Imber Tech Phase IV Presentation Slides A

  • View
    672

  • Download
    0

  • Category

    Design

Preview:

DESCRIPTION

Imber Tech is a senior capstone design team from Embry-Riddle Aeronautical University. We evaluated the design of a highly maneuverable and structurally stable heavy firefighting vehicle. In honor of the 19 Hotshots from the 2013 Doce fire, the Torrent 19 was created and the preliminary design was formally presented.

Citation preview

PRIMARYSCREEN

1A

Imber- [im-ber] m (genitive imbris); 

1. rain2. a stormcloud

TORRENT 19

2A

The Team(Imber Tech)

Kevin WarrenDesign Team Lead (DTL)

Kelsey KechersonAssistant DTL

Jared BasileAerodynamics/CAD

Michael BrowneStructures/Landing Gear

Anthony SalazarStructures/Landing Gear

Matthew HanusWeight and Balance

David WilsonStability and Control

Inigo RipodasPropulsion Liaison

3A

• Past 20 years:• 14 fatal accidents• Structural failure• Aircraft unable to maneuver in wildfire

weather (up- and down-drafts)

• 36 Crewmen killed

Aerial Firefighting

4A

Figure 1A: Acreage Burned

5A

The future of firefighting aircraft

• Very Large Air Tankers (VLAT) can drop as much as 12 loads of smaller aircraft.

• Only 3 VLAT’s are available:• 2 DC-10-10• 1 747-100

• Dwindling fleet of firefighting aircraft

6A

Why do we need the Dunamis

• No purpose built engine for firefighting

• Available engines will not perform in adverse weather created by wildfires

• Current aircraft can not maintain proper speed and altitude during downdrafts

7A

Overview

Kevin Warren

8A

Overview• Mission Specifications and Profile

• Preliminary Design Components

• Labor Hour and Cost Estimations

• Conclusions and Recommendations

imber tech - Kevin Warren 9A

Mission Specificationand

Profile

Kevin Warren

10A

imber tech - Kevin Warren

Main RFP Requirements:

• 120,000 lb Slurry payload

• 2G emergency maneuver at 150 kts

• TO/Land on 7,000 ft runway

• Operational Radius of 300 nm

• 2500 nm ferry range

• Maximum Cockpit visibility

11A

Figure 2A: Design Point

12A

Loaded Flight Empty Flight

1

2

3

5

7

9

4 86

Figure 3A: Mission Profile

Mission Profile

13A

Aircraft Comparison

Table 1A: Comparison

Imber tech – Kevin Warren

Aircraft Payload (lb)

Take-Off (ft)

Sorties Cruise Speed (knots)

B747 170,000 8,000 1 517DC-10 119,556 10,000 1 310

C-130 J-30 44,000 3,586 7 350Torrent 19 120,000 7,000 3 430

14A

Aircraft Configuration, Layout and Design

Kelsey Kecherson

15A

Configuration• High Wing

• Ground clearance• Short Landing• Servicing

• T-Tail• Engine wash

• Composite Material• Lightweight

imber tech – Kelsey Kecherson 16A

Configuration• High-Cl airfoil• 2g maneuver at slurry drop

• Tank for 120,000 lb of slurry• Pressurized system

• Maximum pilot visibility• Safer low-level navigation

imber tech – Kelsey Kecherson 17A

Configuration• Aft door• Allows slurry tank removal

• High-thrust powerplant• Designed for adverse wildfire conditions

imber tech – Kelsey Kecherson 18A

Cockpit

Kelsey Kecherson

19A

Cockpit

Table 2A: Cockpit Dimensions Table 3A: Cockpit CG Location (From Nose)

X-Location 7.18 ft

Y-Location 0.00 ft

Z-Location 17.6 ft

Length 10.10 ft

Width 12.11 ft

Height (at seat location) 5.30 ft

Seatback Angle 10 deg

imber tech – Kelsey Kecherson 20A

CockpitTable 4A: Required Pilot Vision Angles

Overnose vision angle 21 degOver-the-side vision angle, no head movement 35 degOver-the-side vision angle, head against cockpit glass 70 degUnobstructed vision upward/forward angle 20 degGrazing angle 30 deg

