42
RNA Folding during Transcription and Its Effect on Intrinsic Termination Natalia Komissarova January 11, 2011

RNA Folding

Embed Size (px)

Citation preview

Page 1: RNA Folding

RNA Folding during Transcription

and Its Effect on Intrinsic Termination

Natalia Komissarova

January 11, 2011

Page 2: RNA Folding

Natalia Komissarova

Lucyna Lubkowska

Anu Mahardjan

Mikhail Kashlev

Robert Weisberg

NCI, Frederick, MD

NICHD, Bethesda, MD

Page 3: RNA Folding

RNA conformation is crucial for its functionality

- translation

- plasmid replication

- RNA splicing

- RNAi-induced gene silencing

- gene control by riboswitches

- transcription pausing

- transcription antitermination

- transcription termination

Page 4: RNA Folding

The rate of RNA elongation affects the folding pathway

The rate of RNA elongation affects the folding pathway because the 5’ end of RNA can fold before the 3’ end is synthesized . Accumulation of metastable folding intermediates can create a

kinetic trap

Page 5: RNA Folding

Functional consequences of a kinetic trap in RNA folding

alternative splicing inactive RNA conformations regulation of time sensitive biological processes like translation and ribosome assembly .

Time sensitive processes that occur co-transcriptionally, such as RNA splicing, transcription pausing, termination, and antitermination

Page 6: RNA Folding

RNA folding occurs in the elongation complex

downstream DNA duplex

transcription

RNA

upstream DNA duplex

transcription bubble

RNA-DNA hybrid

-8 nt-14 nt5’

3’

RNAP active center

-15 nt

+20 nt

Page 7: RNA Folding

The termination hairpin

UUUUUUUU

RNA hairpin

oligo U track

Intrinsic bacterial terminator

h+7 h+8

Page 8: RNA Folding

ß flap

ß’ rudder

downstream DNA duplextemplate strandnontemplate strand

transcription

Korzheva et al., Science, 2000

secondary channel

RNA exit channel

-14

RNA folding occurs in the elongation complex

Page 9: RNA Folding

ß flap

ß’ rudder

transcription

RNA

-14

Korzheva et al., Science, 2000

RNA folding occurs in the elongation complex

Page 10: RNA Folding

Questions

How does the elongation complex affect the termination hairpin folding?

What is the pathway on the termination hairpin folding?

What are the consequences of the constraint on the folding

imposed by the elongation complex ?

Page 11: RNA Folding

RNase T1 as a tool to assess hairpin folding

AATAGCGA

5’NpNpNpGpNpN 5’NpNpNpGp + 5’NpNRNaseT1

G1

Page 12: RNA Folding

G1ATCGCCCTCCTAATAATCGGAGGGCAATAGCGATCATCGCAGCGTACCGAGCGC1

Time withRNase T1, min

- 1 3 10 20 - 1 3 10 20 G1G1/misTemplate1 2 3 4 5 6 7 8 9 10 Free RNA isolated from EC h+5h+5 full size30 nt

h+2 full size30 nt

h+2 cut at G126 nt

G1G1h0A5’3’ G1G1/mish05’A3’

G1/misATCGCCCTCCTAATAATCGGAGGAAAATAGCGATCATCGCAGCGTACCGAGCGC 1

RNase T1 as a tool to assess the hairpin folding

Page 13: RNA Folding

- 1 3 10 20 20h+2Time with RNaseT1, min

ECTemplate G1- 1 3 10 20 20- 1 3 10 20 20- 1 3 10 20 20- 1 3 10 20 - 1 3 10 20 20- 1 3 10 20 20h+5h+6h+7h+7h+8h+9wwwwwwfree RNA1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41* h+2 full sizeh+2 cut at G1

G1ATCGCCCTCCTAATAATCGGAGGGCAATAGCGATCATCGCAGCGTACCGAGCGC1

h0h+2h+5

h+7h+9

G1 cleavage in ECs halted downstream of the hairpin

Page 14: RNA Folding

- 1 3 10 20 20h+2Time with RNaseT1, min

ECTemplate G1- 1 3 10 20 20- 1 3 10 20 20- 1 3 10 20 20- 1 3 10 20 - 1 3 10 20 20- 1 3 10 20 20h+5h+6h+7h+7h+8h+9wwwwwwfree RNA1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41* h+2 full sizeh+2 cut at G1

G1ATCGCCCTCCTAATAATCGGAGGGCAATAGCGATCATCGCAGCGTACCGAGCGC1

h+2h+5

AGAGAAh0ECh+2G1GG GGGECh+6G1ECh+5G1GG GGGGG GGG

AA

A

A

5’

5’

5’

3’

3’

3’

h+6

G1 cleavage in ECh+2, h+5, h+6

Page 15: RNA Folding

QuickTime™ and aTIFF (Uncompressed) decompressor

are needed to see this picture.

