Chapter 6 Finite Differences - Engineering...

Preview:

Citation preview

Chapter 6

Finite Differences

6.1 Introduction

For a function ๐‘ฆ = ๐‘“ ๐‘ฅ , finite differences refer to

changes in values of ๐‘ฆ (dependent variable) for any

finite (equal or unequal) variation in ๐‘ฅ (independent

variable).

In this chapter, we shall study various differencing

techniques for equal deviations in values of ๐‘ฅ and

associated differencing operators; also their

applications will be extended for finding missing

values of a data and series summation.

6.2 Shift or Increment Operator (๐‘ฌ)

Shift (Increment) operator denoted by โ€˜๐ธโ€™ operates on ๐‘“(๐‘ฅ) as ๐ธ๐‘“ ๐‘ฅ = ๐‘“ ๐‘ฅ + ๐‘•

Or ๐ธ๐‘ฆ๐‘ฅ = ๐‘ฆ๐‘ฅ+๐‘• , where โ€˜๐‘•โ€™ is the step height for equi-spaced data points.

Clearly effect of the shift operator ๐ธ is to shift the function value to the next

higher value ๐‘“ ๐‘ฅ + ๐‘• or ๐‘ฆ๐‘ฅ+๐‘•

Also ๐ธ2๐‘“ ๐‘ฅ = ๐ธ ๐ธ๐‘“(๐‘ฅ) = ๐ธ๐‘“ ๐‘ฅ + ๐‘• = ๐‘“ ๐‘ฅ + 2๐‘•

โˆด ๐ธ๐‘›๐‘“ ๐‘ฅ = ๐‘“ ๐‘ฅ + ๐‘›๐‘•

Moreover ๐ธโˆ’1๐‘“ ๐‘ฅ = ๐‘“ ๐‘ฅ โˆ’ ๐‘• , where ๐ธโˆ’1 is the inverse shift operator.

6.3 Differencing Operators

If ๐‘ฆ0, ๐‘ฆ1, ๐‘ฆ2 , โ€ฆ๐‘ฆ๐‘› be the values of ๐‘ฆ for corresponding values of ๐‘ฅ0, ๐‘ฅ1, ๐‘ฅ2 ,

โ€ฆ๐‘ฅ๐‘› , then the differences of ๐‘ฆ are defined by (๐‘ฆ1 โˆ’ ๐‘ฆ0), (๐‘ฆ2 โˆ’ ๐‘ฆ1), โ€ฆ , (๐‘ฆ๐‘› โˆ’ ๐‘ฆ๐‘›โˆ’1) , and are denoted by different operators discussed in this section.

6.3.1 Forward Difference Operator โˆ†

Forward difference operator โ€˜โˆ†โ€™ operates on ๐‘ฆ๐‘ฅ as โˆ†๐‘ฆ๐‘ฅ = ๐‘ฆ๐‘ฅ+1โˆ’ ๐‘ฆ๐‘ฅ

Or โˆ†๐‘“ ๐‘ฅ = ๐‘“ ๐‘ฅ + ๐‘• โˆ’ ๐‘“ ๐‘ฅ , where ๐‘• is the height of differencing.

โˆด โˆ†๐‘ฆ0 = ๐‘ฆ1โˆ’ ๐‘ฆ0

โˆ†๐‘ฆ1 = ๐‘ฆ2โˆ’ ๐‘ฆ1

โ‹ฎ

โˆ†๐‘ฆ๐‘› = ๐‘ฆ๐‘›+1โˆ’ ๐‘ฆ๐‘›

Also โˆ†2๐‘ฆ0 = โˆ†๐‘ฆ1โˆ’ โˆ†๐‘ฆ0 = ๐‘ฆ2โˆ’ ๐‘ฆ1 โˆ’ ๐‘ฆ1โˆ’ ๐‘ฆ0 = ๐‘ฆ2 โˆ’ 2๐‘ฆ1 + ๐‘ฆ0

โ‹ฎ

โˆ†๐‘›๐‘ฆ0 = ๐‘ฆ๐‘› โˆ’ ๐‘›๐ถ1๐‘ฆ๐‘›โˆ’1 + ๐‘›๐ถ2๐‘ฆ๐‘›โˆ’2 โˆ’โ‹ฏ+ โˆ’1 ๐‘›โˆ’1 ๐‘›๐ถ๐‘›โˆ’1๐‘ฆ1 + โˆ’1 ๐‘›๐‘ฆ0