imber tech – Kelsey Kecherson 21A

Wing Layout and Design

Jared Basile

22A

Selection Considerations

• Based on MGTOW: 552,277 lb

• 2G emergency maneuver at 150 KTAS• Required CL = 2.66

• Clean configuration at 120 KTAS• Required CL = 1.53

• MDD > 0.75

imber tech – Jared Basile 23A

Selected AirfoilNASA SC(2)-0714Clmax = 2.09

αstall = 18o

imber tech – Jared Basile 24A

Wing Design Variables

Design Variable Chosen Value

W/S (lb/ft2) 75

λ 0.6

𝛬𝐿𝐸 (deg) 10

AR 9

Dependent Variable Value

S (ft2) 7364

𝛬c/4 (deg) 8.45

𝛬tmax (deg) 7.7

e 0.715

b (ft) 257

Table 5A: Design Variables

Imber tech – Jared Basile 25A

Airfoil to Wing Conversion

-10 -8 -6 -4 -2 0 2 4 6 8 10 12 14 16 18 20 22

-1

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

2.25

2.5

Airfoil

Wing

(deg)α

Cl o

r CL

Figure 4A: 2D to 3D conversion

imber tech – Jared Basile 26A

Addition of High Lift Devices

Design Variable Chosen Value

cF/c 0.25

δF 20o

Swf/Sw 0.55

Table 6A: Comparison

Imber tech – Jared Basile 27A

Addition of High Lift Devices

-25 -20 -15 -10 -5 0 5 10 15 20 25

-0.75-0.5

-0.250

0.250.5

0.751

1.251.5

1.752

2.252.5

2.753

Wing

20 deg Flaps

(deg)α

CL

Figure 5A: Flapped and Unflapped CLαimber tech – Jared Basile 28A

Wing

Figure 6A: Wing

imber tech – Jared Basile 29A

Evaluation of Mcr

0 0.08 0.16 0.24 0.32 0.4 0.48 0.56 0.64 0.72 0.8 0.88 0.96 1.04 1.12

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

1

Cp

Cpcr

M∞

Cp

Figure 7A: Mach Critial

imber tech – Jared Basile 30A

HT Design Variables

Design Variable Chosen Value

λ 0.18

𝛬𝐿𝐸 (deg) 30

AR 5.5

b (ft) 110

Dependent Variable Value

S (ft2) 2200

𝛬c/4 (deg) 24.7

e 0.581

Table 7A: Comparison

Imber tech – Jared Basile 31A

Airfoil to Horizontal Tail

-32 -24 -16 -8 0 8 16 24 32

-2

-1.6

-1.2

-0.8

-0.4

0

0.4

0.8

1.2

1.6

2

2.4

2.8

3.2

Horizontal tail

HT w/ Elevator

AOA

CL

Figure 8A: Horizontal Tail

imber tech – Jared Basile 32A

VT Design Variables

Design Variable Chosen Value

λ 0.9

𝛬𝐿𝐸 (deg) 30

AR 4

b (ft) 35.7

Dependent Variable Value

S (ft2) 1275

𝛬c/4 (deg) 24.7

e 0.632

Table 8A: Design Variables

Imber tech – Jared Basile 33A

Airfoil to Vertical Tail

Figure 9A: Vertical Tail

imber tech – Jared Basile

-32 -24 -16 -8 0 8 16 24 32

-2

-1.6

-1.2

-0.8

-0.4

0

0.4

0.8

1.2

1.6

2

2.4

2.8

3.2

Vertical tailVT w/ Rudder

34A

FuselageStructure

Michael Browne

35A

Fuselage SizingLength = aWc a = 0.23 c = 0.50 W = 690000 lbs

Fuselage Length = 191 ft

Fineness Ratio 8

Inner Diameter = 23.9 ft

Outer Diameter = 24.4 ft

imber tech – Michael Browne 36A

Fuselage Sizing

Parameters ValueMach Drag Divergence 0.8Nose Fineness 1.5Diameter 24.4ftLength 36.7 ft

Table 9A: Nose Cone Sizing

imber tech – Michael Browne 37A

Fuselage Sizing

Parameters ValueDiameter 24.4 ftLength 69 ftAngle 16 degrees

Table 10A: Tail Cone Sizing

imber tech – Michael Browne 38A

Fuselage Sizing

Segment Length (ft)Cockpit 10.10Nose 36.7Tail Cone 69.1Cabin 85.2

Table 11A: Segment Sizes

imber tech – Michael Browne 39A

Fuselage Structure• Frames• 20 inch spacing

• Longerons• 10 inch spacing

• Stringers• 8.4 inch spacing (between 7.3 and 9.5)

40Aimber tech – Michael Browne

Wing Structure& Landing Gear

Anthony Salazar

41A

Wing Structure• Ribs• 25 inch spacing

• Spars• 3 spars at 10%, 40%, and 75% wing chord

• Stringers• 8 inch spacing

imber tech – Anthony Salazar 42A

Landing Gear LayoutWeight of Aircraft 552277 lbsnose wheels (4) 13807 lbsmain wheels (32) 15533 lbs

