60
Application of Nanotechnology in Electronics Presented by Najiya KPP Mtech NST

Nanotechnology

Embed Size (px)

Citation preview

Page 1: Nanotechnology

Application of Nanotechnologyin Electronics

Presented byNajiya KPPMtech NST

Page 2: Nanotechnology

NanoscienceNanoscience – – working small, thinking big

Page 3: Nanotechnology

Nano:From the Greek nanos - meaning "dwarf”, this prefix is used in the metric system to mean 10-9 or 1/1,000,000,000.

Page 4: Nanotechnology

Nanotechnology

• Nanotechnology is exciting emerging science & technological field.

• It is all about building things atom by atom & molecule by molecule.

• Goal of this technology is to make tiny devices called ‘Nanomachines’.

Page 5: Nanotechnology

What is Nanotechnology

Nanotechnology is the creation of functional materials, devices and systems, through the understanding and control of matter at dimensions in the nanometer scale length (1-100 nm), where new functionalities and properties of matter are observed and harnessed for a broad range of applications

An engineered DNA strandSemiconducting metal junction formed by two carbon nanotubespRNA tiny motor

Page 6: Nanotechnology

What is Nanoscale

1.27 × 107 m 0.22 m 0.7 × 10-9 m

Fullerenes C60

12,756 Km 22 cm 0.7 nm

10 millions times smaller

1 billion times smaller

Page 7: Nanotechnology

What’s the BIG deal about something so SMALL?

Materials behave differently at this size scale.It’s not just about miniaturization.

Evident Technologiesevidot Quantum Dots

Color depends on particle size Quantum dots 3.2 nm in diameter have blue emissionQuantum dots 5 nm in diameter have red emission

Page 8: Nanotechnology

Is this technology new?In one sense there is nothing new…

• Whether we knew it or not, every piece of technology has involved the manipulation of atoms at some level.

• Many existing technologies depend crucially on processes that take place on the nanometer scale. Ex: Photography & Catalysis

Nanotechnology, like any other branch of science, is primarily concerned with understanding how nature works.

Page 9: Nanotechnology

Working at the nanoscale

• Working in the nanoworld was first proposed by Richard Feynman back in 1959.

• But it's only true in the last decade.

• The world of the ultra small, in practical terms, is a distant place.

• We can't see or touch it.

• Because, optical microscopes can't provide images of anything smaller than the wavelength of visible light (ie, nothing smaller than 380 nanometres).

Page 10: Nanotechnology

From “There’s Plenty of Room at the Bottom”, Dec 29, 1959 This image was written using Dip-Pen Nanolithography, and imaged using lateral force microscopy mode of an atomic force microscope.

Page 11: Nanotechnology

What makes the nanoscale special?

High density of structures is possible with small size.

Physical and chemical properties can be different at the nano-scale (e.g. electronic, optical, mechanical, thermal, chemical).

The physical behavior of material can be different in the nano-regime because of the different ways physical properties scale with dimension (e.g. area vs. volume).

Prof. Richard Feynman“There’s plenty of room at the bottom”

Page 12: Nanotechnology

Physical/chemical properties can change as we approach the nano-scale

Melting point of gold particles

M. Bawendi, MIT: web.mit.edu/chemistry/nanoclusterEvident, Inc.: www.evidenttech.com

K. J. Klabunde, 2001

Fluorescence of semiconductornanocrystals

By controlling nano-scale (1) composition, (2) size, and (3) shape, we cancreate new materials with new properties New technologies

Decreasing crystal size

Page 13: Nanotechnology

Nanotechnology is estimated to become a trillion dollar marketAreas in which nanotechnologies are expected to impact our everyday lives:

• Electronics

• Photonics (communications

& computing using photons)

• Information storage

• Energy storage/transport

• Materials engineering

• Textiles

• Mechanical engineering

• Aerospace

• Environmental remediation

• Pharmaceuticals & drug

delivery

• Biotechnology

Page 14: Nanotechnology

Moore’s Law

• The number of transistors on a chip will approximately double every 18 to 24 months (Moore’s Law).

• This law has given chip designers greater incentives to incorporate new features on silicon.

Page 15: Nanotechnology

• Moore's Law works largely through shrinking transistors, the circuits that carry electrical signals.

