of  Atrial  Fibrilla,on  on  the  

Electrophysiological  Proper,es  of  the  Pulmonary  Veins  in  Humans,  J.  Am.  Coll.  Cardiol.  2008,  by  T.  Rostock  et  al.    

•  Observa,ons  and  theories  of  AF:                  -­‐  New  ideas  about  atrial  fibrilla,on  50  years  on,  Nature  2002,  by  S.  NaLel                  -­‐  Atrial  Remodeling  and  Atrial  Fibrilla,on:  Mechanisms  and  Implica,ons,  Circula,on  2008,  by  S.  NaLel  et  al                  -­‐  Rotors  and  Spiral  waves  in  Atrial  Fibrilla,on,  J.  Cardiovasc  Electrophysiol  2003,  by  J.  Jalife                  -­‐  Circula,on  movement  in  rabbit  atrial  muscle  as  a  mechanism  of  tachycardia.  III.  The  “leading  circle”  concept:  a  

new  model  of  circus  movement  in  cardiac  ,ssue  without  the  involvement  of  an  anatomical  obstable,  Circ.  Res.  1977,  by  M.A.  Allessie  et  al.  

 

•  Structures  of  ler  atrium  and  PVs:                    -­‐  The  importance  of  Atrial  Structure  and  Fibers,  Clinical  Anatomy  2009,  by  S.  Y.  Ho                    -­‐  The  structure  and  components  of  the  atrial  chambers,  Europace  2007,  by  R.  H.  Anderson                  -­‐    Normal  atrial  ac,va,on  and  voltage  during  sinus  rhythm  in  the  human  heart:  An  endocardial  and  epicardial  

mapping  study  in  pa,ents  with  a  history  of  atrial  fibrilla,on,  J.  Cardiovasc.  Electrophysiol.  2007,  by  R.  Lemery.  

Page 19: Another Propagations of "Light" in the Heart

Blocking  Pulmonary  Veins  by  lesions  

A  surgical  procedure  is  to  insert  a  catheter  through  the  vein  into  the  atrium  and  to  burn  cardiac  cells  around  the  PV  to  prevent  the  self-­‐ini,ators  around  the  PVs.  

Page 20: Another Propagations of "Light" in the Heart

Summary  of  the  proper,es  of  cardiac  electric  signal  propaga,on    

(1)  In  bi-­‐domain  with  none  of  conserva,on  laws  

(2)  Anisotropy  and  inhomogeneous  is  everywhere.  

(3)  3D  shape  is  smooth,  but  non-­‐uniform  with  various  curvature.  

Page 21: Another Propagations of "Light" in the Heart

Theories  of  electrophysiology    in  the  heart  

•  Regarded  as  a  kind  of  nerve  system.  •  Quick  transfer  from  ODE  to  PDE.  •  Analogous  jump  from  a  1D  cable  to  mul,dimensional  space.  

•  Alterna,ve  is  the  Kinema,cs  approach  (1990s~):  Study  of  the  wave  front  to  find  the  cri,cal  curvature  to  find                                  in  

             ∂K∂

KV dξ +C0

∫( )+ ∂K∂t +K2V + ∂

2V∂2

= −ΓV

K * > K

Page 22: Another Propagations of "Light" in the Heart

Inspira,ons  for    rela,ve  accelera,on  approach  

Rule  of  games:  (1) Excited  person  has  3L  of  

water.    (2) Given  1L  of  water,  an  excitable  

person  get  2L  more  water  and  get  excited.  

 (3) A  player  wins  if  it  has  more  

children  than  the  compe,tor.    (4) Game  stops  if  any  one  of  the  

column  can  not  receive  1L.  

Page 23: Another Propagations of "Light" in the Heart

Hypothesis  and  Proposi,on  

•  Hypothesis:  If  the  rela,ve  accelera,on  of  cardiac  excita,on  propaga,on  becomes  sufficiently  large,  then  the  propaga,on  stops.  