QuickTime™ and aTIFF (Uncompressed) decompressor

are needed to see this picture.

Komissarova et all., Molecular Cell 2002

h+7 h+8

Hairpin destabilizes ECh+7 and ECh+8

Page 16: RNA Folding

5’ 3’

AG1Gh+5GGGGG

A

Ni-NTA agarose bead

- 4nt

- 2nt

5’

3’

AGECh+7G1GGGGG

A

ECh+7 dissociated

ECh+7 intact

G1 cleavage in ECh+7

Page 17: RNA Folding

- 1 3 10 20 20h+2Time with RNaseT1, min

ECTemplate G1- 1 3 10 20 20- 1 3 10 20 20- 1 3 10 20 20- 1 3 10 20 - 1 3 10 20 20- 1 3 10 20 20h+5h+6h+7h+7h+8h+9wwwwwwfree RNA1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41* h+2 full sizeh+2 cut at G1

G1ATCGCCCTCCTAATAATCGGAGGGCAATAGCGATCATCGCAGCGTACCGAGCGC1

h+7

G1 cleavage in ECh+7

h+7 full size-2-4

Page 18: RNA Folding

- 1 3 10 20 20h+2Time with RNaseT1, min

ECTemplate G1- 1 3 10 20 20- 1 3 10 20 20- 1 3 10 20 20- 1 3 10 20 - 1 3 10 20 20- 1 3 10 20 20h+5h+6h+7h+7h+8h+9wwwwwwfree RNA1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41* h+2 full sizeh+2 cut at G1

G1ATCGCCCTCCTAATAATCGGAGGGCAATAGCGATCATCGCAGCGTACCGAGCGC1

G1 cleavage in ECh+8, h+9

h+8 h+9

Page 19: RNA Folding

h+5h+7h+8- 1 3 20 40 - 1 3 20 40 - 1 3 20 40 Time with RNaseT1, min

EC1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 h+5 full sizeh+5 cut at G1Template G1/mis

G1/misATCGCCCTCCTAATAATCGGAGGAAAATAGCGATCATCGCAGCGTACCGAGCGC 1

G1 cleavage in ECh+8 containing mismatched hairpin

G1/mis

G1h05’A3’

A

h+8

Page 20: RNA Folding

G3 ATCCGCTCCTAATAATCGGAGCGGAATAGCGATCATCGCAGCGTACCGAGCGC

3

G5 ATCCCTGCCTAATAATCGGCAGGGAATAGCGATCATCGCAGCGTACCGAGCGC

5

G7 ATCCCCTCGTAATAATCCGAGGGGAATAGCGATCATCGCAGCGTACCGAGCGC

7

Templates G3, G5, G7 to probe the entire hairpin

h+2h+5

h+7h+9

Page 21: RNA Folding

EC- 1 3 10 20 20h+2Template G3- 1 3 10 20 20- 1 3 10 20 - 1 3 10 20 20- 1 3 10 20 20 - 1 3 10 20 20h+5h+6h+7h+8h+9wwwwww Time with RNaseT1, min

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 * h+2 full sizeh+2 cut at G3

h+5h+6h+7h+8- 1 3 10 20 20w- 1 3 10 20 20w- 1 3 10 20 20w- 3 10 20 20w EC Time with RNaseT1, min

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 Template G5* * h+5 full sizeh+5 cut at G5

EC Time with RNaseT1, min

Template G7- 1 3 10 20 20h+2- 1 3 10 20 20- 1 3 10 20 20 - 1 3 10 10- 1 3 10 20 20 - 1 3 10 20 20h+5h+6h+7h+8h+9wwwwww1 2 3 4 5 6 7 8 9 1 0 11 12 13 14 15 16 17 18 19 20 21 22 24 25 26 27 28 29 30 31 32 33 34 35 36* h+2 full sizeh+2 cut at G7