• By shrinking transistors, designers can squeeze more transistors into a chip.

Page 16: Nanotechnology

Nanoscale Materials Nanowires and Nanotubes

• Lateral dimension: 1 – 100 nm

• Nanowires and nanotubes exhibit novel physical, electronic and

optical properties due to – Two dimensional quantum confinement– Structural one dimensionality– High surface to volume ratio

• Potential application in wide range of nanodevices and systems– Nanoscale sensors and actuators– Photovoltaic devices – solar cells– Transistors, diodes and LASERs

Nanowire Solar Cell: The nanowires create a surface that is able to absorb more sunlight than a flat surface – McMaster Univ., 2008

Page 17: Nanotechnology

Nanoelectronics• Nanoelectronics refer to the use of nanotechnology

on electronic components, especially transistors. Although the term nanotechnology is generally defined as utilizing technology less than 100 nm in size, nanoelectronics often refer to transistor devices that are so small that inter-atomic interactions and quantum mechanical properties need to be studied extensively.

• Besides being small and allowing more transistors to be packed into a single chip, the uniform and symmetrical structure of nanotubes allows a higher electron mobility, a higher dielectric constant (faster frequency), and a symmetrical electron/ hole characteristic.

Page 18: Nanotechnology

CARBON-BASED SENSORS AND ELECTRONICS

• Carbon nanomaterials such as one-dimensional (1D) carbon nanotubes and two-dimensional (2D) graphene have emerged as promising options due to their superior electrical properties which allow for fabrication of faster and more power-efficient electronics.

• At the same time their high surface to volume ratio combined with their excellent mechanical properties has rendered them a robust and highly sensitive building block for nanosensors

Page 19: Nanotechnology

CARBON-BASED SENSORS

A true example of nanotechnology: an array of individually addressable vertically-aligned carbon nanofibers for sensing applications at the nanoscale. For comparison, a single human hair is 1000 times thicker than any of the nanofibers in the image.

Page 20: Nanotechnology

Graphene transistor

• In 2004, it was shown for the first time that a single sheet of carbon atoms packed in a honeycomb crystal lattice can be isolated from graphite and is stable at room temperature. The new nanomaterial, which is called graphene, allows electrons to move at an extraordinarily high speed. This property, together with its intrinsic nature of being one-atom-thick, can be exploited to fabricate field-effect transistors that are faster and smaller.A layer of graphene acts as the conducting

channel in a field-effect transistor

Page 21: Nanotechnology

Carbon Nanotube Electronics

• When a layer of graphene is rolled into a tube, a single-walled carbon nanotube (SWNT) is formed. Consequently, SWNTs inherit the attractive electronic properties of graphene but their cylindrical structure makes them a more readily available option for forming the channel in field-effect transistors. Such transistors possess an electron mobility superior to their silicon-based counterpart and allow for larger current densities while dissipating the heat generated from their operation more efficiently.

• During the last decade, carbon nanotube-based devices have advanced beyond single transistors to include more complex systems such as logic gates and radio-frequency components

Page 22: Nanotechnology

An artistic expression of an integrated circuit based on individual carbon nanotubes

Page 23: Nanotechnology

Carbon-based Nanosensors

• In addition to the exceptional electrical properties of graphene and carbon nanotubes, their excellent thermal conductivity, high mechanical robustness, and very large surface to volume ratio make them superior materials for fabrication of electromechanical and electrochemical sensors with higher sensitivities, lower limits of detection, and faster response time. A good example is the carbon nanotube-based mass sensor that can detect changes in mass caused by a single gold atom adsorbing on its surface

Any additional gold atom that adsorbs on the surface of a vibrating carbon nanotube would change its resonance frequency which is further detected

Page 24: Nanotechnology

MOLECULAR ELECTRONICS

• Recent advances in nanofabrication techniques have provided the opportunity to use single molecules, or a tiny assembly of them, as the main building blocks of an electronic circuit. This, combined with the developed tools of molecular synthesis to engineer basic properties of molecules, has enabled the realisation of novel functionalities beyond the scope of traditional solid state devices.

Page 25: Nanotechnology

Single Molecule Memory Device

• A modern memory device, in its most common implementation, stores each bit of data by charging up a tiny capacitor. The continuous downscaling of electronic circuits, in this context, translates to storing less charge in a smaller capacitor.

