35
. . . . . . Section 4.6 Optimization Problems Math 1a Introduction to Calculus March 19, 2008 Announcements Problem Sessions Sunday, Thursday, 7pm, SC 310 Office hours Tues, Weds, 2–4pm SC 323 . . Image: Flickr user Lawrence OP

Lesson 19: Optimization Problems

Embed Size (px)

DESCRIPTION

 

Citation preview

Page 1: Lesson 19: Optimization Problems

. . . . . .

Section4.6OptimizationProblems

Math1aIntroductiontoCalculus

March19, 2008

Announcements

◮ ProblemSessionsSunday, Thursday, 7pm, SC 310◮ OfficehoursTues, Weds, 2–4pmSC 323

..Image: Flickruser LawrenceOP

Page 2: Lesson 19: Optimization Problems

. . . . . .

Announcements

◮ ProblemSessionsSunday, Thursday, 7pm, SC 310◮ OfficehoursTues, Weds, 2–4pmSC 323◮ Pleasereviewthepolicyonlatehomeworks

Page 3: Lesson 19: Optimization Problems

. . . . . .

Outline

LeadbyExample

TheTextintheBox

MoreExamplesTheBestFencingPlanTheShortestFenceNormanWindows

Page 4: Lesson 19: Optimization Problems

. . . . . .

LeadingbyExample

ExampleWhatistherectangleoffixedperimeterwithmaximumarea?

SolutionDrawarectangle.

.

.

.ℓ

.w

Page 5: Lesson 19: Optimization Problems

. . . . . .

LeadingbyExample

ExampleWhatistherectangleoffixedperimeterwithmaximumarea?

SolutionDrawarectangle.

.

.

.ℓ

.w

Page 6: Lesson 19: Optimization Problems

. . . . . .

LeadingbyExample

ExampleWhatistherectangleoffixedperimeterwithmaximumarea?

SolutionDrawarectangle.

.

.

.ℓ

.w

Page 7: Lesson 19: Optimization Problems

. . . . . .

LeadingbyExample

ExampleWhatistherectangleoffixedperimeterwithmaximumarea?

SolutionDrawarectangle.

.

.

.ℓ

.w

Page 8: Lesson 19: Optimization Problems

. . . . . .

Solution(Continued)Letitslengthbe ℓ anditswidthbe w. Theobjectivefunctionisarea A = ℓw.

Thisisafunctionoftwovariables, soweneedtousetheconstraintthattheperimeterisfixed. Since p = 2ℓ + 2w, wehave

ℓ =p− 2w

2,

so

A = ℓw =p− 2w

2·w =

12(p− 2w)(w) =

12pw−w2

Nowwehave A asafunctionof w alone(p isconstant). Thenaturaldomainofthisfunctionis [0,p/2]. Bothoftheseendpointswouldresultinadegeneraterectangle—alinesegment—ofzeroarea.

Page 9: Lesson 19: Optimization Problems

. . . . . .

Solution(Continued)Letitslengthbe ℓ anditswidthbe w. Theobjectivefunctionisarea A = ℓw.Thisisafunctionoftwovariables, soweneedtousetheconstraintthattheperimeterisfixed. Since p = 2ℓ + 2w, wehave

ℓ =p− 2w

2,

so

A = ℓw =p− 2w

2·w =

12(p− 2w)(w) =

12pw−w2

Nowwehave A asafunctionof w alone(p isconstant). Thenaturaldomainofthisfunctionis [0,p/2]. Bothoftheseendpointswouldresultinadegeneraterectangle—alinesegment—ofzeroarea.

Page 10: Lesson 19: Optimization Problems

. . . . . .

Solution(Continued)Letitslengthbe ℓ anditswidthbe w. Theobjectivefunctionisarea A = ℓw.Thisisafunctionoftwovariables, soweneedtousetheconstraintthattheperimeterisfixed. Since p = 2ℓ + 2w, wehave

ℓ =p− 2w

2,

so

A = ℓw =p− 2w

2·w =

12(p− 2w)(w) =

12pw−w2

Nowwehave A asafunctionof w alone(p isconstant). Thenaturaldomainofthisfunctionis [0,p/2]. Bothoftheseendpointswouldresultinadegeneraterectangle—alinesegment—ofzeroarea.

Page 11: Lesson 19: Optimization Problems

. . . . . .

