6

Click here to load reader

Learn a language : LISP

Embed Size (px)

Citation preview

Page 1: Learn a language : LISP

Learn a language: Clojureby Tijs van der Storm

PreliminariesInstall Eclipse, if you haven’t already. To get a “main-stream” IDE for Clojure, install theCounterClockwise plugin for Eclipse. I use it with Eclipse Indigo, but I have no idea whetherother versions will work too.

The webpage for the plugin can be found here:http://code.google.com/p/counterclockwise/. Use the Eclipse help menu to install extrasoftware, add the update site: http://ccw.cgrand.net/updatesite/.

Select the Clojure plugin. Next, accept, next, finish, restart Eclipse. Then File->New… selectClojure project. Finish. To create a file, right-click on the project, select New->Other->Clojure namespace. To load/start a REPL (Read-Eval-Print-Loop) for the file, right-click theeditor, and select load into REPL. Your functions are now accessible in the REPL.

Some notes on the IDE:

Command history is accessed through Ctrl-up and -down.In an editor, check the context menu for shortcuts to (re)load the current file.

Clojure resources

Main site: http://www.clojure.orgQuickref of clojure.core: http://clojuredocs.org/quickref/Clojure%20CoreIndex of clojure.core: http://clojuredocs.org/clojure_core

ExercisesWarming upType the following expression in the REPL.

(print "Hello world!") (+ 1 2) (+ 1 2 3 4) * (map (fn [x] (+ x 2)) [1 2 3 4]) (def f (fn [x] (+ x 2))) (defn g [x] (+ x 2)) (map f [1 2 3 4])) (vec (map f [1 2 3 4])))

Page 2: Learn a language : LISP

(vec (map f [1 2 3 4]))) (reduce * [1 2 3 4]) (if (> 2 1) 'yes 'no)

Quoting

'() '4 '(+ 3 4) '[Hello world!] (quote (+ 3 x)) (list '+ 3 x) `(list '+ 3 x) (let [x 3] `(+ 3 ~x)) (let [x '(4 5 6)] `(+ 3 ~@x)) (let [x '(4 5 6)] (concat (list '+ 3) x))

Functional programming

1. Write the factorial function.2. Implement the Fizz Buzz Test (see C2 http://c2.com/cgi/wiki?FizzBuzzTest). Tip: use

doseq and range .3. Write the power function using recursion.4. Write the power function using squaring (see Wikipedia

http://en.wikipedia.org/wiki/Exponentiation_by_squaring)5. Write the power function using reduce and repeat .

Macro programmingIn Clojure, a macro is defined using defmacro :

(defmacro m [a1 … an] body)

Here, m is the name of macro, a1 … an are the formal parameters and body is the bodyof the macro. Macros are functions that return code. How the result is created does notmatter, but it is typical to use the quasiquote (backtick, `), unquote ( ~ ) and unquote splicing( ~@ ). Note that when a macro is invoked (m e1 … en) , the argument expressions e1 …en are not evaluated. In other words, the formal parameters a1 … an of m are bound tothe code trees of e1 … en . For instance, when calling (m (+ 1 2)) , a1 is bound to '(+1 2) and not to 3 .

Tips for debugging macros:

Use macroexpand and macroexpand-1 with a quoted macro invocation asargument to inspect what a top-level macro expands to.

Page 3: Learn a language : LISP

To see complete expansion of a macro, first issue

(use 'clojure.walk)

at the REPL prompt, then you can use macroexpand-all .

Assert statementWrite a macro that implements an assert statement, as found in Java. The macro should becalled as follows:

(assert* cond "some message")

The result of assert* should be nil). If the condition cond fails (i.e., returns false ornil ) an exception should be thrown with a message containing the literal expression condand the label string.

Use throw to throw an exception, which can be created as follows (Exception. "somemessage") . Use the str function to concatenate strings. NB: the failing expression shouldbe in the message. Tip: unquotes ( ~ ) can be in quotes ( ' )…

Quiz

Does assert* have to be a macro? If so why? If not, how would you implement it?