• As memory device dimensions approach the nanometer range, the capacitor can be replaced by a single organic molecule such as Ferrocene, whose oxidation state can be altered by moving an electron into or out of the molecule

Page 26: Nanotechnology

Single Molecule Memory Device

A neutral Ferrocene molecule is attached to a nanoelectrode representing a “0” state

An electron tunnels to the nanoelectrode by the application of an external electrical field

The positively charged Ferrocene molecule represents a “1” state

Page 27: Nanotechnology

A novel data storage system capable of 1015 bytes/cm2 is being explored.

In this system, H atoms would be designated as 0 and F atoms as 1.

A tip that can distinguish between 0 and 1 rapidly and unambiguouslyis being investigated.

Page 28: Nanotechnology

Organic Transistor Odour Sensor

• Organic field-effect transistors (OFETs) are a good example of the scope of traditional electronic devices being augmented by the chemical reactivity of an organic semiconductor material in their channel.

• In an odour sensor, the nano-scale chemical reactions upon exposure of the device to a certain atmospheric condition modify the electronic properties of the organic semiconducting material which is further reflected by a change in the current flowing through the transistor

Page 29: Nanotechnology

QUANTUM COMPUTING

The excitement in the field of quantum computing was triggered in 1994 by Peter Shor who showed how a quantum algorithm could exponentially speed up a classical computation. Such algorithms are implemented in a device that makes direct use of quantum mechanical phenomena such as entanglement and superposition.

Since the physical laws that govern the behaviour of a system at the atomic scale are inherently quantum mechanical in nature, nanotechnology has emerged as the most appropriate tool to realise quantum computers

Quantum computing chip: the two black squares are the quantum bits or qubits, the processing centre; the meandering line at the centre is the quantum bus; and the lateral meandering lines are the quantum memory

Page 30: Nanotechnology

SINGLE ELECTRON TRANSISTOR

In contrast to common transistors, where the switching action requires thousands of electrons, a single electron transistor needs only one electron to change from the insulating to the conducting state. Such transistors can potentially deliver very high device density and power efficiency with remarkable operational speed. In order to implement single electron transistors, extremely small metallic islands with sub-100 nm dimensions have to be fabricated.

These islands, which are referred to as quantum dots, can be fabricated by employing processes made available by the advances in nanotechnologyA single electron transistor in a surface

acoustic wave echo chamber

Page 31: Nanotechnology

SPINTRONICS

Similar to electrical charge, spin is another fundamental property of matter. While conventional electronic devices rely on the transport of electrical charge carriers, the emerging technology of spintronics employs the spin of electrons to encode and transfer information. Spintronics has the potential to deliver nanoscale memory and logic devices which process information faster, consume less power, and store more data in less space. The extension of the hard disk capacities to the gigabyte and the terabyte ranges was the main achievement of spintronics by taking advantage of Giant Magneto-Resistance (GMR) and Tunnel Magneto-Resistance (TMR) effects which are effective only at the nano scale

A close-up look at a hard disk drive improved with the Giant Magneto-Resistance technology

Page 32: Nanotechnology

NANO-ELECTRO-MECHANICAL SYSTEMS (NEMS)

• All electronic tools have one thing in common: an integrated circuit (IC) acting as their “brain”. The extent to which this “brain” has influenced our lives has already been tremendous but what if its decision-making capability is augmented by “eyes” and “arms”? Nano-electro-mechanical systems have evolved during the last 10 years to make this dream come true by creating sensors (“eyes”) and actuators (“arms”) at the same scale as the accompanying nanoelectronics.

• Recent developments in synthesis of nanomaterials with excellent electrical and mechanical properties have extended the boundaries of NEMS applications to include more advanced devices such as the non-volatile nano-electro-mechanical memory, where information is transferred and stored through a series of electrical and mechanical actions at the nanoscale.

Page 33: Nanotechnology
Page 34: Nanotechnology

− Currently available microprocessors use resolutions as small as 32 nm

− Houses up to a billion transistors in a single chip

− MEMS based nanochips have future capability of 2 nm cell leading to 1TB memory per chip

A MEMS based nanochip– Nanochip Inc., 2006

Nanochip

Page 35: Nanotechnology

Organic light emitting diode (OLED) technology uses substances that emit red, green, blue or white light. Without any other source of illumination, OLED materials present bright, clear video and images that are easy to see at almost any angle.