Page 22: RNA Folding

17531753ECh+5ECh+6h01735ECh+77351ECh+8

Hairpin folding pathway

Page 23: RNA Folding

EC- 1 3 10 20 20h+2Template G3- 1 3 10 20 20- 1 3 10 20 - 1 3 10 20 20- 1 3 10 20 20 - 1 3 10 20 20h+5h+6h+7h+8h+9wwwwww Time with RNaseT1, min

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 * h+2 full sizeh+2 cut at G3

h+5h+6h+7h+8- 1 3 10 20 20w- 1 3 10 20 20w- 1 3 10 20 20w- 3 10 20 20w EC Time with RNaseT1, min

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 Template G5* * h+5 full sizeh+5 cut at G5

EC Time with RNaseT1, min

Template G7- 1 3 10 20 20h+2- 1 3 10 20 20- 1 3 10 20 20 - 1 3 10 10- 1 3 10 20 20 - 1 3 10 20 20h+5h+6h+7h+8h+9wwwwww1 2 3 4 5 6 7 8 9 1 0 11 12 13 14 15 16 17 18 19 20 21 22 24 25 26 27 28 29 30 31 32 33 34 35 36* h+2 full sizeh+2 cut at G7

Page 24: RNA Folding

17531753ECh+5ECh+6h01735ECh+77351ECh+8

Hairpin folding pathway

Page 25: RNA Folding

EC- 1 3 10 20 20h+2Template G3- 1 3 10 20 20- 1 3 10 20 - 1 3 10 20 20- 1 3 10 20 20 - 1 3 10 20 20h+5h+6h+7h+8h+9wwwwww Time with RNaseT1, min

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 * h+2 full sizeh+2 cut at G3

h+5h+6h+7h+8- 1 3 10 20 20w- 1 3 10 20 20w- 1 3 10 20 20w- 3 10 20 20w EC Time with RNaseT1, min

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 Template G5* * h+5 full sizeh+5 cut at G5

EC Time with RNaseT1, min

Template G7- 1 3 10 20 20h+2- 1 3 10 20 20- 1 3 10 20 20 - 1 3 10 10- 1 3 10 20 20 - 1 3 10 20 20h+5h+6h+7h+8h+9wwwwww1 2 3 4 5 6 7 8 9 1 0 11 12 13 14 15 16 17 18 19 20 21 22 24 25 26 27 28 29 30 31 32 33 34 35 36* h+2 full sizeh+2 cut at G7

Page 26: RNA Folding

- 1 3 10 20 20h+2Time with RNaseT1, min

ECTemplate G1- 1 3 10 20 20- 1 3 10 20 20- 1 3 10 20 20- 1 3 10 20 - 1 3 10 20 20- 1 3 10 20 20h+5h+6h+7h+7h+8h+9wwwwwwfree RNA1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41* h+2 full sizeh+2 cut at G1

G1ATCGCCCTCCTAATAATCGGAGGGCAATAGCGATCATCGCAGCGTACCGAGCGC1

h+7

G1 cleavage in ECh+7

h+7 full size-2-4

h+7 full sizeh+7 cut at G1Time with

RNaseT1, minEC

Template G1

Page 27: RNA Folding

17531753ECh+5ECh+6h01735ECh+77351ECh+8

Hairpin folding pathway

Page 28: RNA Folding

EC- 1 3 10 20 20h+2Template G3- 1 3 10 20 20- 1 3 10 20 - 1 3 10 20 20- 1 3 10 20 20 - 1 3 10 20 20h+5h+6h+7h+8h+9wwwwww Time with RNaseT1, min

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 * h+2 full sizeh+2 cut at G3

h+5h+6h+7h+8- 1 3 10 20 20w- 1 3 10 20 20w- 1 3 10 20 20w- 3 10 20 20w EC Time with RNaseT1, min

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 Template G5* * h+5 full sizeh+5 cut at G5

