A multiscale approach to the analysis of anisotropic plasma turbulence · 2014-08-20 · 2. Time...

Preview:

Citation preview

A multiscale approach to the analysis of anisotropic plasma turbulence

(Or studying turbulence wearing wavelet spectacles)

Khurom Kiyani

the aim

to compute theoretically relevant statistical quantities from a turbulent

(stochastic) time-series

background guide field

0 1 2 3 4 5 6 7 8 9 10

0.5

0

0.5

1

1.5

2

2.5

background guide field

0 1 2 3 4 5 6 7 8 9 10

0.5

0

0.5

1

1.5

2

2.5

background guide field

background guide field

!! !"#! !" !$#! !$ !%#! !% !&#!!%

!&#!

!&

!'#!

'

'#!

&

&#!

%

%#!

$

()*&'+,-./-01234567

()*&'8)9-,340:%56!&7

3

3

question 1

!! !"#! !" !$#! !$ !%#! !% !&#!!%

!&#!

!&

!'#!

'

'#!

&

&#!

%

%#!

$

()*&'+,-./-01234567

()*&'8)9-,340:%56!&7

3

3

Can we some how define a background field which takes all intermediate scales

into account, self-consistently?

question 1

!! !"#! !" !$#! !$ !%#! !% !&#!!%

!&#!

!&

!'#!

'

'#!

&

&#!

%

%#!

$

()*&'+,-./-01234567

()*&'8)9-,340:%56!&7

3

3

Can we some how define a background field which takes all intermediate scales

into account, self-consistently?

extreme time locality (Haar filter)

! " # $ % & ' ( ) * "!

+,"!&

!'!!

!%!!

!#!!

!

#!!

%!!

'!!

)!!

-./0

12-3 τ

incrementsy(t, τ) = x(t + τ)− x(t)

0.5 1 1.5 2 2.50.8

0.6

0.4

0.2

0

0.2

0.4

0.6

0.8

extreme time locality (Haar filter)

! " # $ % & ' ( ) * "!

+,"!&

!'

!%

!#

!

#

%

'

-./0

+1-2!3

! " # $ % & ' ( ) * "!

+,"!&

!'!!

!%!!

!#!!

!

#!!

%!!

'!!

)!!

-./0

12-3 τ

incrementsy(t, τ) = x(t + τ)− x(t)

0.5 1 1.5 2 2.50.8

0.6

0.4

0.2

0

0.2

0.4

0.6

0.8

question 2

Can we obtain the best of both worlds and live ‘well’ in the time and frequency

domains?

time (space)domain

Fourierdomain

much theory; normally coarse-grained picture

better reference to detailed physics and

structure

question 2

Can we obtain the best of both worlds and live ‘well’ in the time and frequency

domains?

timedomain

Fourierdomain

outline

•Discrete wavelets as band-pass digital filters

•Picking and designing an appropriate wavelet/transform

•Some results on separating anisotropic signatures in plasma turbulence in the solar wind

adaptive local scale-dependent fluctuations and background guide field

background field fluctuations

smallscales

largescales

fluctuationsbackground field

frequency

spec

tral

pow

erlocal scale-dependent fluctuations and background field using low/high pass filters

f1b1

frequency

spec

tral

pow

er

b2 f2

local scale-dependent fluctuations and background field using low/high pass filters

f1b1

b3 f3

filter bank implementation

using quadrature mirror filters

fluctuationsbackground field

discrete wavelet transform (dwt)

1 2 3 4 5 6 7 80.2

0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 10 20 30 40 50 60 70 80 90 10014

12

10

8

6

4

2

0

2

4

discrete wavelet transform (dwt)

1 2 3 4 5 6 7 80.2

0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 10 20 30 40 50 60 70 80 90 10014

12

10

8

6

4

2

0

2

4

DWT steps:Leave filter as it isDecimate signal by 2

0 5 10 15 20 25 30 35 40 45 5012

10

8

6

4

2

0

2

4

let’s see it working

2 1 0 1 2

8

6

4

2

0

2

log 10

PSD

((si

gnal

uni

ts)2 H

z1 )

log10 Frequency (Hz)

let’s see it working

2 1 0 1 215

10

5

0

log 10

PSD

((si

gnal

uni

ts)2 H

z1 )

log10 Frequency (Hz)

let’s see it working

2 1 0 1 2

15

10

5

0

log 10

PSD

((si

gnal

uni

ts)2 H

z1 )

log10 Frequency (Hz)

let’s see it working

2 1 0 1 2

15

10

5

0

log 10

PSD

((si

gnal

uni

ts)2 H

z1 )

log10 Frequency (Hz)

importance of zero moments

4 2 0 2 410

5

0

5lo

g 10 P

SD (s

igna

l uni

ts)2 H

z1

log10 frequency (Hz)

nr of levels = 21 wavelet is haar

importance of zero moments

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5x 10 3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 500 1000 1500 2000 2500 3000 3500 4000 45001.5

1

0.5

0

0.5

1

1.5

importance of zero moments

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5x 10 3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

n > (β − 1)/2

PSD(f) ∼ f−β

�xnψ(x)dx = 0

importance of zero moments

4 2 0 2 410

5

0

5lo

g 10 P

SD (s

igna

l uni

ts)2 H

z1

log10 frequency (Hz)

nr of levels = 19 wavelet is db2

importance of zero moments

0 0.5 1 1.5 2 2.5 3 3.5x 10 3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2000 4000 6000 8000 10000 12000 140001.5

1

0.5

0

0.5

1

1.5

2

importance of zero moments

3 2 1 0 1 2 310

5

0

5lo

g 10 P

SD (s

igna

l uni

ts)2 H

z1

log10 frequency (Hz)

nr of levels = 18 wavelet is db4

importance of zero moments

db4 response

0 0.5 1 1.5 2x 10 3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.5 1 1.5 2 2.5 3x 104

1

0.5

0

0.5

1

1.5

importance of zero moments

2 0 2 4 6 8 10 12 14 16x 10 4

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12 14 16x 104

0.8

0.6

0.4

0.2

0

0.2

0.4

0.6

0.8

choice of wavelet transform & filters

1. Self-consistent high/low pass filters [Quadrature Mirror Filters], full reconstruction -- can’t use continuous wavelets.

2. Time event preservation -- can’t use normal discrete wavelets.

3. Zero or linear phase (symmetric filters) -- for exact time localisation of events.

4. Sharp Fourier frequency resolution for studying spectra -- need higher order wavelets.

5. Time domain implementation with compact digital filters to minimise edge effects, increase time locality and reduce computational expense -- wavelet order can’t be too high; again can’t use continuous wavelets.

choice of wavelet transform & filters

Solution: Undecimated discrete wavelet transform

undecimated discrete wavelet transform (udwt)

1 2 3 4 5 6 7 80.2

0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 10 20 30 40 50 60 70 80 90 10014

12

10

8

6

4

2

0

2

4

undecimated discrete wavelet transform (udwt)

1 2 3 4 5 6 7 80.2

0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 10 20 30 40 50 60 70 80 90 10014

12

10

8

6

4

2

0

2

4

UDWT steps:Leave signal as it isUpsample filter by 2

0 2 4 6 8 10 12 14 160.2

0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

choice of wavelet transform & filters

Solution: Undecimated discrete wavelet transform

[Coiflet-2 wavelet and scaling (digital) time-domain filters ]

scaling (low-pass)

filterwavelet

(high-pass) filter

choice of wavelet transform & filters

Solution: Undecimated discrete wavelet transform

[Coiflet-2 wavelet and scaling (digital) time-domain filters ]

scaling function

wavelet function

choice of wavelet transform & filters

Solution: Undecimated discrete wavelet transform

[Coiflet-2 wavelet and scaling (digital) time-domain filters ]

choice of wavelet transform & filters

Solution: Undecimated discrete wavelet transform

[Coiflet-2 wavelet and scaling (digital) time-domain filters ]

choice of wavelet transform & filters

Solution: Undecimated discrete wavelet transform

0 0.2 0.4 0.6 0.8 10.1

0.05

0

0.05

0.1residuals

0 0.2 0.4 0.6 0.8 1

10

5

0Coif2 Phase Response

Normalized Frequency (× rad/sample)

Phas

e (ra

dian

s)

qmf(Lo D,0) [Walden] linear

choice of wavelet transform & filters

Solution: Undecimated discrete wavelet transform

Rice wavelet toolbox for Matlab (C mex files)

https://github.com/ricedsp/rwthttp://dsp.rice.edu/software/rice-wavelet-toolbox

PyWavelets (Cython)

http://www.pybytes.com/pywavelets/

Anisotropic plasma turbulence applications

fluctuationsbackground field

frequency

spec

tral

pow

erlocal scale-dependent fluctuations and background field using low/high pass filters

f1b1

frequency

spec

tral

pow

er

b2 f2

local scale-dependent fluctuations and background field using low/high pass filters

f1b1

b3 f3

filter bank implementation

using quadrature mirror filters

fluctuationsbackground field

adaptive local scale-dependent fluctuations and background guide field

background field fluctuations

smallscales

largescales

power spectral density

!8

!6

!4

!2

0

2

log10

PSD

[nT2 H

z!1 ]

!2 !1 0 1

!1.2!1

!0.8!0.6!0.4

log10 spacecraft frame frequency [Hz]

log10

PSD

||/PSD

!

paralleltransversesearch coil noise

isotropy

kρe � 1

kρi � 1

Kiyani et al. ApJ (2013)

!8

!6

!4

!2

0

2

log10

PSD

[nT2 H

z!1 ]

!2 !1 0 1

!1.2!1

!0.8!0.6!0.4

log10 spacecraft frame frequency [Hz]

log10

PSD

||/PSD

!

paralleltransversesearch coil noise

isotropy

Cluster FGM and STAFF search-coil

angles of measurement w.r.t. B

-VSW

VA

VSW< 1MHD else

VSW< 1

k =2πfsc

VSW

Taylor frozen-in approx, for low-frequency

phenomena

Anisotropy (angle between B and V)

20 30 40 50 60 70 80 90 100 110 1200

1

2

3

4

5

6

7

8

9x 10

4

B.V angle (degrees)

His

tog

ram

cou

nt

DR

IR

k Perpk oblique k oblique

higher order scaling

! " #!$

!

$

%!

%$

"!

"$

&'()*)+,-+./0+/.),1/20+342-

*45%!6!,7-)0-89

*45%!6:;9 +.'2-().-)

<'.'**)*

! " #!

!="

!=#

!=>

!=?

%

%="

%=#@2).+3'*,.'25),-0'*325,)A<42)2+-

B4;)2+,;

"6;9

,

,

<'.'**)*

+.'2-().-)

!" ! "!$

!

$

%!

%$

"!

"$

C!&'()*)+,-+./0+/.),1/20+342-

*45%!6!,7-)0-89

*45%!6:;9

DE:D,-+/11

+.'2-().-)

<'.'**)*

,

,

! " #!

%

"

C

#

$F3--3<'+342,.'25),-0'*325,)A<42)2+-

B4;)2+,;

"6;9

,

,

<'.'**)*GH!=?I

+.'2-().-)GH!=J>

(a i.)

(a ii.)

(b i.)

(b ii.)note: Inertial range data is from ACE

Also see:K. H. Kiyani et al. Phys. Rev. Lett.

103, 075006 (2009)

Sm�(⊥)(τ) =

1N

N�

j=1

����δB�(⊥)(tj , τ)

√τ

����m

Structure Functions

standardised probability densities

!20 0 20!7

!6

!5

!4

!3

!2

!1

0

! Bs [nT/"]log

10 P

s(! Bs )["

nT!

1 ] DissipationRange

paralleltransverse

!20 !10 0 10 20!6

!5

!4

!3

!2

!1

0

1

! Bs [nT/"]

log10

Ps(!

Bs )[" n

T!1 ]

InertialRangeparallel

transverse

!20 !10 0 10 20!7!6!5!4!3!2!1

01

! Bs [nT/"]

log10

Ps(!

Bs )[" n

T!1 ] Parallel

Fluctuationsdissipation

rangeinertialrange

!20 !10 0 10 20!7!6!5!4!3!2!1

01

! Bs [nT/"]

log10

Ps(!

Bs )[" n

T!1 ] dissipation

rangeinertialrange

TransverseFluctuations

isotropyKiyani et al.ApJ (2013)

magnetic compressibility

10 2 10 1 100 10110 2

10 1

100

Normalised wavenumber k i

Mag

netic

Com

pres

sibi

lity

C||

local field 55º-65ºlocal field 65º-75ºlocal field 75º-85ºlocal field 85º-95ºglobal field

isotropy

C�(f) =1

N

N�

j=1

δB2�(tj , f)

δB2�(tj , f) + δB2

⊥(tj , f)

Kiyani et al.ApJ (2013)

take home message

•Wavelets are excellent tools for studying turbulence and anisotropy

•They are especially useful for both simultaneous event localisation as well as frequency localisation

•Tried extending this to m-band wavelet packets to get better frequency resolution; but generally this is not possible. Recent work on over/undersampling is more promising.

guides and literature

Ten Lectures on WaveletsI. Daubechies

Essential Wavelets for Statistical Applications and

Data Analysis T. Ogden

A Wavelet Tour of Signal ProcessingS. Mallat

• M. Farge et al., Wavelets and Turbulence, Proc. IEEE, 84(4), 639, (1996)• A. Walden & A. Cristan, Proc. R. Soc. Lond. A, 454, 2243 (1998)• K. Kiyani et al, ApJ, (2013)

Wavelet Methods for Time Series Analaysis

D. Percival & A. Walden

Recommended