Table 12A: Estimated Weight Per Wheel

Figure 10A: Landing Gear Beam

443

999

1201

43Aimber tech – Anthony Salazar

Tire Sizing

Good Year TirePressure (Recommended < 120) 115

Diameter 39 in

Width 13 in

Rolling Radius 17.7 in

Table 13A: Refined Tire Sizing

Figure 11A: Tire Contact AreaSource: Raymer page 362, 5th Edition

44Aimber tech – Anthony Salazar

Shock Absorber

Static Loads on Tires (lbs)

Max Static Load 257,640

Max Static Load (nose) 28,438

Min Static Load (nose) 26,739Dynamic Braking Load (nose) 18,881

Table 14A: Static Loads on Tires

Figure 12A: Wheel Load GeometrySource: Raymer page 359, 5th Edition

imber tech – Anthony Salazar

>15

Ma

Mf

Na

Nf

45A

Shock Absorber

Shock AbsorberVT Assumption (ft/s)

10 ȠT 0.47

Ƞ 0.75 Loleo (load) (lbs) 128820

ST (in) 1.795 Doleo (main landing gear) (in) 14.36

S (in) 12.297 Doleo (nose landing gear) (in) 8.70

Ng 2 Length Oleo (in) 25.82

Table 15A: Shock Absorber Dimensions

imber tech – Anthony Salazar 46A

Landing-Gear CriteriaTip Back Angle

End of Empennage 16.6 (deg)Bogey 2 32.5 (deg)

Table 16A: Torrent 19 Tip Back Angle

Figure 13A: Torrent 19 Tip Criterion

imber tech – Anthony Salazar 47A

Landing-Gear Criteria

Figure 14A: Lateral Tip Over (ft)

imber tech – Anthony Salazar 48A

Landing-Gear CriteriaGround Clearance

Landing Gear to Wing 12.55 (deg)

Table 17A: Ground Clearance

Figure 15A: Ground Clearance

imber tech – Anthony Salazar 49A

12.55°

Nose Retraction

Figure 16A: Nose Gear Retracted Side View

imber tech – Anthony Salazar 50A

Weight andBalance

Matthew Hanus

51A

Methods• Raymer’s Statistical Group Weight Method

• Cargo/Transport Weights Groups

• Compared to Nicolai’s Method

• Nicolai’s Composite Weight Reduction Factors

imber tech – Matthew Hanus 52A

Materials

Figure 17A: Composite Make-up

imber tech – Matthew Hanus

Al 7075-T6

Al 7475 T7351

53A

Component Weight (lbs)

Wing 76,339

Horizontal Tail 8,183

Vertical Tail 18,829

Fuselage 31,738

Main Landing Gear 17,258

Engines (4) 16,403 x 4 = 65,612

Fuel (8 tanks) 18,692.25 x 8 = 149,538

Slurry 120,000

Slurry Tank 36,000

Table 18A: Component Weights

imber tech – Matthew Hanus 54A

Figure 18A: Side View with Component CG Locations

imber tech – Matthew Hanus 55A

A GJD

F I E

C B

H

Figure 19B: Center Of Gravity Location1: Fuel Burn – depart airport2: Slurry Drop

3: Fuel Burn – return to airport

Imber tech – Matthew Hanus 56A

CG Locations• Most aft X CG: 86.36 ft (1,037 in.)

• Most forward X CG: 85.42 ft (1,025 in.)

• Total X CG shift: 0.94 ft (11 in.)

• Max Z CG location: 21.68 ft (260 in.)

imber tech – Matthew Hanus 57A

Stability andControl

David Wilson

58A

• Horizontal Tail• Airfoil: NACA 0009• Area: 2200 • Sweep: 30 deg• AR: 5.5• Span: 110 ft• Taper Ratio: 0.18• % Elevator: 30%

• Vertical Tail• Airfoil: NACA 0009• Area: 1275 • Sweep: 30 deg• AR: 4• Height: 35.7 ft• Taper Ratio: 0.9• % Elevator: 38%

Dimensions

imber tech – David Wilson 59A

Static Margin• Full: 0.102

• Post Slurry: 0.114

• Empty Fuel: 0.107

• Empty: 0.128

imber tech – David Wilson 60A

Trim Conditions

Table 19A: Trim Conditions

Condition Cruise to drop Ferry cruise Take offDrop (Deg)

Alpha -4.77 -3.06 5.18 3.19Ih -3.55 -3.85 -5.32 -5.87

imber tech – David Wilson 61A

• 2G Maneuver• Cl used for drop: 1.4• Velocity: 150 kts• Cmcl from average SM

• Deflection required: 9.3 degrees• Pitch rate: 7.27 deg/sec

Elevator Sizing

imber tech – David Wilson 62A

• Take off• X-distance to Rear Gear: 14 ft• Weight: 552,277 lb• Moment required: 7,731,878 ft·lb• Size chose: 30% chord