Solution(Continued)Letitslengthbe ℓ anditswidthbe w. Theobjectivefunctionisarea A = ℓw.Thisisafunctionoftwovariables, soweneedtousetheconstraintthattheperimeterisfixed. Since p = 2ℓ + 2w, wehave

ℓ =p− 2w

2,

so

A = ℓw =p− 2w

2·w =

12(p− 2w)(w) =

12pw−w2

Nowwehave A asafunctionof w alone(p isconstant). Thenaturaldomainofthisfunctionis [0,p/2]. Bothoftheseendpointswouldresultinadegeneraterectangle—alinesegment—ofzeroarea.

Page 12: Lesson 19: Optimization Problems

. . . . . .

Solution(Concluded)Wehave

dAdr

=12p− 2w,

andthecriticalpointsarewhen

0 =12p− 2w =⇒ w =

p4

.

Sincethisistheonlycriticalpoint, itmustbethemaximum. In

thiscase ℓ =p4aswell. Wehaveasquare!

Page 13: Lesson 19: Optimization Problems

. . . . . .

Solution(Concluded)Wehave

dAdr

=12p− 2w,

andthecriticalpointsarewhen

0 =12p− 2w =⇒ w =

p4

.

Sincethisistheonlycriticalpoint, itmustbethemaximum. In

thiscase ℓ =p4aswell.

Wehaveasquare!

Page 14: Lesson 19: Optimization Problems

. . . . . .

Solution(Concluded)Wehave

dAdr

=12p− 2w,

andthecriticalpointsarewhen

0 =12p− 2w =⇒ w =

p4

.

Sincethisistheonlycriticalpoint, itmustbethemaximum. In

thiscase ℓ =p4aswell. Wehaveasquare!

Page 15: Lesson 19: Optimization Problems

. . . . . .

Outline

LeadbyExample

TheTextintheBox

MoreExamplesTheBestFencingPlanTheShortestFenceNormanWindows

Page 16: Lesson 19: Optimization Problems

. . . . . .

TheTextintheBox

1. UnderstandtheProblem. Whatisknown? Whatisunknown? Whataretheconditions?

2. Drawadiagram.

3. IntroduceNotation.

4. Expressthe“objectivefunction” Q intermsoftheothersymbols

5. If Q isafunctionofmorethanone“decisionvariable”, usethegiveninformationtoeliminateallbutoneofthem.

6. Findtheabsolutemaximum(orminimum, dependingontheproblem)ofthefunctiononitsdomain.

Page 17: Lesson 19: Optimization Problems

. . . . . .

TheTextintheBox

1. UnderstandtheProblem. Whatisknown? Whatisunknown? Whataretheconditions?

2. Drawadiagram.

3. IntroduceNotation.

4. Expressthe“objectivefunction” Q intermsoftheothersymbols

5. If Q isafunctionofmorethanone“decisionvariable”, usethegiveninformationtoeliminateallbutoneofthem.

6. Findtheabsolutemaximum(orminimum, dependingontheproblem)ofthefunctiononitsdomain.

Page 18: Lesson 19: Optimization Problems

. . . . . .

TheTextintheBox

1. UnderstandtheProblem. Whatisknown? Whatisunknown? Whataretheconditions?

2. Drawadiagram.

3. IntroduceNotation.

4. Expressthe“objectivefunction” Q intermsoftheothersymbols

5. If Q isafunctionofmorethanone“decisionvariable”, usethegiveninformationtoeliminateallbutoneofthem.

6. Findtheabsolutemaximum(orminimum, dependingontheproblem)ofthefunctiononitsdomain.

Page 19: Lesson 19: Optimization Problems

. . . . . .

TheTextintheBox

1. UnderstandtheProblem. Whatisknown? Whatisunknown? Whataretheconditions?

2. Drawadiagram.

3. IntroduceNotation.

4. Expressthe“objectivefunction” Q intermsoftheothersymbols

5. If Q isafunctionofmorethanone“decisionvariable”, usethegiveninformationtoeliminateallbutoneofthem.

6. Findtheabsolutemaximum(orminimum, dependingontheproblem)ofthefunctiononitsdomain.

Page 20: Lesson 19: Optimization Problems

. . . . . .

