28
KKKB 4774 BIOPROCESS PLANT DESIGN PROJECT I Lim Kah Huay A132816 Low Bee Chan A132764 Sonia Dilip Patel A/P Dilip Kumar A133115 Fatin Atikah Binti Kassim A132739 Jamilah Binti Ahmad A133159 Muhammad Khairil Azim bin Abdullah A133275 PRODUCTION OF BIOETHANOL FROM GLYCEROL USING Enterobacter aerogenes TISTR1468 FEASIBILITY STUDY Group KB4

ethanol production from crude glycerol

Embed Size (px)

DESCRIPTION

stage I feasibility study..

Citation preview

Page 1: ethanol production from crude glycerol

KKKB 4774BIOPROCESS PLANT DESIGN PROJECT I

Lim Kah HuayA132816Low Bee Chan A132764Sonia Dilip Patel A/P Dilip Kumar A133115Fatin Atikah Binti Kassim A132739Jamilah Binti Ahmad A133159Muhammad Khairil Azim bin Abdullah A133275

PRODUCTION OF BIOETHANOL FROM GLYCEROL USING Enterobacter aerogenes TISTR1468

FEASIBILITY STUDY

Group KB4

Page 2: ethanol production from crude glycerol

Level 1

Level 2

Level 3

Level 4

Feasibility Study Outline

• Process Selection• Chemical reaction• Details for raw material and product

• Design constraint• Site location• Physical / Chemical properties

• Synthesis of Input-Output Structure• Design variable• Design capacity

• Mass balance• Curve of FEP 2

• Number of bioreactor• Limiting reactant balance•Bioreactor selection

• Bioreactor sizing• Cost of bioreactor• Curve of FEP 3

• Disc Stack centrifuge• Distillation column • Molecular sieve

• Storage tank • Curve of FEP 4

Page 3: ethanol production from crude glycerol

• Higher octane number• Reduced particulate and NOx emission• Higher flame speed• Higher heat of vaporization• SO2 & PM emission decreased• Reduce emission of hydrocarbon – depletion of ozone• Lower volatility and photochemical reactivity – smog• Octane enhancer (cancer-causing) – emission reduced by half• Broader flammability limits

Source: Renewable Fuels Association (2008)Level 1

Why Ethanol?

Page 4: ethanol production from crude glycerol

• The United States• Brazil• Canada• Sweden • India• China

Ethanol as Fuel Worldwide

Other Usage• Industries Pharmaceutical Personal care Cleaning products Paint Food Beverage

Product Usage

Page 5: ethanol production from crude glycerol

Property Gasoline Ethanol

Specific gravity 0.73 0.79

30 - 225 78.3

Specific heat (MJ/kg) 43.5 27.0

Heat of vaporization (kJ/kg) 400 900

Octane number 91-100 108

-40 13

300 366

Heat of formation (kcal/mole) -52.78 -51.95

Latent Heat (kcal/kg) 90.82 210.7

Molecular weight (g/mol) 113.228 46.070

Toxicity Toxic Less toxic than gasoline

Solubility in water No Yes

Smoke Produce visible smoke

Does not produce visible smoke

Source: Shah (2010)

GASOLINE & ETHANOLAdvantages of Ethanol Over Gasoline

Exhibits a higher octane number which enables engine to have higher compression

Oxygenated fuel that contains 35% oxygen

Reduced particulate and NOx emission from combustion

Ethanol based on fermentation produces no net increase in carbon dioxide in atmosphere

Octane enhancing additive

Removes free water which can plug fuel lines in cold climates

Broader flammability limits

Higher flame speeds

Higher heat of vaporization

Lower volatility and photochemical reactivity (Reduced smog formation)

Lower toxicity compared to gasoline

Source: Srivastava (2008)

Page 6: ethanol production from crude glycerol

Crude glycerol

Components ConcentrationGlycerin >60%Water < 20 %Sodium Chloride < 5 %Methanol < 1%Ash < 5 %Fatty Acid Ester < 5 %

Table 1.2 Physical and chemical properties of glycerol

Physical Properties Chemical Properties

Amber coloured Density of 1.22-1.24 g/m3

Grain-like odour Melting point of 18 oC

Liquid state Boiling point : >130 oC

Molecular weight of 92.09 Vapour density : 3.17

Specific gravity : 1.26 Flash point : >120 oCRaw Material

Source: Eastridge (2009)

Source: Pangliaro & Rossi (2008)

Table 1.1 Chemical composition of crude glycerolAdvantage over sugar

because of highly reduced nature of

carbon atoms

Page 7: ethanol production from crude glycerol

Bacterial strain Condition Yield of ethanol

Ethanol concentration

Reference

Aerobacter aerogenes 1033

pH 6.5, 35°C, batch culture containing 10% glycerol for 18h.