•   Proposi,on:  If  the  following  is  sufficiently  large,  then  the  propaga,on  stops  

−1E

∂E∂n

∂vi

∂λ+∂G∂n

vi +G ∂vi

∂n+∂ cvi( )∂n

#

$%%

&

'((

where, E = (Λk )2dkgkk

k=1

2

∑ G =1g∂( gΛkd

kgkk )∂xkk=1

2

Page 24: Another Propagations of "Light" in the Heart

Diffusion-­‐Reac,on  Tensor  

•  A  DR-­‐tensor,  is  obtained  as  

•  Coincide  with  the  defini,on  of  geometry:  •  (1)                                :  type  of  media.  •  (2)                                :  Loca,on  of  SAN  and  surface  2D  geometries.  •  (3)                                :  3D  shape.    •  Large  varia,on  of  the  tensor  means  the  break-­‐up  of  the  wave  

Ck = dkΛkgkk

Anisotropic  coefficient   Propaga,onal  direc,on   the  conjugate  metric  tensor    for  3D  geometric  shape  

×

×

dkΛkgkk

Page 25: Another Propagations of "Light" in the Heart

Applying  to  the  PVs  

dθ 4

Page 26: Another Propagations of "Light" in the Heart

Various  Anisotropy  on  the  PV  

A  shape  of  PV  junc,on   No  anisotropy  

Circumferen,al  anisotropy   Longitudinal  anisotropy  (Perez-­‐Lugones  et  al,  2003)  

Page 27: Another Propagations of "Light" in the Heart
Page 28: Another Propagations of "Light" in the Heart

Construct  a  model  

Page 29: Another Propagations of "Light" in the Heart

Modelling  of  Re-­‐entrance  on  a  spherical  shell  with  a  PV-­‐like  column  1)  Normal  condi,on  

T=0,  Front   T=10,  Front   T=20,  Back   T=25,  Back  

2)  Deteriorated  myocardial  cells  on  the  PVs  

T=20,  Back   T=22,  Back   T=37,  Front   T=100,  Front  

Overdrive  suppression  Mul,ple  reentrant  waves  

Page 30: Another Propagations of "Light" in the Heart

Consequences  

(1) Unidirec,onal  pathways  are  the  PVs  with  weakened  anisotropy  toward  which  the  wave  approaches  with  an  oblique  angle  due  to  some  other  factors,  for  example,  the  presence  of  scar  ,ssue,  the  change  of  SAN,  etc.  

(2) Cardiac  excita,on  propaga,on  can  be  represented  as  the  field  of  the  trajectories.  

(3) Something  is  moving  along  the  trajectory  

Page 31: Another Propagations of "Light" in the Heart

What  is  actually  moving  in  electric  signal  propaga,on  ?  

S,mula,ng  moving  body  consist  of  many  s,mula,on  par,cles    that  lower  the  res,ng  poten,al  to  ini,ate  cardiac  ac,on  poten,al.  Ex)  For  forest  fire,  it  is  equivalent  to  a  group  of  par,cles  of    high-­‐temperature  to  ini,ate  fire  on  a  unburned  tree.  

Page 32: Another Propagations of "Light" in the Heart

S,mula,ng  moving  body  

Page 33: Another Propagations of "Light" in the Heart

Maxwell’s  equa,ons  in  the  universe  vs.  Maxwell’s  equa,ons  in  the  heart  

Maxwell’s  equa-ons  

in  the  universe   in  the  heart  

How  to  propagate  

Ray   Diffusion  

Gauge  choice  

Gauge  func,on  

∇⋅A+ 1c2∂Φ∂t

= 0 ∇⋅A+Φ = 0

∇2Λ−1c2∂2Λ∂t2

= 0 ∇2Λ−∂Λ∂t

= 0

Page 34: Another Propagations of "Light" in the Heart

Diffusion-­‐reac,on  equa,ons  from  Maxwell’s  equa,ons  

•  The  diffusion-­‐reac,on  equa,ons  are  one  projec,on  of  Maxwell’s  equa,ons  in  bi-­‐domain,  so  E  and  B  are  under-­‐determined.  

•  The  normal  heart  is  designed  to  generate  the  minimum  degree  of  the  magne,c  field  (conjecture  1).  

•  Increasing  magne,c  field  in  the  specific  area  of  the  heart  may  mean  AF  (conjecture  2).  

•  It  may  explain  why  the  external  electric  shock  can  resuscitate  temporarily  non-­‐moving  heart  arer  CPR  or  can  cure  AF  temporarily.  

Page 35: Another Propagations of "Light" in the Heart

Thank  you  for  aLen,on  !  

Now    I  know  I've  got  a  heart,    'cause  it's  breaking