Aside

Practical Common Lisp devotes a chapter to writing a simple unit-test framework usingmacros:

http://www.gigamonkeys.com/book/practical-building-a-unit-test-framework.html

Let

The let construct to introduce local variables is a built-in special form in Clojure. However,it is well-known that let can be implemented as a macro: an invocation of let expandsto a function application. Write such a macro. Your version of let ( let* ) should expand asfollows:

(let* [var exp] body) => ((fn [var] body) exp)

To simplify the exercise, you may assume that let only binds a single variable. If this is toosimple, implement another version that supports multiple bindings.

Times

Page 4: Learn a language : LISP

TimesWrite a macro times that takes an expression e and a number n and expands to a doform that just executes the expression n times. E.g.:

(times 5 'hello) => (do 'hello 'hello 'hello 'hello 'hello)

Tip: use the splicing unquote ~@ in combination with the core function repeat . Note thatrepeat generates an (lazily) infinite sequence, you have to provide the number ofrepetitions.

Special powerPartial evaluation is a program optimization technique that can be applied if certainarguments to a function are statically known. A traditional example is the power function.Often, the exponent argument ( n in (power x n) ) is statically known. Can we specializethe power function for a fixed n ? Partial evaluation in general is not for the faint of heart,but using macros we can do this specifically for power.

The goal is to write a macro that generates the code for a power function that is specializedfor some n . Let’s call it gen-power . Now, if (gen-power 3) returns a function f , then itshould hold that (= (f x) (power x 3)) for all x .

Here’s an example of what the invocation (gen-power 3) could expand to:

(fn* ([x] (clojure.core/* x (clojure.core/* x (clojure.core/* x 1)))))

NB: fn* is an internal form Clojure to represent functions. Note that the * function hasbeen qualified with the namespace it is defined in. In the macro you can just use the normalfn and * to generate code.

Tips

Split the solution in two parts:

1. The top-level macro creates the function and calls a sub-function (gen-body 'xn) , where x represents the name of the parameter of the created function, andwhere n is the exponent.

2. The gen-body function recursively creates an expression to multiply x n times.

Quiz

Argue why the specialized power functions produced by gen-power would/should befaster than the general power function.

Page 5: Learn a language : LISP

Computing derivativesCheck out this page to refresh your derivative chops:

http://en.wikipedia.org/wiki/Derivative

In this exercise, the goal is to compute the derivative of restricted, but otherwise ordinaryClojure functions. The restrictions are:

Functions take only 1 argument.The body of the function can only use * , + , the formal parameter of the function,and constant numbers.You may assume both * and + only have two arguments (although Clojure supportsan arbitrary number).

Basically, such functions describe simple polynomials. An example is the following:

(fn [x] (+ (* 3 (* x x)) (+ (* 2 x) 1))))

The derivative of this function is:

(fn [x] (+ (* 6 x)) 2))

The exercise is to write a macro that returns and expression that computes this function.NB: this does not mean that it is syntactically the same as the derivative shown above; itshould however give the same answers for the same inputs.

The macro is invoked as follows:

(deriv (fn [x] (+ (* 3 (* x x)) (+ (* 2 x) 1)))))

Tips

Split your solution in two parts:

1. The top-level macro that analyzes the fn argument to obtain the name of theparameter and the body expression, passes it to 2), and upon return constructs anew fn with the same parameter.

2. The helper function diff that receives and expression e and a variable name vwhich computes the derivative expression.

Some useful functions:

(number? x) : returns true if x is a number.(symbol? x) : returns true if x is a symbol.

Page 6: Learn a language : LISP

(first x) , (second x) : return the first resp. second elements of a collection(vector or list) x .(nth x n) : return the n -th element of a collection x .(cond c1 e1 … cn en :else e) : cascading conditional; finds the first ci thatevaluates to true and evaluates ei . If no ci is found, evaluates e .