0.86 mol/mol glycerol

0.54 g/l Megasanik (1953)

Enterobacter aeogenes HU 101

pH of 6.8, 37°C 0.8 mol /mol purified glycerol

0.51 g/l Ito et al (2005)

Enterobacter agglomerans CNCM 1210

pH 7.0, 30°C, 20 g/L of glycerol

0.23mol/0.05mol glycerol

2.91g/l

Barbirato et al(1997)

Klebsiella planticola DR3

Initial pH 7.2 - 7.4, 37°C 10g/L of glycerol for 48h

30 mmol/L 2.76 g/l Jarvis et al(1996)

Clostridium butylicum B593

Initial pH 6.5, 35°C 0.54 mM 0.002 g/l Forsberg (1986)

Klebsiella pneumoniae M5a1

pH 6.8, 37°C 34.0 + 0.4mmol/L

1.57 g/l Lin et al(2005)

Enterobacter aerogenes TISTR 1468

Crude glycerol, 30°C 0.94 mol/mol 24.5 g/l Ciptanto (2009)

BACTERIAL

SELECTION

Page 8: ethanol production from crude glycerol

Kingdom Bacteria

Phylum Proteobacteria

Class Gamma Proteobacteria

Order Enterobacteriales

Family Enterobacteriaceae

Genus EnterobacterFacultative anaerobeGram negativeRod shaped

Enterobacter aerogenes TSISR 1468

Source: Microbial Library (2010)

Biochemical Pathway Mutated pathway to maximize ethanol produced.

Insignificant amount of butanol produced.

Table 1.3 Hierarchy for Enterobacter aerogenes

Page 9: ethanol production from crude glycerol

p/s: The ratings are to the scale of 5.

Factors of Consideration Port Klang Pasir Gudang Pengerang

Availability of raw material 5 5 5

Proximity to market 5 5 4

Labor Availability 5 5 5

Transport and facilities 5 5 5

Effluent Disposal facilities 4 4 4

Product storage availability 3 3 5

Utilities (services) 5 5 4

Political and strategic considerations

4 4 5

Total 36 36 37

Table 1.3 Factors of considerations for site location

SITE LOCATION

Port Klang

Pengerang

Pasir

Gudang

Why Pengerang?Malaysian Federal Government and Johor State Government give full support to develop this area.Located in the middle of oil and gas trading route –Iskandar Malaysia Integrated Development.Potential in becoming major regional manufacturer of oil refinery – attraction of investor for bioethanol plant.Close to major trading hubs – attract investor/customer.Availability of sufficient land 20 000 acres

Page 10: ethanol production from crude glycerol

2013 2014 2015 2016 2017 2018 2019 2020 2021 20220

50

100

150

200

250

300

350

400

World Bioethanol Supply and Demand Capacity from Year 2013 - 2022 (Projections)

demand

supply

Years

Bio

eth

anol

(b

illio

n li

tres

)

Source: OECD-FAO Agricultural Outlook 2013 – 2022 (2013)

Market Analysis

Page 11: ethanol production from crude glycerol

Generation of Productin Capacity Basis

According to OECD-FAO Agricultural Outlook 2013,Shortage = 0.7 million litres / year

= 552.44 tonnes / year

However from Biofuels Digest 2012,Japan’s Toyo Engineering Co. in a joint venture with Glycos Biotechnologies and Malaysian developer Bio-XCell will build a 10,000 ton per year ethanol plant in Johor Bahru by Q2 2013. The facility that will use from crude glycerin from the production of palm methyl ether as feedstock will expand to 30,000 tons per year by 2014.

Therefore, an average of 15,000 tonnes / year of ethanol production will be taken as the plant production capacity basis.