OLED displays stack up several thin layers of materials. They operate on the attraction between positively and negatively charged particles. When voltage is applied, one layer becomes negatively charged relative to another transparent layer. As energy passes from the negatively charged (cathode) layer to the other (anode) layer, it stimulates organic material between the two, which emits light visible through an outermost layer of glass.

Light Emitting Diode

Page 36: Nanotechnology

Intel entered the nanotechnology era in 2000 when it began volume production of chips with sub-100nm length transistors. Intel believes that the future of nanotechnology is silicon based; the company has a major effort in this area, both in-house and through external research programs.

Intel Celleron Processor

Page 37: Nanotechnology

Inside the iPod Nano are memory chips from Samsung and Toshiba. Samsung, the biggest producer of NAND and DRAM flash memory chips in the world, uses semiconductor manufacturing methods with precision below 100 nanometers. This precision, in part, is what enables the iPod Nano's 4 GB NAND flash memory.

iPod Nano

Page 38: Nanotechnology

The Suface-conductor Electron-emitter Display (SED) based on a new type of flat-panel display technology, was created through the merging of Canon's proprietary electron-emission and microfabrication technologies with Toshiba's CRT technology and mass-production technologies for liquid crystal displays (LCDs) and semiconductors. Like conventional CRTs, SEDs utilize the collision of electrons with a phosphor-coated screen to emit light. Electron emitters, which correspond to an electron gun in a CRT, are distributed in an amount equal to the number of pixels on the display.

SED Display

Page 39: Nanotechnology

The Q40 also incorporates Samsung's Silver Nano technology and is compliant with RoHS standards that restrict the use of hazardous substances. For extra peace of mind, it also carries the Samsung ECO Mark, certifying that the Q40 uses eco-friendly components and packing materials, and promotes power saving.

Silver Nano technology takes advantage of the anti-bacteria properties of silver to protect computer users from potentially harmful germs, molds and bacteria. It is applied as a high-tech coating on the Q40's keyboard and palm rest.

Notebook Computers

Page 40: Nanotechnology

IOGEAR's Wireless Keyboard and Optical Mouse combo is coated with a Titanium Dioxide (TiO2)

and Silver (Ag) nano-particle compound.  The coating uses two mechanisms to deactivate enzymes and proteins of bacteria from surviving on the surface of the product.  The compound has been tested and proven effective against various bacteria.

Keyboard & Mouse

Page 41: Nanotechnology

The chip features a customized version of IBM's industry leading 64-bit PowerPC core. The chip includes three of these cores, each with two simultaneous threads and clock speeds greater than 3 GHz.

It features 165 million transistors fabricated using IBM's 90 nanometer Silicon on Insulator (SOI) technology to reduce heat and improve performance.

XBOX

Page 42: Nanotechnology

Made of nanostructured polymer films, OLED screens emit their own light and are lighter, smaller and more energy efficient than conventional liquid crystal displays. OEL were introduced to the world by Pioneer in 1999, and head units have never looked the same since. OEL displays, featured in select Premier and Pioneer models, have some intensely great advantages over normal displays, namely: you can read the display from wide angles and even in bright sunlight (what a concept!).Since it’s easier to read, it’s also easier to control, and you can keep your eyes on the road longer. It's a self-emitting device, so there’s no need for backlighting and it’s really efficient to operate.

Organic Electroluminescent Display

Page 43: Nanotechnology

The new battery fuses Toshiba's latest advances in nano-material technology for the electric devices sector with cumulative know-how in manufacturing lithium-ion battery cells.

A breakthrough technology applied to the negative electrode uses new nano-particles to prevent organic liquid electrolytes from reducing during battery recharging. The nano-particles quickly absorb and store a vast amount of lithium ions, without causing any deterioration in the electrode.

Lithium-Ion Battery

Page 44: Nanotechnology

We apply nanotechnology during sensor development, enabling us to minimize sensor size and increase unit pixels integrated into a limited area. This produces higher density as well as lower power consumption, so as to improve the vulnerability of previous image sensors in mobile phones.