TheTextintheBox

1. UnderstandtheProblem. Whatisknown? Whatisunknown? Whataretheconditions?

2. Drawadiagram.

3. IntroduceNotation.

4. Expressthe“objectivefunction” Q intermsoftheothersymbols

5. If Q isafunctionofmorethanone“decisionvariable”, usethegiveninformationtoeliminateallbutoneofthem.

6. Findtheabsolutemaximum(orminimum, dependingontheproblem)ofthefunctiononitsdomain.

Page 21: Lesson 19: Optimization Problems

. . . . . .

TheTextintheBox

1. UnderstandtheProblem. Whatisknown? Whatisunknown? Whataretheconditions?

2. Drawadiagram.

3. IntroduceNotation.

4. Expressthe“objectivefunction” Q intermsoftheothersymbols

5. If Q isafunctionofmorethanone“decisionvariable”, usethegiveninformationtoeliminateallbutoneofthem.

6. Findtheabsolutemaximum(orminimum, dependingontheproblem)ofthefunctiononitsdomain.

Page 22: Lesson 19: Optimization Problems

. . . . . .

Outline

LeadbyExample

TheTextintheBox

MoreExamplesTheBestFencingPlanTheShortestFenceNormanWindows

Page 23: Lesson 19: Optimization Problems

. . . . . .

AnotherExample

Example(TheBestFencingPlan)A rectangularplotoffarmlandwillbeboundedononesidebyariverandontheotherthreesidesbyasingle-strandelectricfence. With800mofwireatyourdisposal, whatisthelargestareayoucanenclose, andwhatareitsdimensions?

Page 24: Lesson 19: Optimization Problems

. . . . . .

Solution

1. Everybodyunderstand?

2. Drawadiagram.

3. Introducenotation: Lengthandwidthare ℓ and w. Lengthofwireusedis p.

4. Q = area = ℓw.

5. Since p = ℓ + 2w, wehave ℓ = p− 2w andso

Q(w) = (p− 2w)(w) = pw− 2w2

6.dQdw

= p− 4w, whichiszerowhen w =p4.

Q(p4

)= p · p

4− 2 · p

2

16=

p2

8= 80000m2

Since Q(0) = Q(p/2) = 0, thiscriticalpointisamaximum.

Page 25: Lesson 19: Optimization Problems

. . . . . .

Solution

1. Everybodyunderstand?

2. Drawadiagram.

3. Introducenotation: Lengthandwidthare ℓ and w. Lengthofwireusedis p.

4. Q = area = ℓw.

5. Since p = ℓ + 2w, wehave ℓ = p− 2w andso

Q(w) = (p− 2w)(w) = pw− 2w2

6.dQdw

= p− 4w, whichiszerowhen w =p4.

Q(p4

)= p · p

4− 2 · p

2

16=

p2

8= 80000m2

Since Q(0) = Q(p/2) = 0, thiscriticalpointisamaximum.

Page 26: Lesson 19: Optimization Problems

. . . . . .

Solution

1. Everybodyunderstand?

2. Drawadiagram.

3. Introducenotation: Lengthandwidthare ℓ and w. Lengthofwireusedis p.

4. Q = area = ℓw.

5. Since p = ℓ + 2w, wehave ℓ = p− 2w andso

Q(w) = (p− 2w)(w) = pw− 2w2

6.dQdw

= p− 4w, whichiszerowhen w =p4.

Q(p4

)= p · p

4− 2 · p

2

16=

p2

8= 80000m2

Since Q(0) = Q(p/2) = 0, thiscriticalpointisamaximum.

Page 27: Lesson 19: Optimization Problems

. . . . . .

Solution

1. Everybodyunderstand?

2. Drawadiagram.

3. Introducenotation: Lengthandwidthare ℓ and w. Lengthofwireusedis p.

4. Q = area = ℓw.

5. Since p = ℓ + 2w, wehave ℓ = p− 2w andso

Q(w) = (p− 2w)(w) = pw− 2w2

6.dQdw

= p− 4w, whichiszerowhen w =p4.

Q(p4

)= p · p

4− 2 · p

2

16=

p2

8= 80000m2

Since Q(0) = Q(p/2) = 0, thiscriticalpointisamaximum.

Page 28: Lesson 19: Optimization Problems

. . . . . .