Page 12: ethanol production from crude glycerol

Comparison between Batch & Continuous process

Process

Criteria

Batch Continuous

Capital cost Low High

Rate of production Low High

Raw material product Processed differently in various pieces equipment

Processed in identical fashion/equipment

Workforce More Less

Ease on automation Relatively difficult Relatively easy

Energy efficiency Large peak demand Small but continuous loads

Down time Long Short

Page 13: ethanol production from crude glycerol

INPUT-OUTPUT STRUCTURE

CONTINUOUS PROCESS

Crude glycerol

Ammonia

Carbon dioxide

Biomass

Ethanol

Nitrogen, Oxygen

Water

Process Output DestinationProduct Boiling Point at 1

atm (°C)Class Destination

Ethanol 78.3 Main Product Main product

Biomass N/A Waste Waste treatment

Carbon Dioxide -78.5 Gas byproduct Vent

Water 100 Waste Waste water treatment plant

Page 14: ethanol production from crude glycerol

Price of ethanol – RM 3.06 / kg (Source: OECD-FAO Agricultural Outlook 2013)Price of glycerol – RM 0.64 / kg (Source: Petrosil Glycerin Report 2013)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-300.00

-275.00

-250.00

-225.00

-200.00

-175.00

-150.00

-125.00

-100.00

-75.00

-50.00

-25.00

0.00

25.00

50.00

75.00Economic Potential Graph Level 2 vs Glycerol Conversion

552.44 MT/yr10, 000 MT/yr30, 000 MT/yr15, 000 MT/yr

Glycerol Conversion

Eco

nom

ic P

oten

tial

2 (

RM

mill

ion

/yr)

Page 15: ethanol production from crude glycerol

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.10

0.10.20.30.40.50.60.70.80.9

11.1 Yield versus Conversion

ethanol succinic lactic acetic

Conversion

Yie

ld(m

ol/m

ol)

1.05

0.75

Yield (mol/mol)

1.05

Yield (g/g) 0.52

Conversion 75%

Conversion and Stoichiometry

Stoichiometry Equation:𝐶3 𝐻5 (𝑂𝐻)3 + 0.06594 𝑁𝐻3 + 0.047775 𝑂2 →0.27475 𝐶𝐻1.78𝑂0.33𝑁0.24 + 1.05 𝐶2𝐻5𝑂𝐻 + 0.62525𝐶𝑂2 + 0.704382 𝐻2𝑂

Page 16: ethanol production from crude glycerol

Comparison Between 1 Fermenter and 2 Fermenters In Series

0.27 0.49 0.63 0.740

5000

10000

15000

20000

25000

30000

35000Fermenter Volume versus Conversion 2 fermenters 1 fermenter

Conversion

Vol

um

e, L

0.2 0.3 0.4 0.5 0.6 0.7 0.8

-40.00

-30.00

-20.00

-10.00

0.00

10.00

20.00Economic Potential Graph Level 3 Versus Conversion

1 fermenter 2 fermentersConversion

FE

P 3

(R

M m

illio

n/Y

R)

Page 17: ethanol production from crude glycerol

Bioreactor

1 seed fermenter 2 main fermenters in series

8.9

6.7

Diameter of Fermenter, m 1.56

Height of Fermenter, m 4.67

Diameter of impeller, m 0.52

Aeration rate, vvm 0.5

Agitation, rps 0.169

Material SS304

64.77 2.47

48.58 1.85

Diameter of Fermenter, m

3.02 1.02

Height of Fermenter, m 9.05 3.05

Diameter of impeller, m

1.00 0.34

Aeration rate, vvm 0.5 0.5

Agitation, rps 0.083 0.225

Material SS304 SS304

Page 18: ethanol production from crude glycerol

Component Mr Ni

(kmol/h)

Fi (kg/h) No

(kmol/h)

Fo (kg/h) Ni

(kmol/h)

Fi (kg/h) No

(kmol/h)

Fo (kg/h)

Glycerol 92.09 5.05 465 1.24 113.77 51.73 4763.77 12.66 1165.56Ammonia 17 0.25 4.27 0 0 2.51 42.75 0 0Oxygen 32 0.09 2.92 0 0 0.91 29.23 0 0Biomass 22.5 0 0 1.05 23.58 1.05 23.58 11.78 265.11Ethanol 46.07 0 0 4.00 184.48 4.00 184.48 45.03 2074.42Carbon Dioxide

44 0 0 2.32 102.012.32 102.01 26.07 1147.12

Water 18 232.26 4180.73 234.95 4229.08 2614.40 47059.24 2641.92 47554.61∑ 4652.92 4652.92 52205.07 52206.83

Mass Flow Rate(kg/h) Mass Balance Superpro simulation Error %

Total output from fermenters 52205.07 52761.08 1.05

Comparison of mass balance manual calculation with superpro simulation

Mass balance of bioreactor (fermentors)