Sensors

Page 45: Nanotechnology

Nanolasers

The complex interaction between light and nanometer structures, like wires, has possibilities as new technology for devices and sensors. Researchers are studying light emission from a semiconductor nanowire-typically 10-100 nanometers wide and a few micrometers long-which functions as a laser. Lasers made from arrays of these wires have many potential applications in communications and sensing for NASA.

Nanolasers

Page 46: Nanotechnology

An engineered DNA strand between metal atom contacts could function as a molecular electronics device. Such molecules and nanostructures are expected to revolutionize electronics. Understanding the complex quantum physics involved via simulation guides design.

AN ENGINEERED DNA STRAND

Page 47: Nanotechnology

• Onboard computing systems for future autonomous intelligent vehicles

- powerful, compact, low power consumption, radiation hard• High performance computing (Tera- and Peta-flops)

- processing satellite data - integrated space vehicle engineering - climate modeling

• Revolutionary computing technologies• Smart, compact sensors, ultrasmall probes• Advanced miniaturization of all systems• Microspacecraft• 'Thinking' spacecraft• Micro-, nano-rovers for planetary exploration• Novel materials for future spacecraft

Page 48: Nanotechnology

Materials

Electronics/computing

Sensors, s/c components

• Single-walled nanotube fibers

• Low-Power CNT electronic components

• In-space nanoprobes

• Nanotube composites

• Molecular computing/data storage

• Nano flight system components

• Integral thermal/shape control

• Fault/radiation tolerant electronics

• Quantum navigation sensors

• Smart “skin” materials

• Nano electronic “brain” for space Exploration

• Integrated nanosensor systems

• Biomimetic material systems

• Biological computing

• NEMS flight systems @ 1 µW

2002 2004 2006 2011 2016

NASA Nanotechnology Roadmap

>

Increasing levels of system design and integration

C A P A B I L I T Y

High StrengthMaterials (>10 GPa)

High StrengthMaterials (>10 GPa)

Reusable Launch Vehicle (20% less mass, 20% less noise)

Reusable Launch Vehicle (20% less mass, 20% less noise)

Revolutionary Aircraft Concepts (30% less mass, 20% less emission, 25% increased range)

Revolutionary Aircraft Concepts (30% less mass, 20% less emission, 25% increased range)

Autonomous Spacecraft (40% less mass)

Autonomous Spacecraft (40% less mass)

Adaptive Self-Repairing Space Missions

Adaptive Self-Repairing Space Missions

Multi-Functional MaterialsMulti-Functional Materials

Bio-Inspired Materialsand ProcessesBio-Inspired Materialsand Processes

Page 49: Nanotechnology

2002 2005 2010 2015

Biomimetic,radiation resistant

molecular computing

Nanoelectronics and Computing RoadmapImpact on Space Transportation, Space Science and Earth

Science

CNT Devices

Biological Molecules

Ultra high density storage

Mis

sio

n C

om

ple

xity

Compute Capacity

RLV

he-

Nano-electroniccomponents

Europa Sub

Robot Colony

Sensor Web

Page 50: Nanotechnology

Nanosensor RoadmapImpact on Space Transportation, HEDS, Space Science and Astrobiology

2002 2005 2015

Mis

sio

n C

om

ple

xity

Sensor Capacity1999

DSI RAX

2003ISPP

Missions too earlyfor nanotechnology impact

Biosensors

Spacestation

Europa Sub

Mars Robot Colony

Sensor Web2020

Nanotube VibrationSensor for Propulsion

Diagnostics

Optical Sensorsfor Synthetic

Vision

Nanopore for in situbiomark-sensor

Multi-sensorArrays (Chemical,

optical and bio)