• Total moment:-249,598 ft·lb

Elevator Sizing

imber tech – David Wilson 63A

• Take-off• Trim: -5.32 deg• Elevator deflection:

-5 deg• AOA: -6.82 deg

• 2G Maneuver• Trim: -5.87 deg• Elevator deflection:

-9.322 deg• AOA: -8.66 deg

Elevator Sizing

imber tech – David Wilson 64A

Minimum Controllable Airspeed

• Vmc must be less than 135.6 kts

• Area: 1275 • Average chord: 35.7 ft • % rudder: 38%• Critical Engine: 44 ft• Force per engine: 88,000 lb

• Vmc calculated: 134.2 kts

imber tech – David Wilson 65A

Cnβ

imber tech – David Wilson

Figure 20B: Cnβ vs Vertical Area66A

0 500 1000 1500 2000 2500 3000

-0.006

-0.004

-0.002

0

0.002

0.004

0.006

0.008

0.01

Cn BVertical Tail Size𝐶𝑛β

Vertical Tail Size (ft2)

Clβ

imber tech – David Wilson

Table 20A: Clβ

Parameter Value

Dihedral 0

Wing sweep -0.000624

Wing position -0.00016

Vertical Tail -0.00121

Total (1/deg) -0.002

67A

Summary• Aircraft becomes more stable during drop

• Elevators provide control

• Vmc requirement met

• Stability derivatives are stable

imber tech – David Wilson 68A

Drag Results

Inigo Ripodas

69A

Wetted Area• Used Brandt’s Method for Drag Build-

Up calculations

• Specifies approximations for each type of surface

• Considers these areas and subtracts the areas of intersection

imber tech – Inigo Ripodas 70A

Wetted AreaCircular Surfaces

S (ft2)Nose Cone 1437Nose Cone Sphere 14Fuselage 8006Tail Cone 3254Engine 532 (x4)Total 14839

Table 21A: Wetted Area of Circular Surfaces

imber tech – Inigo Ripodas 71A

Wetted Area• Estimated Wetted Area = 37,643 ft2

• CATIA Estimated Area = 39,525 ft2

imber tech – Inigo Ripodas 72A

Drag Build-Up

Figure 21A: Total Drag

imber tech – Inigo Ripodas 73A

TA-TR Plots

Figure 22A: Thrust Available and Thrust Required at Sea-Level

imber tech – Inigo Ripodas 74A

TA-TR Plots

Figure 22A: Thrust Available and Thrust Required at 10,000 ft

imber tech – Inigo Ripodas 75A

TA-TR Plots

Figure 22A: Thrust Available and Thrust Required at 20,000 ft

imber tech – Inigo Ripodas 76A

TA-TR Plots

Figure 22A: Thrust Available and Thrust Required at 30,000 ft

imber tech – Inigo Ripodas 77A

TA-TR Plots

Figure 22A: Thrust Available and Thrust Required at 40,000 ft

imber tech – Inigo Ripodas 78A

Overview

Kyle Klouda

79A

• Similar Engines• Engine Cycle and Design Point• Mission Analysis• Engine Configuration and Layout• Inlet and Diffuser Design and Installation Loss• Nozzle Design and Installation Loss

Overview

80Aṁ - Kyle Klouda

Similar Engines and Projected Engine

Values

Troy Killgore81A

Similar Engines – GE90-85B

Low TSFC ~ 0.553 (lbm/lbf*hr)Low Emissions/ Noise High Turbine Inlet Temperature ~ 3325o RHigh Weight ~ 17250 lb.

82Aṁ - Troy Kilgore

Similar Engines - Trent 800

Small frameLightweight3-Spool DesignTSFC ~ 0.557 (lbm/lbf*hr)Sound-deadening material in inlet area

83Aṁ - Troy Kilgore

Similar Engines – PW4084

Highly complex compressor system High TSFC ~ .63 (lbm/lbf*hr)

84Aṁ - Troy Kilgore

Engine Model GE90-85B RB211-882/884 PW4084

Dry Weight (engine) (lb) 17250 13100 14920

Thrust(sea-level) (lb) 87400 84950 87900

TSFC(sea-level) (lbm/hr*lbf) 0.294 N.A 0.329

TSFC(cruise) (lbm/hr*lbf) 0.5526 0.557 N.A.

