Chapter 4 Introduction to Nanochemistry

Preview:

DESCRIPTION

Chapter 4 Introduction to Nanochemistry. Chapter 4. Introduction to Nanochemistry. Periodicity of the Elements Chemical Bonding Intermolecular Forces Nanoscale Structures Practical Applications . Introduction to N anochemistry. 1. 4. Section 1: Periodicity of the Elements. - PowerPoint PPT Presentation

Citation preview

Chapter 4Introduction to Nanochemistry

2

Introduction to Nanochemistry

Chapter 4

Periodicity of the ElementsChemical Bonding Intermolecular Forces Nanoscale Structures Practical Applications

3

| Section

Chapter |

Section 1: Periodicity of the Elements

Introduction to Nanochemistry 14

The Elements Periodic Table of the Elements Periodic Trends

4

| Section

Chapter |

The Elements

Periodicity of the Elements 14

Helium Atom−2 Neutrons and 2 protons in the nucleus−2 Electrons moving about the nucleus

An Element Is an Atom with a Unique Chemical IdentityThe Presence of 2 Protons in the Nucleus Is Unique to the Helium Atom−# Neutrons changes — helium isotopes−# Electrons changes — helium ions−# Protons changes — not helium!

5

| Section

Chapter |

The Elements

Periodicity of the Elements 14

Atomic PropertiesAtomic StructureQuantum Numbers and Electron Configurations

6

| Section

Chapter |

Atomic Properties

Periodicity of the Elements 14

Element Symbol — 1 or 2 LettersAtomic Number — Number of Protons in Element (Z)Mass Number — Number of Protons and Neutrons (A)Isotopes — Elements with Varying Numbers of Neutrons

7

| Section

Chapter |

Atomic Structure

Periodicity of the Elements 14

8

| Section

Chapter |

Quantum Numbers and Electron Configurations

Periodicity of the Elements 14

9

| Section

Chapter |

Periodic Table of the Elements

Periodicity of the Elements 14

10

| Section

Chapter |

Periodic Table of the Elements

Periodicity of the Elements 14

Metals NonmetalsMetalloids

11

| Section

Chapter |

Periodic Table of the Elements

Periodicity of the Elements 14

12

| Section

Chapter |

Typical Chemical Reactions

Periodicity of the Elements 14

1. Metal + Nonmetal → Salt−2 Al(s) + 3 Br2(g) → 2 AlBr3(s)

2a. Metal Oxide + Water → Metal Hydroxide−Na2O(s)+ H2O(l) → 2 NaOH(aq)

2b. Nonmetal Oxide + Water → Acid−CO2(g)+ H2O(l) → H2CO3(aq)

3. Metal Oxide + Acid → Salt + Water−NiO(s) + H2SO4(l) → NiSO4(aq) + H2O(l)

13

| Section

Chapter |

Periodic Trends

Periodicity of the Elements 14

Atomic NumberAtomic SizeIonization EnergyElectron AffinityElectronegativity

14

| Section

Chapter |

Periodic Trends: Atomic Number (Number of Protons in Nucleus)

Periodicity of the Elements 14

Increasing atomic number

Incr

easin

g at

omic

num

ber

15

| Section

Chapter |

Periodic Trends: Atomic Size

Periodicity of the Elements 14

Increasing atomic size

Increasing atomic size

16

| Section

Chapter |

Periodic Trends: Electron Affinity (atom + e— → atom— + energy)

Periodicity of the Elements 14

Increasing electron affinity

Incr

easin

g el

ectro

n affi

nity

17

| Section

Chapter |

Periodic Trends: Ionization Energy (atom + energy → atom+ + e— )

Periodicity of the Elements 14

Increasing ionization energy

Incr

easin

g io

niza

tion

ener

gy

18

| Section

Chapter |

Periodic Trends: Electronegativity

Periodicity of the Elements 14

Increasing electronegativity

Incr

easin

g el

ectro

nega

tivity

19

| Section

Chapter |

Section 2: Chemical Bonding

Introduction to Nanochemistry 24

Ionic BondsCovalent Bonds

20

| Section

Chapter |

Chemical Bonding

Introduction to Nanochemistry 24

Ionic BondsCovalent Bonds

21

| Section

Chapter |

Electronegativity Values

Chemical Bonding 24

Electronegativity Difference Between Atoms−≳ 1.7 Ionic −≲ 1.7 Covalent

22

| Section

Chapter |

Ionic Bonds

Chemical Bonding 24

Na + ½ Cl2 → [ Na+ + Cl– ] → NaCl

Ca + Cl2 → [ Ca+2 + Cl– + Cl– ] → CaCl2

23

| Section

Chapter |

Covalent Bonds

Chemical Bonding 24

24

| Section

Chapter |

Molecules with Functional Groups

Chemical Bonding 24

25

| Section

Chapter |

Polar Covalent Bonds

Chemical Bonding 24

Electronegativity3.5 Oxygen2.1 Hydrogen

26

| Section

Chapter |

Section 3: Intermolecular Forces

Introduction to Nanochemistry 34

Dipole-Dipole InteractionsHydrogen Bonding

27

| Section

Chapter |

Charge Carrier

Intermolecular Forces 34

IonsDipoleInduced Dipole

28

| Section

Chapter |

Dipole Interactions

Intermolecular Forces 34

29

| Section

Chapter |

Hydrogen Bonding

Intermolecular Forces 34

Liquid Water Ice

30

| Section

Chapter |

Hydrogen Bonding: Watson-Crick Base Pairs

Intermolecular Forces 34

31

| Section

Chapter |

Section 4: Nanoscale Structures

Introduction to Nanochemistry 44

Polymers and CopolymersDendrimersSelf-Assembled MonolayersNanoparticlesQuantum DotsCarbon NanotubesFullerenes

32

| Section

Chapter |

Polymers and Copolymers

Nanoscale Structures 44

33

| Section

Chapter |

Dendrimers

Nanoscale Structures 44

34

| Section

Chapter |

Self-Assembled Monolayers

Nanoscale Structures 44

35

| Section

Chapter |

Self-Assembled Monolayers

Nanoscale Structures 44

36

| Section

Chapter |

Self-Assembled Monolayers

Nanoscale Structures 44

Functional Groups−Layer-by-layer (LbL)/electrostatic self-

assembly (ESA)

Substrates−Gold• Biocompatible• Inert

−Other metals−Silicon oxides• Optical transparency

37

| Section

Chapter |

Nanoparticles

Nanoscale Structures 44

Gold NanoparticlesQuantum Dots

38

| Section

Chapter |

Gold Nanoparticles

Nanoscale Structures 44

1 to >100 nmUniform Size DistributionRed Color, Not GoldEasily Modified Surface PropertiesGold Is Inert in Biological Organisms

39

| Section

Chapter |

Quantum Dots

Nanoscale Structures 44

40

| Section

Chapter |

Quantum Dots

Nanoscale Structures 44

41

| Section

Chapter |

Carbon Allotropes

Nanoscale Structures 44

Carbon Nanotube

C60 Fullerene

sp3 Carbon: Diamondsp2 Carbon: Graphite, Graphene, Fullerenes, Carbon Nanotubes

42

| Section

Chapter |

Carbon Nanotubes

Nanoscale Structures 44

Multi Walled Nano Tube

43

| Section

Chapter |

Carbon Nanotubes

Nanoscale Structures 44

Exploring Structures−Fibers• Typical lengths: 1-100 μm

−Containers• Adding end caps• Enclosing atoms, molecules, C60 fullerenes• Enclosing carbon nanotubes (i.e., multi-

walled nanotubes)−Surface modification• Via van der Waals interactions• Via chemical reactions

44

| Section

Chapter |

C60 Fullerenes

Nanoscale Structures 44

C60

45

| Section

Chapter |

Section 5: Practical Applications

Introduction to Nanochemistry 54

Drug DeliveryBiological SensorsSolar CellsNanocatalysts

46

| Section

Chapter |

Drug Delivery

Practical Applications 54

β-cyclodextran camptothecin

47

| Section

Chapter |

Drug Delivery

Practical Applications 54

60 nm Nanoparticle

(m ≈ 17, MW 97 kDa)

48

| Section

Chapter |

Biological Sensors

Practical Applications 54

Selectivity in Biological Matrix−Differentiate among similar

biomolecules

Sensitivity to Biological Concentrations−Sensitive detectors−Chemical/biological amplification

Efficient−Cost effective−Throughput/turnaround time

49

| Section

Chapter |

Biological Sensors

Practical Applications 54

50

| Section

Chapter |

Solar Cells

Practical Applications 54

Current and Potential Applications−Improve efficency• >1 Electron per photon• Moving electrons

between electrodes−Alternatives to silica• Polymer matrix

−Cost reduction• Alternative photon absorbers

51

| Section

Chapter |

Nanocatalysts

Practical Applications 54

52

| Section

Chapter |

Nanocatalysts

Practical Applications 54

Encapsulated Enzyme Particles−Isolatable−Enhanced stability• From thermal denaturation• From proteolytic enzymes

Recommended