39
2011 IEEE Geoscience and Remote Sensing symposium Jul. 24-29, Vancouver, Canada Analysis of the passive microwave high- frequency signal in the shallow snow retrieval [email protected] 28 28 th th Jul. 2011 Jul. 2011 AMSR-E Y.B. Qiu 1*, H.D. Guo 1 , J.C. Shi 2 , S.C. Kang 3 J. Lemmetyinen 4 , J.R. Wang 5 1 Center of Earth Observation and Digital Earth, CAS, China 2 University of California, Santa Barbara, USA 3 Institute of Tibetan Plateau Research, CAS, China 4 FMI, Arctic Research Centre, Finland 5 NASA Goddard Space Flight Center, Greenbelt, USA

TH4.TO4.5.ppt

Embed Size (px)

DESCRIPTION

 

Citation preview

Page 1: TH4.TO4.5.ppt

2011 IEEE Geoscience and Remote Sensing symposiumJul. 24-29, Vancouver, Canada

Analysis of the passive microwave high-frequency signal in the shallow snow retrieval

[email protected] 2828th th Jul. 2011Jul. 2011

AMSR-E

Y.B. Qiu1*, H.D. Guo1, J.C. Shi2, S.C. Kang3

J. Lemmetyinen4, J.R. Wang5

1 Center of Earth Observation and Digital Earth, CAS, China2 University of California, Santa Barbara, USA3 Institute of Tibetan Plateau Research, CAS, China4 FMI, Arctic Research Centre, Finland5 NASA Goddard Space Flight Center, Greenbelt, USA

Page 2: TH4.TO4.5.ppt

OutlineSnow Products Analysis in China

Why Snow - a potentially sensitive factor of climate change – debate ? Need more accuracy snow products over China area

Passive Microwave remote sensing of snow Nowadays, the operational algorithm regime– Gradient

(36/18GHz) Shallow snow situation in China

Possibility analysis of the high frequencies in the shallow snow retrieval

Comparison: In-situ snow depth and SMM/I, and AMSR-E emission signal

Possible algorithm development with high frequencies and analysis

Conclusion

Page 3: TH4.TO4.5.ppt

Snow - a potentially sensitive factor of climate change

Snow – very important IPCC AR4(2007): Continental-scale snow cover extent (SCE)

is a potentially sensitive indicator of climate change. (Foster et al. 1982; Namias 1985; Gleick, 1987) said: Snow

is not only a sensitive indicator of climate change, but makes feedbacks to it.

Snow has been proposed as a useful indicator in testing and monitoring global climate change (Robinson et al. 1990).

Works support IPCC-AR4 ?Nine GCM model: shrinking snow cover over Northern

American

( Frei, A. and G. Gong, 2005. )

Why Snow?

Page 4: TH4.TO4.5.ppt

Will Climate Change Affect Snow Cover Over North America?

North American snow models miss the mark – observed trend opposite of the predictions

Goddard uses data from Rutger’s Global Snow Lab to claim that the latest 22-year trend for Winter (Dec, Jan, Feb) in the Northern Hemisphere invalidates the CMIP3 modeling of snow extent as presented by Frei and Gong in 2005.

Why Snow? debate

New debate ?

Page 5: TH4.TO4.5.ppt

Snow Cover Distribution, Variability, and Response to Climate Change in Western China

Data :SMMR-SD, NOAA-SCA Results show that western China did not experience a

continual decrease in snow cover during the great warming period of the 1980s and 1990s. The positive trend of the western China snow cover is consistent with increasing snowfall, but is in contradiction to regional warming.

Potential impact of climate change on snow cover area in the Tarim River basin

QIN DAHE, 2006

Xu Changchun, 2007

Data: 1982–2001, station data The SCA of the entire basin showed a slowly increasing

trend. Correlation analysis implied that the SCA change in the

cold season was positively correlated with the contemporary precipitation change, but had no strong correlation with the contemporary temperature change.