Cruise Altitude (feet) 35000 35000 35000

Cruise Speed (Mach) 0.8 0.83 0.83

Bypass Ratio 8.4 6.1 6.41

Overall Pressure Ratio 39.3 39 34.4

Spool No. 2 3 2

Fan Stages 1 1 1

LPC Stages 3 8 6

HPC Stages 9 6 11

LPT Stages 6 5 7

HPT Stages 2 1 2

airflow (lbm/s) 3037 2640 2550

Length (inches) 204 172 191.7

Case Diameter (inches) 134 132 118.5

Fan Diameter (inches) 123 110 112

Researched ValuesTable 22A: Researched Values

85Aṁ - Troy Kilgore

Engine Cycle

Troy Killgore

86A

Engine Design Point

Flight parameters Value ChosenMach 0.232

Altitude (ft) 10,000

Table 23A: Engine Design Points

87Aṁ - Troy Kilgore

Engine Cycle

Design Choices Value ChosenCompressor Pressure Ratio, πc 37

Low Pressure Ratio, πLPC 3.5Fan Pressure Ratio, πf 1.8

Bypass Ratio, α 7.5Turbine Temperature, Tt4 (°R) 3200

Bleed Air (lbm/s) 5.9

Table 24A: Engine Cycle Choices

88Aṁ - Troy Kilgore

Mission Fuel BurnMission Legs

(Sortie 1 data provided)Altitude

(kft)Mach Thrust Req’d

(lbf)Fuel Burn

(lbf)

Takeoff 7 0.232 238,730 797

Climb 10 0.48 223,067 1,238

Climb & Accel 10-38 0.48-0.75 119,927 9,052

Cruise 38 0.75 31,458 13,869

Descend & Drop Slurry 10 0.232 143,117 171

Climb & Accel 10-38 0.232-0.75 118,172 6,148

Cruise/Descend/Land 38-7 0.75-0 29,993 15,637

Total (Sortie 1) - - - 46,911

Total (Sortie 2) - - - 44,418

Total (Sortie 3) - - - 44,350

Total Fuel Burn - - - 135,679

Table 25A: Mission Fuel Burn

89Aṁ - Troy Kilgore

Ferry Fuel BurnMission Legs Altitude (kft) Mach Thrust Req’d

(lbf)Fuel Burned

(lbf)

Takeoff 7 0.232 238,730 797

Climb 7-10 0.232-0.48 240,371 1,238

Climb & Accel 10-38 0.48-0.75 119,927 9,052

Cruise 38 0.75 31,458 123,529

Descend/Land 38-7 0.75-0 31,423 1,874

Ferry Total - - - 136,490

Table 26A: Ferry Fuel Burn

90Aṁ - Troy Kilgore

Engine Configuration

Cameron Schmitt

91A

Engine ConfigurationComponent Length, in Diameter, in

Overall 348.02 169.51Inlet 55 124Fan 61.76 136LPC 19.55 68.7HPC 47.32 31.88Combustor 27.45 35.98HPT 10.15 35.16LPT 31.14 76.52Nozzle (from Max Diameter) 239.68 169.51

92A

Table 27A: Engine Configuration

ṁ - Cameron Schmitt

Inlet

Cameron Schmitt

93A

• Inlet Design• Initial Sizing• Blow-in Doors• Pressure Calculations• Resizing• Cowling Design

Inlet Overview

94Aṁ - Cameron Schmitt

• Conventional Pitot inlet • High mass flow requirements• Minimize additive drag

• Reduce free stream area mismatch

Inlet Design

95Aṁ - Cameron Schmitt

Table 28A: Install Losses

Initial SizingA1 = 10033 in2

Condition M0 M1 Alt (ft) Φ(%)2-G Drop 0.232 0.8 10000 17.67T/O 0.232 0.737 7000 16.85Climb 10kft 0.232 0.8 10000 17.67

Climb 17kft 0.612 0.833 17000 1.94Climb 24kft 0.658 0.826 24000 1.04Climb 31kft 0.704 0.815 31000 0.46Cruse 38kft 0.75 0.795 38000 0.02Climb Out 0.66 0.84 19000 1.18

D1 =113in (9.4ft)

96Aṁ - Cameron Schmitt

Blow-in doorsDrastically reduced Additive Drag at Design Point

Design Point

A1 (in2) A0 (in2) M1 Dadd (lbf) Φ (%)