EC Time with RNaseT1, min

Template G7- 1 3 10 20 20h+2- 1 3 10 20 20- 1 3 10 20 20 - 1 3 10 10- 1 3 10 20 20 - 1 3 10 20 20h+5h+6h+7h+8h+9wwwwww1 2 3 4 5 6 7 8 9 1 0 11 12 13 14 15 16 17 18 19 20 21 22 24 25 26 27 28 29 30 31 32 33 34 35 36* h+2 full sizeh+2 cut at G7

Page 29: RNA Folding

h+6G1G3G5G7h0

Putative RNA structure in ECh+6 based on templates G1, G3, G5, G7

dG=-1.1 kcal/mol U AA AA U U C C G C G U A C G3 C C

AUGCGG

AAUAGCh-4dG=-1.8 kcal/mol U A A C U C A U A C U G3C C G C G AU A

GCGGAAUAGCh-4

Template G3

G3 ATCCGCTCCTAATAATCGGAGCGGAATAGC

3

h0 h+6h-7

Hairpin in ECh+6

Computer-assisted RNA folding

Page 30: RNA Folding

dG=-0.3 kcal/mol A:U inversion in the stem U A A C U C A A A C U G3C C GAUC GU

GCGGAAUAGCAUGCGG

AAUAGCdG=-1.1 kcal/mol U AA AA U U C C G C G A U C G3 C C

extremely unstable dG=-1.1 kcal/mol U AA AA U U C C G C G U A C G3 C C

AUGCGG

AAUAGCh-4dG=-1.8 kcal/mol U A A C U C A U A C U G3C C G C G AU A

GCGGAAUAGCh-4

Template G3

G3 ATCCGCTCCTAATAATCGGAGCGGAATAGC

3

h0 h+6h-7

Computer-assisted RNA folding

Template G3S

G3 ATCCGCACCTAATAATCGGUGCGGAATAGC

3

h0 h+6h-7

Hairpin in ECh+6

Page 31: RNA Folding

dG=-0.3 kcal/mol A:U inversion in the stem U A A C U C A A A C U G3C C GAUC GU

GCGGAAUAGCAUGCGG

AAUAGCdG=-1.1 kcal/mol U AA AA U U C C G C G A U C G3 C C

extremely unstable

Template G3S

G3 ATCCGCACCTAATAATCGGUGCGGAATAGC

3

h0 h+6h-7

Figure 3Time with RNaseT1, min

ECh+6h+7 and h+6h+8 and h+6- 1 3 10 20 20 W

- 1 3 10 20 20 W

- 1 3 10 20 20 W

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 * h+6 full sizeh+6 cut at G3

Hairpin in ECh+6

Page 32: RNA Folding

17531753ECh+5ECh+6h01735ECh+77351ECh+8

Hairpin folding pathway

Pause

EC rearrangement

Mismatched hairpin

7351

ECh+8

Page 33: RNA Folding

G1/T ATCGCCCTCCTGGTAATCGGAGGGCTTTTTATTTCATCGCAGCGTACCGAGCGC G3/T ATCCGCTCCTGGTAATCGGAGCGGTTTTTATTTCATCGCAGCGTACCGAGCGC

h+8terminationh+7h0

QuickTime™ and aTIFF (Uncompressed) decompressorare needed to see this picture.QuickTime™ and aTIFF (Uncompressed) decompressorare needed to see this picture. G1

/T G3/TKCl4 NTPs, mMTemplate 300 mM 0.1 0 .01 0.1 0.01Runoff1 2 3 4 Terminationh+8h+7

Alternative structure affects termination

Page 34: RNA Folding

Time withRNaseT1, minh+2- 1 3 10 20 20h+8, h+9ww- 1 3 10 20 20 EC1 2 3 4 5 6 7 8 9 10 11 12 h+9 fullh+8 fullh+8 cut at G1