China – Publication’s ViewChina – Publication’s View

Page 6: TH4.TO4.5.ppt

Western China

Tibet Plateau

Northern China

XinjiangMongolia

Northeast

The select test areas in China

Data: Rutger snow productSSM/I SWE productNOAA IMS 4Km/24Km

Part I: Analysis in China from the nowadays products:

Qinghai

Xinjiang

TibetQinghai

Tibet

Page 7: TH4.TO4.5.ppt

1966-11-1 1969-11-1 1972-11-1 1975-11-1 1978-11-1 1981-11-1 1984-11-1 1987-11-1 1990-11-1 1993-11-1 1996-11-1 1999-11-1 2002-11-1 2005-11-1 2008-11-10

20000400006000080000

100000120000140000160000180000200000220000240000260000280000300000320000340000360000380000400000

Sq

ua

re k

m

Date

1966-11-1 1969-11-1 1972-11-1 1975-11-1 1978-11-1 1981-11-1 1984-11-1 1987-11-1 1990-11-1 1993-11-1 1996-11-1 1999-11-1 2002-11-1 2005-11-1 2008-11-10

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

55000

60000

Sq

ua

re k

m

Date

Equation y = a + b

Adj. R-Squar 0.02373

Value Standard Err

Book2_E Intercept -325738.69 89219.84807

Book2_E Slope 0.13331 0.03645

1966-11-11969-11-1

1972-11-11975-11-1

1978-11-11981-11-1

1984-11-11987-11-1

1990-11-11993-11-1

1996-11-11999-11-1

2002-11-12005-11-1

2008-11-1

0

400000

800000

1200000

1600000

2000000

2400000

2800000

Sq

ua

re k

m

Date

Western China Area

Tibet Plateau

Northern China

Agree well with the previous publication, but the snow cover area over Tibet is not quite right.

Rutger snow product

1966.11~2010.5

Page 8: TH4.TO4.5.ppt

7811017911018011018111018211018311018411018511018611018711018811018911019011019111019211019311019411019511019611019711019811019911010011010111010211010311010411010511010611010711010

100000

200000

300000

400000

500000

SW

E(m

m)

Date

China – decreasing SCA/SWE over Tibet Plateau

SMM/I SWE product

7811017911018011018111018211018311018411018511018611018711018811018911019011019111019211019311019411019511019611019711019811019911010011010111010211010311010411010511010611010711010

5000000

10000000

15000000

20000000

25000000

30000000

35000000

40000000

45000000

SW

E(m

m)

Date

Tibet Plateau

Tibet Plateau

1978-2007

Page 9: TH4.TO4.5.ppt

NOAA IMS

1997-2010 SCA

970201970801

980201980801

990201990801

000201000801

010201010801

020201020801

030201030801

040201040801

050201050801

060201060801

070201070801

080201080801

090201090801

100201

0

1000000

2000000

3000000

4000000

5000000

6000000

Squ

are

km

Date

Tibet Plateau

Western China

decreasing

decreasing

970201 970801 980201 980801 990201 990801 000201 000801 010201 010801 020201 020801 030201 030801 040201 040801 050201 050801 060201 060801 070201 070801 080201 080801 090201 090801 1002010

1000000

2000000

3000000

4000000

Sq

ua

re k

m

Date

Equation y = a +

Adj. R-Sq 0.0081

Value Standard E

B Interce 1.14445 1.79336E7

B Slope -46.201 7.31125

Page 10: TH4.TO4.5.ppt

970201 980201 990201 000201 010201 020201 030201 040201 050201 060201 070201 080201 090201 1002010

1000000

2000000

3000000

4000000

5000000

6000000

Squ

are

km

Date

D Linear Fit of D

Equation y = a + b*x

Adj. R-Squar 3.55109E-

Value Standard Error

D Intercept -7.46397E 4.68434E7

D Slope 31.09071 19.09734

NOAA IMS

1997-2010 SCA Northern China

The NOAA IMS show different Trend with above two publications and the Rutger’s result.

Increasing

We get:Different products provide different time-series appearance on the snow factorThe SCA from Rugter is not quite right over Tibet China.SWE is a quite valuable parameter for its long times series records (SMMR, SMM/I)

Need inter-comparison and validation of certain snow cover products.