Without Doors

10033 22198.99 0.8 10584.63 17.46With Doors 16600 22198.99 0.364 1725.142 2.89

Auxiliary area = 6567 in2

Table 29A: Blow-in doors

97Aṁ - Cameron Schmitt

Pressure Calculations• Exterior pressures

• Cp at 15% Chord

• Interior Pressures• Mach at Fan Face =0.55

98Aṁ - Cameron Schmitt

Redesign• Increase A1

• Reduce Aux Area• Smaller Blow-In Doors

• Six 754in2 Doors• 20 in long • 37.7 in wide

99Aṁ - Cameron Schmitt

Figure 24A: Final Inlet Design

100Aṁ - Cameron Schmitt

Cowling Design

• Utilize Natural Laminar Flow• Minimize drag • NASA HSNLF-213

• 17.5ft Chord length

101Aṁ - Cameron Schmitt

Nozzle Design and Installation

Loss

102A

Main ComponentsLayout• Chevron nozzles• Core Plug• Thrust reversing

Installation Loss• 2 Types of losses due to difference

in fan and core diameter

103Aṁ - Cameron Schmitt

Chevrons• Distribute airflow into shear layer• Reduces noise 1-2dB• NBAA states any noise reduction

on an engine which can be possible is required

104A

Noise Reduction Optimization

• IC1: 14 internal chevrons • IC2: 18 internal chevrons

• M1C: 14-lobed mixer • M3: 18-lobed mixer

Internal Nozzles

Figure 25A: Internal Nozzles(http://www.lufthansagroup.com)

105A

Noise Reduction Optimization

Figure 26A: Noise Optimization(http://www.lufthansagroup.com) 106A

Core Plug

• “Prop-wash” creates pressure drag on nozzle and turbulent flow resulting in noise

• Directs flow into more streamline formation

• Noise-reduction cone reduces noise 2-3dB

107A

Thrust Reverser

• Redirects fan mass flow• Angled at 45 degrees• Produces about 44% the thrust

of the fan in opposite direction

108A

Engine Layout• Maximum dia: 169.51 inches

(14.12 feet ) • From max diameter to end of

core plug: 239.68 inches (19.97 feet)

109A

Installation Loss

• Two different installation losses because of different diameters and forces of the fan and core

• is the pressure drag on the external section of the nozzle

• F is the uninstalled thrust of the engine

φ𝑛𝑜𝑧𝑧𝑙𝑒=𝐷𝑛𝑜𝑧𝑧𝑙𝑒

𝐹

110A

Compression Section Design

Courtney Hough111A

Design Parameters

Initial Design ParametersFan Booster High Pressure

Mass Flow (lbm/s) 3395.80 399.32 399.32Total Pressure (psia) 14.40 25.91 50.34Total Temperature (R) 490.01 591.64 732.27Angular Velocity (rad/s) 282.35 282.35 1054Number of Stages* 1 3 10

*From similar engines

Table 30A: Initial Design Parameters

112Aṁ - Courtney Hough

Fan Design

Fan Design Inputs and GoalsStages 1Pressure (psia) 14.40Temperature Rise (R) 101.63Tip Radius (in) 68Angular Velocity (rad/s) 282.35Inlet Mach 0.55Mass Flow (lbm/s) 3395.80Design Pressure Ratio 1.8

Table 31A: Fan Design Inputs and Goals

• Constant Tip Design• Tip Speed Limit (1600 ft/s)• Titanium

113Aṁ - Courtney Hough

Fan DesignFan OutputNumber of Blades 23Overall Diameter (in) 136Tip Speed (ft/s) 1598Hub-to-Tip Ratio 0.39Exit Mach 0.58Exit Angle (deg) 3.43Actual Pressure Ratio 1.81Stage Loading 0.49Diffusion Factor 0.46

Table 32A: Fan Output

Figure 27A: Catia Fan Model

114Aṁ - Courtney Hough

Booster Compressor

• Constant Mean Design• Tip Speed Limit (1400 ft/s)• Inlet guide vanes • Titanium

115Aṁ - Courtney Hough

Booster CompressorTable 33A: Booster Compressor Output

Booster Output

Overall Diameter (in) 68.70

Tip Speed (ft/s) 807.23

Mean Radii (in) 32

Hub-to-Tip Ratio 0.86

Exit Mach 0.40

Exit Angle (deg) 0

Actual Pressure Ratio 1.96

Stage Loading 0.49

Diffusion Factor 0.59

Figure 28A: Catia Booster Model

116Aṁ - Courtney Hough

High-Pressure Compressor

• Constant Tip Design• Tip Speed Limit (1400 ft/s)• Inlet guide vanes • Similar Engines• GE90 • 10 stages

• Titanium & Nickel

117Aṁ - Courtney Hough

High-Pressure CompressorTable 34A: HPC Output

Booster Output

Overall Diameter (in) 31.88

Tip Speed (ft/s) 1400

Hub-to-Tip Ratio 0.39

Exit Mach 0.35

Exit Angle (deg) 0

Actual Pressure Ratio 10.54

Stage Loading 0.49

Diffusion Factor 0.59

Figure 29A: HPC Catia Model

118Aṁ - Courtney Hough

Summary

Design Results

Pressure Ratio Goal Actual

Fan 1.8 1.81

Booster 1.94 1.96

High Pressure 10.57 10.54

Total 37 37

Table 35A: Design Results

119Aṁ - Courtney Hough

Turbine Section Design

Kevin Walker120A

High-Pressure Turbine

HP Turbine Design ParametersValue

Mass Flow (lbm/s) 383.31Inlet Total Pressure (psia) 497.5Inlet Total Temperature (R) 3098Angular Velocity (rad/s) 1054Number of Stages 2

Table 36A: Design Parameters

121Aṁ - Kevin Walker

High-Pressure Turbine

HP Turbine Design InputsMean Radius (in) 15.25Inlet Mach 0.35Inlet Flow Angle (deg) 0Temperature Drop Across Turbine (R)

691

Table 37A: HP Turbine Design Inputs

Design Point (Sea Level)

Mach 0

Altitude (ft) 0

Temperature (R) 490

Table 38A: Design Point

• Blade cooling scheme required

• Constant mean design

122Aṁ - Kevin Walker

High-Pressure TurbineHP Turbine Output

Stage 1 Stage 2Number of Rotor Blades 112 62Number of Stator Blades 48 52Number of Exit Guide Vanes

- 54

Stage Loading Coefficient 1.43 1.43Flow Coefficient 1.08 1.05Velocity Ratio 0.59 0.59

Table 39A: HP Turbine Output

123Aṁ - Kevin Walker

Low-Pressure Turbine

HP Turbine Design ParametersValue

Mass Flow (lbm/s) 403.28Inlet Total Pressure (psia) 145.8Inlet Total Temperature (R) 2350Angular Velocity (rad/s) 282.35Number of Stages 5

Table 40A: Design Parameters

124Aṁ - Kevin Walker

Low-Pressure Turbine

LP Turbine Design InputsMean Radius (in) 32Inlet Mach 0.5Inlet Flow Angle (deg) 0Temperature Drop Across Turbine (R)

835

Table 41A: LP Turbine Design Inputs

• Constant mean design

125Aṁ - Kevin Walker

Low-Pressure TurbineLP Turbine Output

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5Number of Rotor Blades

288 248 218 142 84

Number of Stator Blades

266 178 186 144 110

Number of Exit Guide Vanes

- - - - 30

Stage Loading Coefficient

2.19 2.19 2.19 2.18 1.19

Flow Coefficient 1.09 1.09 1.08 1.06 1.04Velocity Ratio 0.48 0.48 0.48 0.48 0.48

Table 42A: LP Turbine Output

126Aṁ - Kevin Walker

Combustor Design

Jase Heinzeroth127A

Combustor Type

• Annular• Inter-Turbine Burner Considered• Other combustor platforms researched, but little information

found

• Combustor designed to meet geometry of compressor exit and turbine entrance with no loss of airflow or pressure

128Aṁ - Jase Heinzeroth

Design Point

• Design Point: Max Dynamic Pressure at sea-level• Chose Mach 1 (1126 ft/s)

• Ran engine test to acquire temperature and pressure values

129Aṁ - Jase Heinzeroth

Combustor

Table 43A: Station DataHigh-Pressure Comp. Exit High-Pressure Turbine Entrance

Total Pressure, psia 554 521

Total Temperature, °R

1630 3200

Mass Flow, lbm/s 368 378

Mach Number 0.35 0.35

130Aṁ - Jase Heinzeroth

Pressure Loss

• Assumed 1 percent pressure loss over diffuser section

• Area Ratio of diffuser optimized to 1 percent loss• Actual loss: 3.5 psi

131A

Diffuser

Combustor Inlet

# of sub-divided 9° streams 3

Mach Number 0.07Swirl Angle, deg 0

Total Diffuser Length, in 6.838Overall Area Ratio 4.71

Area Ratio Flat-Wall 2.8Area Ratio Dump 1.68

Table 44A: Diffuser Data

132Aṁ - Jase Heinzeroth

Emission Output

Figure 30A: Emissions Range

133Aṁ - Jase Heinzeroth

Air Partitioning

Summary Percentage of Total Mass Flow, lbm/s

Primary Air Flow 66.61 245.077Cooling Air Flow 4.57 16.820Secondary Air Flow 28.55 105.033Dilution Air Flow 0.27 1.0196Total air flow 100 367.95

Table 45A: Air Flows

134Aṁ - Jase Heinzeroth

Primary Zone

Primary Zone Design

Annulus Area, in2 75.116Liner Height, in 4.123Annulus Mach No. 0.114Number of Fuel Nozzles 17Primary Zone Length, in 3.94

Table 46A: Primary Zone

135Aṁ - Jase Heinzeroth

Secondary Zone

Secondary Zone

CD90° 0.64Number of Dilution Holes 457Diameter of Dilution Holes, in 0.465Length of Secondary Zone, in 8.246

Table 47A: Secondary Zone

136Aṁ - Jase Heinzeroth

Dilution Zone

Dilution Zone

CD90° 0.64Number of Dilution Holes 1Diameter of Dilution Holes 0.626Length of Dilution Zone 6.185

Table 48A: Dilution Zone

137Aṁ - Jase Heinzeroth

Labor Hour and Cost Estimation

Kyle Klouda

138A

8/30/2

013

9/6/2

013

9/13/2

013

9/20/2

013

9/27/2

013

10/4/2

013

10/11/2

013

10/18/2

013

10/25/2

013

11/1/2

013

11/8/2

013

11/15/2

013

11/22/2

013

11/29/2

013

12/6/2

0130

500

1000

1500

2000

2500

Table: Labor Accounting Chart

Actual HoursProjected Hours

Date (MM/DD/YYYY)

Hou

rs W

orke

d

139A

Figure 31A: Labor Accounting Chart

ṁ - Kyle Klouda

Labor Hours and Costs

Category Hours Costs

Engineering Management 261 $26,100

Engineering 778.33 $50,591 Technical 39 $1,560 Administrative 210.3 $4,206 Sub-total 1,289 $82,457

Professional Development 875.16 $43,758

Total 2,164 $126,215

Table 49A: Hours and Costs

140Aṁ - Kyle Klouda

12%

36%

2%

40%

10%

Engineering Man-agementEngineeringTechnicalProfessional Devel-opmentAdministrative

Figure 32A: Breakdown of Hours141Aṁ - Kyle Klouda

21%

40%

1%

3%

35% Engineering Man-

agementEngineeringTechnicalAdministrativeProfessional Devel-opment

Figure 33A: Labor Hour Costs142Aṁ - Kyle Klouda

Conclusions• Length: 29 ft• Diameter: 14 ft• Installed Thrust: 87,483 lbf• Overall Compression Ratio: 37• Max TSFC: 0.854 lbm/lbf*hr• Fan and Core Nozzle Installation Loss of

Totals to 4.99%

143Aṁ - Kyle Klouda

Performance Verification

Kevin Warren

144A

V-n Diagram

Figure 34A: V-n Diagram

imber tech – Kevin Warren

V (KTAS)

nz (g

’s)

145A

Thrust @ 38k ft.

146Aimber tech – Kevin Warren

Figure 35A: Thrust Available Vs. Thrust Required 38k ft

Stall Characteristics• Critical phase of flight

• 2g “pull-up” maneuver simulates fire weather

• Lift = Weight

• CL required is 2.66 with 2.69 available from wing design

147Aimber tech – Kevin Warren

Takeoff Performance

Figure 36A: Max Thrust Takeoff with 4 engines

imber tech – Kevin Warren 148A

Climb Performance

Parameter Value

Best Climb Angle 16.82 (Degrees)

Best Climb Velocity 628 (KTAS)

Table 50A: Climb Performance

imber tech – Kevin Warren 149A

Range Performance• Based on Breguet’s range equation

• 4313 nm Range

150Aimber tech – Kevin Warren

Landing Performance

Phase of Landing Distance (ft)

Obstacle Clearance (SA) 954

Free Roll (SFR) 638

Braking Roll (SB) 3405

Total Landing Distance 4997

Table 52A: Landing Distances

imber tech – Kevin Warren 151A

Cost Estimations& Labor Accounting

Kevin Warren

152A

Cost Estimation

153Aimber tech – Kevin Warren

Cost Type Per Aircraft Total (20 Aircraft)

RDT&E $587 Million $11.7 Billion

Manufacturing Cost

$2.2 Billion $44 Billion

Cost to Customer $2.8 Billion $56 Billion

Operating Cost $430 Million $8.6 Billion

Life Cycle Cost $3.3 Billion $65 Billion

Table 53A: Cost Estimation

Figure 37A: Labor Hours

imber tech – Kevin Warren 154A

Labor Percentage by Type

Figure 38A: Labor Hour Accounting Hours

imber tech – Kevin Warren 155A

Labor Percentage by Cost

Figure 39A: Labor Hour Accounting Cost

imber tech – Kevin Warren 156A

Conclusions &Recommendations

157A

• Structure: • Aft door system may compromise support of tail• Landing-gear doors are too large• Internal structure requires further analysis

• S&C:• Tail structure based on S&C and may require modification

to work with structure• Engine placement needs to be analyzed for interference

• Aircraft performance characteristics require wind tunnel testing to verify calculated data

Conclusions

158Aimber tech – Kevin Warren

Open for Questions

159A