A A U U C C G C G U A C G C G

CCAAUAGCGAAUCGCCCU U AC AC U U C C G C G U A C G C G C G G C

AUCGCAAUAGCGA11dG=-13.9 kcal/moldG=-7.0 kcal/mol

Alternative structure affects termination

Template G1L

AA

Page 35: RNA Folding

Alternative structure affects termination

Template G1/T G1L/Ts ps pRunoffFraction300 mM KCl, 1 mM NTPs

1 2 3 4Terminationh+8h+7

G1/T ATCGCCCTCCTGGTAATCGGAGGGCTTTTTATTTCATCGCAGCGTACCGAGCGC h+8terminationh+7h0

G1L/TATCGCCCTCCTCCTAATCGGAGGGCTTTTTATTTCATCGCAGCGTACCGAGCGC

Page 36: RNA Folding

5’ATCGAGAGGGACACGGCGAATACCCATCCCAATCGGCCTGCTGGTAATCGCAGGCCTTTTTATTTGGATCGCAGCGTACCGAGCGC3’tR2/T/longh+7h+8h0tR2/T 5’ ATCGGCCTGCTGGTAATCGCAGGCCTTTTTATTTGGATCGCAGCGTACCGAGCGC3’ terminationh+7h+8h0termination

Sequence context affects termination

Page 37: RNA Folding

0102030405060708090100

0 3 10 30100

3’ATCGAGAGGGACACGGCGAATACCCATCCC5’ - control oligo3’TAGCTCTCCCTGTGCCGCTTATGGGTAGGG5’ - complementary oligo 0 3 10 30 100Oligo concentration, μM 2/ / (0.1 , 300 )Termination on tR T long template mM NTPs mM KCl5’ ATCGAGAGGGACACGGCGAATACCCATCCCAATCGGCCTGCTGGTAATCGCAGGCCTTTTTATTTGGATCGCAGCGTACCGAGCGC3’2/ /tR T long+7h+8h0htermination

Competing RNA-RNA interactions affect termination

Page 38: RNA Folding

RNA-RNA interactions competing with hairpin formation

Weak competing RNA-RNA interactions affect termination

termination

5’ATCGAGAGGGACACGGCGAATACCCATCCCAATCGGCCTGCTGGTAATCGCAGGCCTTTTTATTTGGATCGCAGCGTACCGAGCGC3’

h+7 h+8h0

UU

AUCGAGA CAC AUCGAGA CAC

CG CG

GGGA GGGA

GG AGG A GGUGGU

CCCU CCCU

CC ACC A

AUAU CGUCCGGCGUCCGG

CUAA AC CUAA AC

GCAGGCCGCAGGCC AUCAUC

AA UUUUUAUUUUUUAU

5’

3’

h0

A GA CAC CG UCGA GGGA GG A GGCU CCCU CC A AA AC AU

5’3’GCCUUUUUAUh0 GGU CU CGUCA GCAG AUC

h0

Full terminated RNA

3’ GCCUUUUUAUGCCUUUUUAU

RNA in the EC at termination point

tR2/T/long

Page 39: RNA Folding

RNA-RNA interactions competing with hairpin formation

Weak competing RNA-RNA interactions affect termination

termination

5’ATCGAGAGGGACACGGCGAATACCCATCCCAATCGGCCTGCTGGTAATCGCAGGCCTTTTTATTTGGATCGCAGCGTACCGAGCGC3’

h+7 h+8h0

A GA CAC CG UCGA GGGA GG A GGCU CCCU CC A AA AC AU

5’3’GCCUUUUUAUh0 GGU CU CGUCA GCAG AUC

h0

3’ GCCUUUUUAUGCCUUUUUAU

RNA in the EC at termination point

tR2/T/long

3’AUCGAGAGGGACACGGCGRNase ARNase T1ECh-365 ’

Page 40: RNA Folding

Template tR2/T/longEC[h-36]RunoffTermination4 NTPs, mM 0.1 1 0.1 1 0.1 112345620 nt17 nt14 nt

Weak competing RNA-RNA interactions affect termination

Page 41: RNA Folding

TerminationReadthrough1735ECh+77351ECh+8

Weak competing RNA-RNA interactions affect termination because of its kinetic nature and the EC interference with hairpin folding

Jack Sparrow: If you were waiting for the opportune moment, that was it.

Page 42: RNA Folding

- why some mutations that do not alter or increase hairpin strength decrease termination (Cheng et al., Science (1991), 254; Wilson and

von Hippel, PNAS (1995), 92)

- why the efficiency of terminators depends on early transcribed promoter-proximal sequences (Goliger et al. (1989) J. Mol.

Biol. 205; Telesnitsky and Chamberlin (1989) J. Mol. Biol. 205)

Models of termination do not explain: