Cardiac resynchronisation: Patients selection and issues...

Preview:

Citation preview

Cardiac resynchronisation: Patients selection and issues after devise implantation

Victoria Delgado,MD,PhDLeiden University Medical Center

The Netherlands

CRT: Inclusion criteria

NYHA III-IV•

LVEF <35%

QRS >120 ms

Epstein et al. ACC/AHA/HRS 2008

30-40% non-response

NYHA II

Narrow QRS

RBBB

How to define response to CRT

Auger et al. Am Heart J 2010

Clinical (+) and Echo (+)  (n=268)

Clinical (+) and Echo (‐)  (n=102)

P‐value

Ischemic etiology 57.5% 69.6% 0.021

QRS (ms) 159 ±

31 148 ±

31 0.004

Radial LV dyssynchrony  (ms)

171 ±

105 90 ±

77 <0.001

Auger et al. Am Heart J 2010

CRT Response

LV dysysnchrony

Location and  extent of scar  tissue

Suitable cardiac  vein

Before CRT implantation

CARDIAC DYSSYNCHRONY

CARE‐HF trial. Richardson EHJ 2007 Gorcsan et al. Circ 2010

Interventricular dyssynchrony LV dyssynchrony

QRS duration and CRT response

QRS duration vs. pattern of activation

Jia et al. Heart&Rhythm 2006

Case 1NYHA III

LVEF 32%QRS 131 ms

Case 2NYHA III

LVEF 33%QRS 173 ms

Pitzalis et al. JACC 2002

Bax et al. JACC 2004 

Yu et al. Circ 2004Achilli et al. PACE 2006 

Suffoleto et a. Circ 2006 

Ajmone Marsan H&R 2008

CARDIAC DYSSYNCHRONY ASSESSMENT WITH ECHOCARDIOGRAPHY

INTERVENTRICULAR DYSSYNCHRONY

RV Pre‐ejection time: 143 ms LV Pre‐ejection time: 196 ms

Interventricular mechanical delay > 40 msCleland et al. New Engl J Med 2005

LV MECHANICAL DYSSYNCHRONY ASSESSMENTM-mode:

Septal to Posterior wall delay ≥130 ms

CRT-response: ↓LVESV ≥15%

Ischemic HF?

↑Variability

?

Pitzalis et al. JACC 2002; Díaz‐Infante et al. AJC 2007

≥130 ms

LV MECHANICAL DYSSYNCHRONY ASSESSMENT

Tissue Doppler Imaging•

Evaluates the motion of the myocardial tissue

Myocardial velocity: fundamental parameter

Methodology:

Pulsed-wave TDI Color-coded TDI

S’

E’A’

S’

E’

A’

Inter and intraventricular dyssynchrony with pulsed wave TDI

Penicka et al. Circulation 2004

LV MECHANICAL DYSSYNCHRONY ASSESSMENT

LV dyssynchrony (opposing walls) > 65 ms

Bax  et al. J Am Coll Cardiol 2004

LV MECHANICAL DYSSYNCHRONY ASSESSMENT

LV dyssynchrony (opposing walls) > 65 ms

Bax  et al. J Am Coll Cardiol 2004

Influenced by tethering and translational motion

Under/Overestimate active component of myocardial function

Active myocardial deformation

Strain

Rate•

Strain = amount of myocardial deformation

Strain Rate (SR) = rate of myocardial deformation

SR =               (s‐1)V1 – V2∆L

V1

V2

LVV1

V2∆L

(+) = Thickening / lengthening(‐)  = Thinning / shortening

Ultrasound Techniques of Strain and SR  Imaging

1‐Dimensional

2‐DimensionalTissue Velocity Imaging (TVI)                          

Speckle TrackingDoppler                     

Non‐Doppler

Perk G. et al. JASE

2007;20:234‐243

LV MECHANICAL DYSSYNCHRONY ASSESSMENT

Yu et al. Am J Cardiol 2007

Response to CRTTDI-strain

LV MECHANICAL DYSSYNCHRONY ASSESSMENT

LV MECHANICAL DYSSYNCHRONY ASSESSMENT

Suffoletto et al. Circ 2006; Delgado et al. J Am Coll Cardiol 2008

Anteroseptal-to-posterior wall delay > 130 msSens 83% Spec 80%

LV MECHANICAL DYSSYNCHRONY ASSESSMENT

3-dimensional echocardiography

LV MECHANICAL DYSSYNCHRONY ASSESSMENT

3-dimensional echocardiography

Ts-12 segments >33 ms

Van de Veire et al. Heart 2008

LV MECHANICAL DYSSYNCHRONY ASSESSMENT3-dimensional echocardiography

LV MECHANICAL DYSSYNCHRONY ASSESSMENT3-dimensional echocardiography

Time dispersion -16 segments >6.4 %

Ajmone Marsan et al. H&R 2008

LV MECHANICAL DYSSYNCHRONY ASSESSMENT3-dimensional echocardiography

vs. response to CRT

N = 166

Global  χ2

square

Clinical  variables

Clinical  variables

+1 modality

Clinical  variables

+2 modalities

P < 0.001

P < 0.001

Auger et al. Am J Cardiol in press

CRT Response

LV dysysnchrony

Location and  extent of scar  tissue

Suitable cardiac  vein

Before CRT implantation

MYOCARDIAL SCARMRI: scar transmurality and total scar burden assessment

Total scar burden >1.2 No response

Ypenburg et al.  AJC 2007

apical mid basal

Lv dyssynchrony + Myocardial scar  vs. 

LV reverse remodeling

Ajmone Marsan et al. Eur Heart J 2009

Lv dyssynchrony

ISCH HF patient Synchronous patient

Ajmone Marsan et al. Eur Heart J 2009

Myocardial scar

Ajmone Marsan et al. Eur Heart J 2009

LV dyssynchrony + Myocardial scar  vs. 

LV reverse remodeling

OR 95% CI P-value

LV dyssynchrony 6.3 3.1-9.9 <0.001

Scar extent 0.52 0.43-0.87 <0.001

Ajmone Marsan et al. Eur Heart J 2009

MYOCARDIAL SCAR AND ECHOCARDIOGRAPHY

2D strain Myocardial perfusion

Myocardial scar vs. prognosis

Delgado et al. Circulation 2011

N = 397 ISCH HF

LV dyssynchrony •

Latest site of activation 

Myocardial scar

Long‐term survival

t ≥130 ms

Radial LV dyssynchrony

Delgado et al. Circulation 2011

Latest activated LV areas

Delgado et al. Circulation 2011

Myocardial scar

≥16.5%

Delgado et al. Circulation 2011

LV dyssynchrony

All-cause mortality - LV Dyssynchrony

0 12 24 360

20

40

60

80

100

Log rank p<0.001

Patients at risk 397 270 173 100Follow-up (months)

Even

t-fr

ee s

urvi

val (

%)

≥130 ms

<130 ms

Delgado et al. Circulation 2011

LV lead position

All-cause mortality- LV lead position

0 12 24 360

20

40

60

80

100

Log rank p<0.001

Patients at risk 397 270 173 100Follow-up (months)

Even

t-fre

e su

rviv

al (%

)

Concordant

Discordant

Delgado et al. Circulation 2011

LV myocardial scar

All-cause mortality - Myocardial scar

0 12 24 360

20

40

60

80

100

Log rank p<0.001

Patients at risk 397 270 173 100Follow-up (months)

Even

t-fr

ee s

urvi

val (

%)

Radial strain ≥16.5%

Radial strain <16.5%

Delgado et al. Circulation 2011

Clinical variablesLV dyssynchrony

Clinical variablesLV dyssynchronyLV lead position

Clinical variablesLV dyssynchronyLV lead positionMyocardial scar

0

25

50

75

100

125

72.2

88.7105.2

p=0.004

p<0.001

p<0.001 p<0.001 p<0.001

Globa

l Chi‐squ

are

Delgado et al. Circulation 2011

Why to optimise AV and VV delay?

How to optimise?

When to optimise?

After CRT implantation

Reasons of non‐response to CRT

Mullens et al. JACC 2009

Post implant optimisation: AV‐VV delay

Why to optimise AV delay?