Page 11: TH4.TO4.5.ppt

We get:

In all,According to the analysis, snow cover over Tibetan Plateau is quite different with other places over Northern hemisphere, We need accuracy estimation of the snow cover parameters for a long time to convince the climatology analysis to corresponding the global environment change research.

Need More accurate snow data

Page 12: TH4.TO4.5.ppt

Part II: Passive Microwave remote sensing of snow

Snow emission model – understanding the snow microwave emission

DMRT – theoretical… MELMES – multi-layer model HUT Snow Emission Model

– 2010 now extent to multilayer modal …

Snow Temperature ProfileSnow grain size profileSnow density profileSnow depth (SD)Interface roughness

For dry snow

Page 13: TH4.TO4.5.ppt

Passive Microwave remote sensing of snow

Algorithms Basically, base on the satellite brightness temperature (TB) difference

between 36GHz and 18GHz Goodison & Walker,1995:SMMR & SSM/I, TB(19V-37V) Goita et al.,1997: forest area TB(19V-37V) Kelly,Chang,Foster,& Hall,2001: second order of TB(19V-37V) Pulliainen , & Hallikainen,2001, iteration algorithm (match) …

0 20 40 60 80 100 120 140 160 180 200 220 240-140

-120

-100

-80

-60

-40

-20

0

TB

Diff

ere

nce

(K)

SWE(mm)

Snow Grain Size 0.5 0.7 0.9 1.10 1.30 1.50 1.70 1.9036.5-18.7

TB(37-19V) (K)

Station Snow Depth (cm)

Page 14: TH4.TO4.5.ppt

Shallow snow situation in China – western China, especially the Tibet area

1 3 5 7 9 11 13 15 17 19 21 23 250

1

2

3

4

5

Sno

w D

epth

(cm

) Snow Depth (cm)

DanXung Station 1980-1 Snow Evolution

Jan 7 Jan 12 Jan 17 Jan 22 Jan 27 Feb 1 Feb 60

2

4

6

8

10

12

Sno

w D

epth

(cm

)

Snow Depth (cm)

DanXung Station 1981 Snow Evolution

Menyuan station Maduo station

shallow snow over Tibet area<15cm or 20cm

Sparse Station

Page 15: TH4.TO4.5.ppt

Shallow snow situation in China – western China

2009-9-1 2009-11-1 2010-1-1 2010-3-1 2010-5-1

-40

-30

-20

-10

0

10

0

3

6

9

12

15

Sn

ow

De

pth

(cm

)

89V-18V 36V-18V 18V-10.7V

TB

Diff

ere

nce

(K)

Date

Snow Depth(cm)

52985 Hezheng, Gansu (35.42N, 103.33E)

2009-9-1 2009-11-1 2010-1-1 2010-3-1 2010-5-1

-40

-30

-20

-10

0

10

0

3

6

9

12

15

Sn

ow

De

pth

(cm

)

89V-18V 36V-18V 18V-10.7V

TB

Diff

ere

nce

(K)

Date

Snow Depth(cm)

Snow depth < 10cm

56093 Minxian, Gansu (34.43N, 104.02E)

Page 16: TH4.TO4.5.ppt

Part III: Possibility analysis of the high frequencies in the shallow snow retrieval

HUT snow model simulation

0 20 40 60 80 100 120 140 160 180 200 220 240-140

-120

-100

-80

-60

-40

-20

0

TB

Diff

ere

nce

(K)

SWE(mm)

Snow Grain Size 0.5 0.7 0.9 1.10 1.30 1.50 1.70 1.9036.5-18.7

0 20 40 60 80 100 120 140 160 180 200 220 240-200

-180

-160

-140

-120

-100

-80

-60

-40

-20

089.0-18.7

TB

Diff

eren

ce(K

)

SWE(mm)

Snow Grain Size 0.5 0.7 0.9 1.10 1.30 1.50 1.70 1.90

36GHZ/18.7GHz gradientShallow snow sensitive

89GHZ-18.7GHz gradientShallow snow sensitive

Page 17: TH4.TO4.5.ppt

Comparison: In-situ snow depth and SMMR, SMM/I, and AMSR-E emission signal

Snow depth (cm) the Former Soviet 284 station records V2.0 (1966~1996) The snow depth (cm) over China (2009.9~2010.5) NamCo station snow measurement for one whole winter