Seed

Main

rlimiting = Nik /- αkGlycerol flow rate,

Ng(mole/hr)Glycerol limiting,

rg, limitingAmmonia flow

rate, Na(mole/hr)

Ammonia limiting, ra,

limiting

Seed Fermenter 5049.2 5049.2 251.5 3813.8Main Fermenter 51727.4 51727.4 2514.8 38138.0

Excess or Limiting Reactant

Mass Balance

Page 19: ethanol production from crude glycerol

IMSK (recent) IMSD (old)

Fm (material construction

factor)

Fp (pressure factor)

Fi (installation

factor)1512.5 280 3.75 1 1.5

Page 20: ethanol production from crude glycerol

Downstream Separation General Structure

Distillation Column

Disk Stack Centrifuge

Molecular Sieve

Ethanol

Biomass

Water

Biomass

Concentrated Ethanol(99.5%)

Water

Water

Glycerol

Page 21: ethanol production from crude glycerol

Downstream Separation

• Disc-stackSeparation of finely dispersed

particles.Easy to operate and control

through continuous and automatic operation.

Disc split the stream into a large number of very thin layers thereby improving separation.

No filter cloth, additives or flocculants necessary.

Source: Alfa Laval (2008)

Page 22: ethanol production from crude glycerol

Molecular sieves

Minimal labor requirementThe process is inertThe molecular sieve desiccant material used has a very long potential service lifeRegenerable process

Source: Ethanol India (2011)

Page 23: ethanol production from crude glycerol

Source: Doughlas (1988)

Page 24: ethanol production from crude glycerol

Glycerol conversion

K centrifuge K distillation K Molecular sieve

K storage tank K total (in million)

0.0 164 760.42

167 833.8 755 252.2 3 386.23 1.0912

0.1 165 624.54

168 098.5 756 443.1 151 133.90 1.2413

0.2 166 491.86

168 363.2 757 634.6 221 273.00 1.3138

0.3 167 362.37

168 628.2 758 826.7 276 553.20 1.3714

0.4 168 228.79

169 025.8 760 616.2 323 962.70 1.4218

0.5 169 095.98

169 291.1 761 810.1 366 265.10 1.4665

0.6 169 959.11 169 556.6 763 004.6 404 897.60 1.5074

0.7 170 818.21

169 822.2 764 199.7 440 723.20 1.5456

0.8 171 680.53

170 087.9 765 395.6 474 309.20 1.5815

0.9 172 538.85

170 486.8 767 190.6 506 052.30 1.6163

1.0 173 311.67 170 048.8 767 190.6 536 240.30 1.6472

K Values of different unit separation

Page 25: ethanol production from crude glycerol

K Values for Different Types of Separation

0 0.2 0.4 0.6 0.8 1 1.20

100000

200000

300000

400000

500000

600000

700000

800000

900000

Graph of Economy Potential against Glycerol Con-version

Absorber

Storage tank

Centrifuge

Distillation

Glycerol conversion

Eco

nom

y P

oten

tial

(R

M M

illi

on/y

ear)

Page 26: ethanol production from crude glycerol

Comparison of Economic Potential Curve Level 3 (FEP 3) and Level 4 (FEP 4)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

-180

-160

-140

-120

-100

-80

-60

-40

-20

0

20

40

FEP 3

FEP 4

Glycerol Conversion

Eco

nom

y P

oten

tial

(R

M M

illi

on/y

ear)

Page 27: ethanol production from crude glycerol

• James M.Douglas. 1988. Conceptual Design of Chemical Process. McGraw-Hill Book.

• Shalabh Srivastava. 2008. Numerical Simulation of a Direct Injection Spark Ignition Engine Using Ethanol As Fuel (2008): 2-5.

• Renewable Fuels Association. 1981. http://www.ethanolrfa.org/pages/philosophy.

• Saon Ray, Smita Miglani & Amrita Godlar. 2011. Ethanol Blending Policy in India: Demand and Supply Issues. ICRIER Policy Series.

• Vishal Shah 2010. Emerging Environmental Technologies: Volume II (2010): 2-5.

• Renewable Fuels Association. 1981. http://www.ethanolrfa.org/pages/philosophy.

• M. Wang, C.Saricks & D.Santini. 1999. Effects of Fuel Ethanol use on Fuel-Cycle Energy and Greenhouse Gas Emission. United States Department of Energy.

REFERENCE

Page 28: ethanol production from crude glycerol

Thank You!!