Maximise the benefit of CRT

Optimal AV synchrony

Best LA contribution to LV filling

Optimal duration of  isovolumic contraction phase

Maximum stroke volume

Barold et al. Europace 2008

Post implant optimisation: AV‐VV delay

Barold et al. Europace 2008

Too long AV delay

Atrial contraction too early (superimposition on early diastolic LV‐filling phase)

Shortening of LV diastolic filling time

Reduced stroke volume

Diastolic mitral regugitation

Reduced preload LV end‐diastolic pressure

Post implant optimisation: AV‐VV delay

Barold et al. Europace 2008

Too short AV delay

Premature LV contraction 

LA contraction against closed mitral valve(truncated A‐wave)

Reduced stroke volume

LV filling time lengthens  (separated E and A waves)

Reduced preload LV end‐diastolic pressure

Post implant optimisation: AV‐VV delay

How to optimise AV delay?

Optimisation of diastolic filling time:

Iterative method (“gold standard”, eg CARE‐HF)

Ritter method (DDD pacing, Europace 1994)

Simplified mitral inflow method

(Meluzin, PACE 2004)

Optimisation of markers of systolic function:

Doppler derived VTI of the LVOT

Acute dP/dT changes

Post implant optimisation: AV‐VV delay

Iterative method

A long AV delay is programmed and reduced 20 ms steps until the A‐wave  truncates.

The interval then is increased 10 ms increments and the shortest

AV  without truncation of A‐wave is selected.

Post implant optimisation: AV‐VV delay

Ritter’s method

Two extreme AV delays are programmed:•

Short AV1

= truncated A‐wave•

Long AV2

= without A‐wave attenuation

For each, the time  between the onset of 

QRS and completion of A‐ wave is calculated

AV‐optimal: AVshort

+ [(AVlong

+ QAlong

) – (AVshort

+ QAshort

)]

Post implant optimisation: AV‐VV delay

Pulsed wave Doppler LVOT VTI

The AV delay is incrementally adjusted to maximise echocardiographic  cardiac output

CSALVOTVTILVOT

Stroke volume = CSALVOT

X VTILVOT Cardiac output = SV x Heart rate

Post implant optimisation: AV‐VV delay

Pulsed wave Doppler LVOT VTI

Limitations:

Less reproducible

Difficult to place the  sample volume at the 

same position each  time.

Post implant optimisation: AV‐VV delay

Acute dP/dt changes

The peak rate of rise of LV  pressure during the isovolumic 

contraction is a sensitive index  of LV contractility.

Post implant optimisation: AV‐VV delay

Why to optimise VV interval?

Controversial

It may compensate for less than optimal LV lead position

It may correct for individual heterogeneous ventricular  activation patterns

Evidence:1

INSYNC III study demonstrated incremental  benefit by tailoring echocardiographically the VV interval.

Leon et al. J Am Coll Cardiol 2005

Post implant optimisation: AV‐VV delay

How to optimise VV delay?

Optimisation of markers of systolic function:

Doppler derived VTI of the LVOT

Evaluating Intraventricular dyssynchrony:

TDI

Post implant optimisation: AV‐VV delay

Doppler derived VTI of the LVOT

Post implant optimisation: AV‐VV delay

TDI‐

evaluation of LV dyssynchrony

Pre‐CRT Pre‐RV

Biv Pre‐LV

Post implant optimisation: AV‐VV delay

Vidal et al. Am J Cardiol 2007

N = 100 CRT patients

81% men, 70 ±

8 yrs

CRT optimisation:

AV delay: the longest LV filling time among 120, 140 and 160 ms

VV delay: VTI‐LVOT + intraventricular dyssynchorny (TDI) 

6‐month follow‐up:

Responder: clinical end‐points 

Post implant optimisation: AV‐VV delay

Vidal et al. Am J Cardiol 2007

At 6 month follow‐up, 98 patients were alive

Changes in clinical parameters:

Post implant optimisation: AV‐VV delay

Vidal et al. Am J Cardiol 2007

At 6 month follow‐up, 98 patients were alive

Changes in echocardiographic parameters:

Post implant optimisation: AV‐VV delay

When to optimise?

RCT data: only AV delay optimisation

MIRACLE: pre‐discharge, 3‐, 6‐

and 9‐months

CARE‐HF: pre‐discharge, 3‐, 9‐

and 18‐months

AV delay changes over time:

LV remodeling

56 –

82% of patients required re‐optimisation

over 3‐16 months

Only for non‐responders?  additional studies needed

Comprehensive evaluation pre‐implantation of all 

pathophysiological

determinants of CRT response.

AV delay optimisation leads to acute hemodynamic benefit

VV delay optimisation….questionable

Conclusions

Recommended