(2007~2008)

Comparison of the traditional algorithm records and Snow depth

Satellite datasetSMMR(1978~1987), SSM/I (1987~1996), AMSR-E swath data

Page 18: TH4.TO4.5.ppt

Tree-free, sparse vegetation area, taken at the winter of 2010

Less than 20cm

NamCo station

Page 19: TH4.TO4.5.ppt

Snow depth (cm) from NamCo station and AMSR-E TBs

Compare with the NASA algorithm SWE

result

TB(35GHz-18.7GHz)

TB(89GHz-18.7GHz)

Snow depth (cm)

SWE (mm)/NASA

ITPR,CAS

Page 20: TH4.TO4.5.ppt

Snow depth (cm) and AMSR-E TBs (2009~2010)

50727 (47.17N 119.93E) Heilongjiang

50434 50.48N 121.68ENeimenggu

Page 21: TH4.TO4.5.ppt

Snow depth (cm) and AMSR-E TBs (2009~2010)

54049 44.25N 123.97E Jilin

52681 38.63N 103.08E Gansu

Page 22: TH4.TO4.5.ppt

Snow depth (cm) and AMSR-E TBs (2009~2010)

53231 41.40N 106.40ENeimenggu

53519 39.22N 106.77ENingxia

89GHz is sensitive to the snow

occurrence (fresh snow flake)

Page 23: TH4.TO4.5.ppt

Snow depth (cm) and SSM/I TB Gradient

The select station, the altitude > 1500mNear Tibet, ChinaAlmost the shallow snow cover areaSparse forest

Page 24: TH4.TO4.5.ppt

Snow depth and SSM/I TB Gradient

36665 ZAJSAN

0

10

20

30

40

1987 1988 1989 1990 1991 1992 1993 1994 1995 1996-80

-70

-60

-50

-40

-30

-20

-10

0

10

20

Tb

Diff

ere

nce

(K)

Snow Depth

Sn

ow

De

pth

(cm

)

37V-19V

Year

85V-19V 85V-37V

36870 ALMA-ATA

0

10

20

30

40

50

60

1987 1988 1989 1990 1991 1992 1993 1994 1995 1996-70

-60

-50

-40

-30

-20

-10

0

10

20

Tb

Diff

ere

nce

(K)

Snow Depth

Sn

ow

De

pth

(cm

)

37V-19V

Year

85V-19V 85V-37V

TB(37-19GHz) and TB(85-19GHz) ‘s response to the snow evolution

Page 25: TH4.TO4.5.ppt

38618 FERGANA

0

10

20

30

40

1987 1988 1989 1990 1991 1992 1993 1994 1995 1996-50

-40

-30

-20

-10

0

10

20

Tb

Diff

ere

nce

(K)

Snow Depth

Sn

ow

De

pth

(cm

)

37V-19V

Year

85V-19V 85V-37V

38599 LENINABAD

0

10

20

1987 1988 1989 1990 1991 1992 1993 1994 1995 1996-70

-60

-50

-40

-30

-20

-10

0

10

20

Tb

Diff

ere

nce

(K)

Snow Depth

Sn

ow

De

pth

(cm

)

37V-19V

Year

85V-19V 85V-37V

High frequency shows a sensitive response to the shallow snow

Snow depth and SSM/I TB Gradient

Page 26: TH4.TO4.5.ppt

SAMARKAND 38696

Snow depth and SSM/I TB

0

10

20

30

40

1987 1988 1989 1990 1991 1992 1993 1994 1995 1996-70

-60

-50

-40

-30

-20

-10

0

10

20

Tb

Diff

ere

nce

(K)

Snow Depth

Sn

ow

De

pth

(cm

)

37V-19V

Year

85V-19V 85V-37V

KURGAN-TJUBE 38933

0

10

20

30

40

1987 1988 1989 1990 1991 1992 1993 1994 1995 1996-70

-60

-50

-40

-30

-20

-10

0

10

20

Tb

Diff

ere

nce

(K)

Snow Depth

Sn

ow

De

pth

(cm

)

37V-19V

Year

85V-19V 85V-37V

High frequency shows a sensitive response to the shallow snow

Page 27: TH4.TO4.5.ppt

Possible algorithm development with high frequencies and analysis

We apply the ATC Chang(1987) gradient algorithm

SD = a* (Tb18H - Tb37H) + bFirstly, we exam the relatively deep snow over rich forest area.