Solution

1. Everybodyunderstand?

2. Drawadiagram.

3. Introducenotation: Lengthandwidthare ℓ and w. Lengthofwireusedis p.

4. Q = area = ℓw.

5. Since p = ℓ + 2w, wehave ℓ = p− 2w andso

Q(w) = (p− 2w)(w) = pw− 2w2

6.dQdw

= p− 4w, whichiszerowhen w =p4.

Q(p4

)= p · p

4− 2 · p

2

16=

p2

8= 80000m2

Since Q(0) = Q(p/2) = 0, thiscriticalpointisamaximum.

Page 29: Lesson 19: Optimization Problems

. . . . . .

Solution

1. Everybodyunderstand?

2. Drawadiagram.

3. Introducenotation: Lengthandwidthare ℓ and w. Lengthofwireusedis p.

4. Q = area = ℓw.

5. Since p = ℓ + 2w, wehave ℓ = p− 2w andso

Q(w) = (p− 2w)(w) = pw− 2w2

6.dQdw

= p− 4w, whichiszerowhen w =p4.

Q(p4

)= p · p

4− 2 · p

2

16=

p2

8= 80000m2

Since Q(0) = Q(p/2) = 0, thiscriticalpointisamaximum.

Page 30: Lesson 19: Optimization Problems

. . . . . .

Yourturn

Example(Theshortestfence)A 216m2 rectangularpeapatchistobeenclosedbyafenceanddividedintotwoequalpartsbyanotherfenceparalleltooneofitssides. Whatdimensionsfortheouterrectanglewillrequirethesmallesttotallengthoffence? Howmuchfencewillbeneeded?

AnswerThedimensionsofthefenceare 12m× 18m andamountoffencerequiredis 72m2.

Page 31: Lesson 19: Optimization Problems

. . . . . .

Yourturn

Example(Theshortestfence)A 216m2 rectangularpeapatchistobeenclosedbyafenceanddividedintotwoequalpartsbyanotherfenceparalleltooneofitssides. Whatdimensionsfortheouterrectanglewillrequirethesmallesttotallengthoffence? Howmuchfencewillbeneeded?

AnswerThedimensionsofthefenceare 12m× 18m andamountoffencerequiredis 72m2.

Page 32: Lesson 19: Optimization Problems

. . . . . .

SolutionLetthelengthandwidthofthepeapatchbe ℓ and w. Theamountoffenceneededis f = 2ℓ + 3w Since ℓw = A, aconstant,wehave

f(w) = 2Aw

+ 3w.

Sodfdw

= −2Aw2 + 3

whichiszerowhen w =

√2A3. Since lim

w→0+f(w) and lim

w→∞f(w)

areboth ∞, thecriticalpointisaminimum. Sotheareais

minimizedwhen w =

√2A3

= 12 and ℓ =Aw

=

√3A2

= 18. The

amountoffenceneededis

f

(√2A3

)= 2 ·

√2A2

+ 3

√2A3

= 2√6A = 2

√6 · 216 = 72 m.

Page 33: Lesson 19: Optimization Problems

. . . . . .

ExampleA Normanwindowhastheoutlineofasemicircleontopofarectangle. Supposethereis 8 + 4π feetofwoodtrimavailable.Discusswhyawindowdesignermightwanttomaximizetheareaofthewindow. Findthedimensionsoftherectangleandsemicirclethatwillmaximizetheareaofthewindow.

.

AnswerThedimensionsare2ftby4ft.

Page 34: Lesson 19: Optimization Problems

. . . . . .

ExampleA Normanwindowhastheoutlineofasemicircleontopofarectangle. Supposethereis 8 + 4π feetofwoodtrimavailable.Discusswhyawindowdesignermightwanttomaximizetheareaofthewindow. Findthedimensionsoftherectangleandsemicirclethatwillmaximizetheareaofthewindow.

.

AnswerThedimensionsare2ftby4ft.

Page 35: Lesson 19: Optimization Problems

. . . . . .

SolutionWehavetomaximize A = ℓw + (w/2)2π subjecttotheconstraintthat 2ℓ + w + πw = p. Solvingfor ℓ intermsof w gives

ℓ = 12(p−w− πw)

So A = 12w(p−w− πw) + 1

4πw2. Differentiatinggives

A′(w) =πw2

+12(−1− π)w +

12(p− πw−w)

whichiszerowhen w =p

2 + π. If p = 8 + 4π, w = 4. Itfollows

that ℓ = 2.