2010

Sharp CJV

Page 51: Nanotechnology

2002 2005 2010 2015

NANOTUBE COMPOSITES

MULTIFUNCTIONAL MATERIALS

SO3

- SO3

SO3- -

H+ H +H +

SO3-

SO3-

Ca++

SO3-

SO3-Ca++

SO3-

SO3-Ca++

Ca++

Tacky

Non-tacky

temperature

SELF-HEALING MATERIALS

Nano-Materials RoadmapImpact on Space Transportation, Space Science and

HEDS

SELF-ASSEMBLING MATERIALS

Generation 3 RLVHEDS Habitats

Nanotextiles

Mis

sio

n C

om

ple

xity

Strong Smart Structures

RLV Cryo Tanks

Production ofsingle CNT

CNT Tethers

CNT = Carbon Nanotubes

Page 52: Nanotechnology

NANOCOMPUTERS

A Nanocomputer is a computer whose fundamental components measure only a few nanometers(<100nm)-Minimum feature size on todays state-of-the-art commercial integrated circuits measure about 350nm-Over 10,000 nanocomputer components could fit in the area of a single modern microcomputer component-Could dramatically increase computing speed & density

Page 53: Nanotechnology

Main difference is one of physical scale More and more transistors are squeezed into silicon chips with each passing year.

To further decrease the size the concept “Nanolithography” will be needed.

Nanolithography is used to create microscopic circuit as is it the art & science of etching,writing or printing at microscopic level where the dim of char are in order of nanometer.

NANOCOMPUTERS

Page 54: Nanotechnology

Nanoelectronics: Applications under Development

Researchers are looking into the following nanoelectronics projects: Building transistors from carbon nanotubes to enable minimum transistor

dimensions of a few nanometers and developing techniques to manufacture integrated circuits built with nanotube transistors.

Using electrodes made from nanowires that would enable flat panel displays to be flexible as well as thinner than current flat panel displays.

Transistors built in single atom thick graphene film to enable very high speed transistors.

Combining gold nanoparticles with organic molecules to create a transistor known as a NOMFET(Nanoparticle Organic memory Field-Effect Transistor).

Using carbon nanotubes to direct electrons to illuminate pixels, resulting in a lightweight, millimeter thick “nanoemissive display panel”.

Using quantum dots to replace the fluorescent dots used in current displays. Displays using quantum dots should be simpler to make than current displays as well as use less power.

Making integrated circuits with features that can be measured in nanometers (nm), such as the process that allows the production of integrated circuits with 22nm wide transistor gates.

Page 55: Nanotechnology

Nanoelectronics: Applications under Development

Using nanosized magnetic rings to make Magnetoresistive Random Access Memory(MRAM) which research has indicated may allow memory density of 400GB per square inch.

Developing Molecular-sized Transistors which may allow us to shrink the width of transistor gates to approximately one nm which will significantly increase transistor density in integrated circuits.

Using Self-aligning nanostructures to manufacture nanoscale integrated circuits. Using nanowires to build transistors without p-n junctions. Using buckyballs to build dense, low power memory devices.  Using Magnetic Quantum dots in spintronic semiconductor devices. Spintronic devices

are expected to be significantly higher density and lower power consumption because they measure the spin of electronics to determine a 1 or 0, rather than measuring groups of electronics as done in current semiconductor devices.

Using nanowires made of an alloy of iron and nickel to create dense memory devices. By applying a current magnetized sections along the length of the wire. As the magnetized sections move along the wire, the data is read by a stationary sensor. This method is called Race track memory.

Using silver nanowires embedded in a polymer to make conductive layers that can flex, without damaging the conductor.

Page 56: Nanotechnology

Research Challenges

Nano technology brings on new challenges

• Existing tools for investigations at the atomic level are expensive to acquire and maintain

• New research tools need to be developed to explore the nano realm

• Specialized facilities are required to maintain the cleanliness need for nano technology

• A new infrastructure might be required for the equipment yet-to-be-developed

Page 57: Nanotechnology

Summary

• There are many opportunities to incorporate nano technologies into innovative products

• Fundamental research is required to understand the potential applications of the properties of nano materials

• Future high tech products will incorporate the advantages of nano-materials

• From the national interests, it is important for researchers to continue to push the understanding of nano technology

Page 58: Nanotechnology

Conclusions

• Building from Semiconductor provides ability to coordinate industry, university, and infrastructure roles in developing “nano” in more than electronics

• Tools and facilities for nano are expensive• Nano-technology requires being on the leading edge of

developments including equipment• Infrastructure development must be sustained• Continual evaluation of “weak” links is required

Page 59: Nanotechnology
Page 60: Nanotechnology

Thanks for your attention

21