Page 28: TH4.TO4.5.ppt

1987-1991 snow depth and SMM/I Tbs, 261 samples

0 5 10 15 20 25 30 35 40 45 50 55-30

-25

-20

-15

-10

-5

0

TB

diff

ere

nce

(K)

Snow Depth(cm)

37-19V Linear Fit of 37-19V

R-square: 0.71428a=-6.98161 b= -

0.35971

Possible algorithm development with high frequencies and analysis

Page 29: TH4.TO4.5.ppt

1987-1991 snow depth and SMM/I Tbs, 261 samples

R-square: 0.05764a=-18.95129 b= -

0.12906

0 5 10 15 20 25 30 35 40 45 50 55

-40

-30

-20

-10

0

TB

diff

eren

ce(K

)

Snow Depth(cm)

85-19V Linear Fit of 85-19V

0 20 40 60 80 100 120 140 160 180 200 220 240-200

-180

-160

-140

-120

-100

-80

-60

-40

-20

089.0-18.7

TB

Diff

ere

nce

(K)

SWE(mm)

Snow Grain Size 0.5 0.7 0.9 1.10 1.30 1.50 1.70 1.90

0 5 10 15 20 25 30 35 40 45 50 55-30

-25

-20

-15

-10

-5

0

5

10

15

TB

diff

ere

nce

(K)

Snow Depth(cm)

85-37V Linear Fit of 85-37V

R-square: 0.2509a= -11.96944 b=

0.23074

Grain Size =1.3~1.7mm

Possible algorithm development with high frequencies and analysis

Page 30: TH4.TO4.5.ppt

1992-1995 snow depth and SMM/I Tbs, 640 samples

R-square: 0.48892a= -6.24384 b= -

0.26904

0 5 10 15 20 25 30 35 40 45 50 55 60 65-30

-25

-20

-15

-10

-5

0

TB

diff

ere

nce

(K)

Snow Depth(cm)

TB difference(K) Linear Fit of 37-19V

Possible algorithm development with high frequencies and analysis

Page 31: TH4.TO4.5.ppt

1992-1995 snow depth and SMM/I Tbs, 640 samples

R-square: 0.00456a= -17.45683 b= -

0.03825

R-square: 0.33649a= -11.21299 b=

0.23079

0 5 10 15 20 25 30 35 40 45 50 55 60 65-40

-20

0

TB

diff

eren

ce(K

)

Snow Depth(cm)

89-19V Fit of 89-19V

0 5 10 15 20 25 30 35 40 45 50 55 60 65-20

-15

-10

-5

0

5

10

15

TB

diff

ere

nce

(K)

Snow Depth(cm)

85-37V Fit of 85-37V

Thick snow

Thick snow

Possible algorithm development with high frequencies and analysis

Page 32: TH4.TO4.5.ppt

1988-1995 snow depth and SMM/I Tbs, 420 samples

0 5 10 15 20 25-45

-40

-35

-30

-25

-20

-15

-10

-5

0

5

TB

diff

ere

nce

(K)

(37

-19

V)

Snow Depth(cm)

TB difference(K) (37-19V) Linear Fit of TB difference(K)

R-square:0.31795a= -6.66873 b=-

1.07606

Shallow snow

Possible algorithm development with high frequencies and analysis

0 5 10 15 20 25-70

-60

-50

-40

-30

-20

-10

0

10

TB

diff

ere

nce

(K)

(85

-19

V)

Snow Depth(cm)

TB difference(K) (85-19V) Linear Fit of TB difference(K)

R-square:0.36473a=-19.22 b=-

1.5358

Page 33: TH4.TO4.5.ppt

Select area –Tibet Plateau

Possible algorithm development with high frequencies and analysis

Page 34: TH4.TO4.5.ppt

1987-1995 snow depth and SMM/I Tbs, 469 samples

0 5 10 15 20 25 30 35 40 45-50

-40

-30

-20

-10

0

10

TB

diff

eren

ce(K

) (3

7-19

V)

