52
Edit this text to create a Heading This subtitle is 20 points Bullets are blue They have 110% line spacing, 2 points before & after Longer bullets in the form of a paragraph are harder to read if there is insufficient line spacing. This is the maximum recommended number of lines per slide (seven). Sub bullets look like this This slide has a 16:9 media window Computational Light Field Displays Matthew Hirsch MIT Media Lab Douglas Lanman MIT Media Lab

SIGGRAPH 2012 Computational Display Course - 3 Computational Light Field Displays

Embed Size (px)

Citation preview

  • 1. Edit this text to create aa 16:9 mediaThis slide has HeadingComputational Light Field windowDisplays This subtitle is 20 points Bullets are blue They have 110% line spacing, 2 points before & after Longer bullets in the form of a paragraph are harder toread if there is insufficient line spacing. This is themaximum recommended number of lines per slide(seven).Douglas LanmanMatthew Hirsch Sub bulletsMIT Media Lablook like this MIT Media Lab

2. Is glasses-free 3D ready? Nintendo 3DSMasterImage 3D Asus Eee Pad MeMO 3DLG Optimus 3DE3 2010Computex 2011Computex 2011 Mobile World Congress 2011Toshiba 3DTV PrototypeSony 3DTV PrototypeLG 3DTV Prototype CES 2011 CES 2011 CES 2011 3. Taxonomy of Direct 3D Displays: Glasses-bound vs. Unencumbered Designs Immersive (blocks direct-viewing of real world)Head-mounted(eyepiece-objective and microdisplay) See-through (superimposes synthetic images onto real world) Glasses-boundStereoscopic Spatially-multiplexed (field-concurrent) (color filters, polarizers, autostereograms, etc.)Multiplexed(stereo pair with same display surface) Temporally-multiplexed (field-sequential) (LCD shutter glasses) Parallax Barriers (uniform array of 1D slits or 2D pinhole arrays)Parallax-based(2D display with light-directing elements) Integral Imaging (lenticular sheets or flys eye lenslet arrays) Multi-planarUnencumbered (time-sequential projection onto swept surfaces)Volumetric(directly illuminate points within a volume) Transparent SubstratesAutomultiscopic(intersecting laser beams, fog layers, etc.) Static (holographic films)Holographic(reconstructs wavefront using 2D element)Dynamic (holovideo)Taxonomy adapted from Hong Hua 4. Taxonomy of Direct 3D Displays:Parallax BarriersNewSight MV-42AD3 42 (1920x1080, 1x8 views) Parallax Barriers (uniform array of 1D slits or 2D pinhole arrays)Parallax-based(2D display with light-directing elements)UnencumberedVolumetric(directly illuminate points within a volume)AutomultiscopicHolographic(reconstructs wavefront using 2D element) 5. Taxonomy of Direct 3D Displays:Integral Imaging Alioscopy 3DHD 42 (1920x1200, 1x8 views) Parallax Barriers (uniform array of 1D slits or 2D pinhole arrays)Parallax-based(2D display with light-directing elements) Integral Imaging (lenticular sheets or flys eye lenslet arrays)UnencumberedVolumetric(directly illuminate points within a volume)AutomultiscopicHolographic(reconstructs wavefront using 2D element) 6. Directional Backlighting Nelson and Brott, 2010US Patent 7,847,869 Currently promoted by 3M Requires a high-speed (120 Hz) LCD panel, an additional double-sided prism film, and a pair of LEDs Allows multi-view display, but requires higher-speed LCD and additional light sources for each view 7. Taxonomy of Direct 3D Displays:Multi-planar Volumetric Displays Parallax Barriers (uniform array of 1D slits or 2D pinhole arrays)Parallax-based(2D display with light-directing elements) Integral Imaging (lenticular sheets or flys eye lenslet arrays) Multi-planarUnencumbered (time-sequential projection onto swept surfaces)Volumetric(directly illuminate points within a volume)AutomultiscopicHolographic(reconstructs