Snow Depth(cm)

TB difference(K) (37-19V) Linear Fit of TB difference(K)

0 5 10 15 20 25 30 35 40 45-80

-60

-40

-20

0

20

TB

diff

eren

ce(K

) (8

5-19

V)

Snow Depth(cm)

TB difference(K) (85-19V) Linear Fit of TB difference(K)

0 5 10 15 20 25 30 35 40 45-60

-30

0

TB

diff

ere

nce

(K)

(85

-37

V)

Snow Depth(cm)

TB difference(K) (85-37V) Linear Fit of TB difference(K)

0 20 40 60 80 100 120 140 160 180 200 220 240-200

-180

-160

-140

-120

-100

-80

-60

-40

-20

089.0-18.7

TB

Diff

ere

nce

(K)

SWE(mm)

Snow Grain Size 0.5 0.7 0.9 1.10 1.30 1.50 1.70 1.90

Possible algorithm development with high frequencies and analysis

Page 35: TH4.TO4.5.ppt

1987-1995 snow depth and SMM/I Tbs, 1353 samples

0 10 20 30 40 50 60 70-60

-30

0

TB

diff

ere

nce

(K)

(37

-19

V)

Snow Depth(cm)

TB difference(K) (37-19V) Linear Fit of TB difference(K)

0 30 60

-80

-40

0

TB

diff

ere

nce

(K)

(85

-19

V)

Snow Depth(cm)

TB difference(K) (85-19V) Linear Fit of TB difference(K)

The pair 85.0/19 shows its shallow snow retrieval ability and when the snow depth over 20cm, the signal is more variable and suspect.

Possible algorithm development with high frequencies and analysis

Page 36: TH4.TO4.5.ppt

Atmosphere influence issue

HUT snow emission model (Satellite and Ground)

0 20 40 60 80 100 120 140 160 180 200 220 240

-20

0

TB

Diff

eren

ce(K

)

SWE(mm)

Snow Grain Size(mm)

0.5 0.7 0.9 1.10 1.30 1.50 1.70 1.9036.5-18.7

0 20 40 60 80 100 120 140 160 180 200 220 240-140

-120

-100

-80

-60

-40

-20

0

TB

Diff

ere

nce

(K)

SWE(mm)

Snow Grain Size 0.5 0.7 0.9 1.10 1.30 1.50 1.70 1.9036.5-18.7

Ground

Satellite

Tb(36.5GHz-18.7GHz)

Page 37: TH4.TO4.5.ppt

Atmosphere influence analysis

HUT snow emission model (Satellite and Ground)

0 20 40 60 80 100 120 140 160 180 200 220 240

-100

-80

-60

-40

-20

0

TB

Diff

eren

ce(K

)

SWE(mm)

Snow Grain Size 0.5 0.7 0.9 1.10 1.30 1.50 1.70 1.9089.0-18.7

0 20 40 60 80 100 120 140 160 180 200 220 240-200

-180

-160

-140

-120

-100

-80

-60

-40

-20

089.0-18.7

TB

Diff

eren

ce(K

)

SWE(mm)

Snow Grain Size 0.5 0.7 0.9 1.10 1.30 1.50 1.70 1.90

89.0GHz-18.7GHzSatellite

Ground

Atmosphere influence

Page 38: TH4.TO4.5.ppt

Conclusion

Snow parameter is a critical climate indicator.Over western China, the nowdays snow products provide different trend regionally.The high frequencies is sensitive to the snow appearance and could be good at the beginning of the snow accumulation.Over relative deep snow (> 20cm) the Tbs at 36-18GHz are more reliable than that of high frequency, while over the shallow snow especially <15cm), the pair 36-18 is insensitive, but the high frequency pair (89/85-18) shows its distinct response, although the atmosphere influence is not be in consideration.Over Westrern (shallow snow situation), encourage using the emission information at high frequency when snow depth (< 20cm) , and the atmosphere influence is necessary counted in the later quantitative calculation.

Page 39: TH4.TO4.5.ppt

Thank you very much!Thank you very much!