wavefront using 2D element) 8. Taxonomy of Direct 3D Displays:Transparent-substrate Volumetric Displays Parallax Barriers (uniform array of 1D slits or 2D pinhole arrays)Parallax-based(2D display with light-directing elements) Integral Imaging (lenticular sheets or flys eye lenslet arrays) Multi-planarUnencumbered (time-sequential projection onto swept surfaces)Volumetric(directly illuminate points within a volume) Transparent SubstratesAutomultiscopic(intersecting laser beams, fog layers, etc.)Holographic(reconstructs wavefront using 2D element) 9. Taxonomy of Direct 3D Displays:Static HologramscapturereconstructionParallax Barriers(uniform array of 1D slits or 2D pinhole arrays)Parallax-based(2D display with light-directing elements)Integral Imaging(lenticular sheets or flys eye lenslet arrays)Multi-planarUnencumbered(time-sequential projection onto swept surfaces)Volumetric(directly illuminate points within a volume)Transparent SubstratesAutomultiscopic (intersecting laser beams, fog layers, etc.)Static(holographic films)Holographic(reconstructs wavefront using 2D element) 10. Taxonomy of Direct 3D Displays:Dynamic Holograms (Holovideo)Tay et al.MIT Media Lab Spatial Imaging Group[Nature, 2008][Holovideo, 1989 present]Parallax Barriers(uniform array of 1D slits or 2D pinhole arrays) Parallax-based (2D display with light-directing elements) Integral Imaging(lenticular sheets or flys eye lenslet arrays)Multi-planarUnencumbered(time-sequential projection onto swept surfaces) Volumetric (directly illuminate points within a volume) Transparent SubstratesAutomultiscopic (intersecting laser beams, fog layers, etc.)Static(holographic films) Holographic (reconstructs wavefront using 2D element)Dynamic(holovideo) 11. What is meant by glasses-free 3D?binocular disparity convergence motion parallax accommodation/blurcurrent glasses-based (stereoscopic) displaysnear-term glasses-free (automultiscopic) displayslonger-term volumetric and holographic displays 12. Design Trade-offs Integral Imaging Parallax Barriers Directional BacklightingIntegral ImagingParallax Barriers Directional Backlighting Spatial Resolution low low high Brightnesshigh lowmoderateCostlowlow moderate moderate high Full-resolution 2D no yes (dual-layer LCD)yesMotion Parallax yes yesno 13. Generalizing Parallax Barriersmask Kmask 3mask 2 mask 2 mask 2mask 1 mask 1 mask 1light boxlight boxlight box Conventional Parallax BarrierHigh-Rank 3D (HR3D) Layered 3D and Polarization Fields Parallax barriers use heuristic design: front mask with slits/pinholes, rear mask with interlaced views High-Rank 3D (HR3D) considers dual-layer design with arbitrary opacity and temporal multiplexing Layered 3D and Polarization Fields considers multi-layer design without temporal multiplexing 14. Outline Automultiscopic Displays Multi-Layer Displays Layered 3D- Polarization Fields Dual-Layer Displays- High-Rank 3D (HR3D) 15. Layered 3D: Multi-Layer Displays mask K mask 3 mask 2 mask 1 light box Layered 3D 16. Tomographic Light Field Synthesisvirtual plane q attenuatorx backlight qx2D Light Field 17. Tomographic Light Field Synthesisvirtual plane attenuatorx backlight qx2D Light Field 18. Tomographic Light Field Synthesisvirtual plane attenuatorx backlight qx2D Light Field 19. Tomographic Light Field Synthesis virtual plane Image formation model:- m (r )drattenuator L(x, q ) = I 0 e C L(x, q ) L(x, q ) = ln = - m (r)dr I0 Cbacklight l = -Pa Tomographic synthesis:2 arg min l + Pa , for a 0 a 2D Light Field 20. Tomographic Light Field Synthesis virtual plane Image formation model:- m (r )drattenuator L(x, q ) = I 0 e C L(x, q ) L(x, q ) = ln = - m (r)dr I0 Cbacklight l = -Pa Tomographic synthesis:2 arg min l + Pa , for a 0 a 2D Light Field 21. Multi-Layer Light Field DecompositionReconstructed Views Target 4D Light Field Multi-Layer Decomposition 22. Prototype Layered 3D DisplayTransparency stack with acrylic spacers Prototype in front of LCD (backlight source) 23. Outline Automultiscopic Displays Multi-Layer Displays- Layered 3D Polarization Fields Dual-Layer Displays- High-Rank 3D (HR3D) 24. Barco E-2320 PA Grayscale IPS LCD1600x1200 @ 60 Hz 25. Four Stacked Liquid Crystal PanelsTwo Crossed Polarizers 26. Overview of LCDs Ivertical polarizercolor filter arrayliquid crystal cells horizontal polarizerI0 backlight Malus Law Intensity Modulation with Liquid Crystal Cells I = I0 sin2 (q ) 27. Extending Layered 3D to Multi-Layer LCDs Virtual Planes Design Optimization LCD 3 Eliminate redundant polarizers Sequentially-crossed design q LCD 2 x LCD 1 backlight2D Light Field q x 28. Extending Layered 3D to Multi-Layer LCDs Virtual Planes Design Optimization LCD 3 Eliminate redundant polarizers Use sequentially-crossed q LCD 2 x Exploit field-sequential color 0.33 = 2.7% brightness LCD 1 backlight2D Light Field q x 29. Polarization Field Displays Virtual Planes Design Optimization LCD 3 Eliminate redundant polarizers Use sequentially-crossed q LCD 2 x Exploit field-sequential color 0.33 = 2.7% brightness LCD 1 Further optimize polarizers Minimum is a crossed pair backlight2D Light Field q x 30. Polarization Field Displays Virtual Planes LCD 3 f3 Image Formation qf2 K LCD 2x Q(x, q ) = fk (x, q ) k=1 f1L(x, q ) = sin 2 (Q(x,q )) LCD 1 backlight Tomographic Synthesis2D Light FieldQ(x,q ) = sin-1 ( ) L(x, q ) mod pQ = Pf q argmin Q - Pf 2 2 fmin f fmaxx 31. Tomographic Image SynthesisProjection Matrix Target Light Field LCD Pixel Values= *b=Ax 32. SART [Simultaneous Algebraic Reconstruction Technique]b=Axpre-compute some weights initial guessATvAxupdate clamp 33. Efficient GPU ImplementationAx ATvForward Projection (Multiview Rendering) Back Projection (Projective Texture Mapping) 34. Polarization Field Displaysviewer moves right viewer moves down Stacked Polarization Input 4D Light FieldRotating Layers900Optimized Rotation Angles for Each Layer 35. Polarization Field Displaysviewer moves right viewer moves down Input 4D Light FieldReconstruction Results 36. Outline Automultiscopic Displays Multi-Layer Displays- Layered 3D- Polarization Fields Dual-Layer Displays High-Rank 3D (HR3D) 37. Input 4D Light Field 38. Parallax Barrier: Front Layer 39. Parallax Barrier: Rear Layer 40. Analysis of Parallax Barriersk L[i,k]ikg[k] f[i]i L[i,k]` light boxL[i, k] = f [i] g[k] L[i, k ] f [i] g[k ] 41. Analysis of Parallax BarriersL[i,k] kg[k]i f[i]` light box TKen Perlin et al. An Autosteroscopic Display. 2000.L[i, k] = ft [i] gt [k]Yunhee Kim et al. Electrically Movable Pinhole Arrays. 2007. t=1 42. Content-Adaptive Parallax BarriersL[i,k] Gkg[k]i~` f[i] FLlight box~L FG 43. Content-Adaptive Parallax BarriersG~`L =Farg min L - FG W , for F, G 02F,G 44. Content-Adaptive Parallax Barrier: Front Layer 45. Content-Adaptive Parallax Barrier: Rear Layer 46. Simulation Results 47. Prototype High-Rank 3D (HR3D) Displayhttp://cameraculture.media.mit.edu/byo3dMatthew Hirsch and Douglas Lanman. Build Your Own 3D Display. SIGGRAPH 2010, SIGGRAPH Asia 2010, SIGGRAPH 2011. 48. Experimental Results Time-Multiplexed Parallax Barrier High-Rank 3D (HR3D) 49. Outline Automultiscopic Displays Multi-Layer Displays- Layered 3D- Polarization Fields Dual-Layer Displays- High-Rank 3D (HR3D) 50. High-Rank 3D (HR3D) Layered 3D Polarization Fieldswww.hr3d.info www.layered3d.infotinyurl.com/polarization-fieldsBiDi ScreenTensor Displayswww.bidiscreen.com tinyurl.com/tensordisplays