Generalizing โˆ†๐‘›๐‘ฆ๐‘Ÿ = ๐‘ฆ๐‘›+๐‘Ÿ โˆ’ ๐‘›๐ถ1๐‘ฆ๐‘›+๐‘Ÿโˆ’1 + ๐‘›๐ถ2๐‘ฆ๐‘›+๐‘Ÿโˆ’2 โˆ’โ‹ฏ+ โˆ’1 ๐‘Ÿ๐‘ฆ๐‘Ÿ

Here โˆ†๐‘› is the ๐‘›๐‘ก๐‘• order forward difference; Table 6.1 shows the forward

differences of various orders.

Table 6.1 Forward Differences

๐’™ ๐’š โˆ† โˆ†๐Ÿ โˆ†๐Ÿ‘ โˆ†๐Ÿ’ โˆ†๐Ÿ“ ๐’™๐’ ๐‘ฆ๐‘œ

โˆ†๐‘ฆ๐‘œ ๐’™๐Ÿ ๐‘ฆ1 โˆ†2๐‘ฆ๐‘œ

โˆ†๐‘ฆ1 โˆ†3๐‘ฆ๐‘œ ๐’™๐Ÿ y2 โˆ†2๐‘ฆ1 โˆ†4๐‘ฆ0

โˆ†๐‘ฆ2 โˆ†3๐‘ฆ1 โˆ†5๐‘ฆ0 ๐’™๐Ÿ‘ ๐‘ฆ3 โˆ†2๐‘ฆ2 โˆ†4๐‘ฆ1

โˆ†๐‘ฆ3 โˆ†3๐‘ฆ2 ๐’™๐Ÿ’ ๐‘ฆ4 โˆ†2๐‘ฆ3

โˆ†๐‘ฆ4 ๐’™๐Ÿ“ ๐‘ฆ5

The arrow indicates the direction of differences from top to bottom. Differences in

each column notate difference of two adjoining consecutive entries of the previous

column.

Relation between โˆ† and ๐‘ฌ

โˆ† and ๐ธ are connected by the relation โˆ† โ‰ก ๐ธ โˆ’ 1

Proof: we know that โˆ†๐‘ฆ๐‘› = ๐‘ฆ๐‘›+1โˆ’ ๐‘ฆ๐‘›

= ๐ธ๐‘ฆ๐‘›โˆ’ ๐‘ฆ๐‘›

โ‡’ โˆ†๐‘ฆ๐‘› = ๐ธ โˆ’ 1 ๐‘ฆ๐‘›

โ‡’ โˆ† โ‰ก ๐ธ โˆ’ 1 or ๐ธ โ‰ก 1 + โˆ†

Properties of operator โ€˜โˆ†โ€™

โˆ†๐ถ = 0 , ๐ถ being a constant

โˆ†๐ถ ๐‘“(๐‘ฅ) = ๐ถ๐‘“(๐‘ฅ)

โˆ†[๐‘Ž๐‘“ ๐‘ฅ ยฑ ๐‘๐‘”(๐‘ฅ)] = ๐‘Ž โˆ†๐‘“ ๐‘ฅ ยฑ ๐‘ โˆ†๐‘”(๐‘ฅ)

โˆ† ๐‘“ ๐‘ฅ ๐‘” ๐‘ฅ = ๐‘“ ๐‘ฅ + ๐‘• โˆ† ๐‘” ๐‘ฅ + ๐‘” ๐‘ฅ โˆ†๐‘“ ๐‘ฅ , ๐‘“ & ๐‘” may be interchanged

โˆ† ๐‘“ ๐‘ฅ

๐‘” ๐‘ฅ =

๐‘” ๐‘ฅ โˆ†๐‘“ ๐‘ฅ โˆ’๐‘“(๐‘ฅ)โˆ†๐‘” ๐‘ฅ

๐‘” ๐‘ฅ+๐‘• ๐‘” ๐‘ฅ

Result 1: The ๐’๐’•๐’‰ differences of a polynomial of degree 'n' are constant and all

higher order differences are zero.

Proof: Consider the polynomial ๐‘“(๐‘ฅ) of ๐‘›๐‘ก๐‘• degree

๐‘“(๐‘ฅ) = ๐‘Ž0๐‘ฅ๐‘› + ๐‘Ž1๐‘ฅ

๐‘›โˆ’1 + ๐‘Ž2๐‘ฅ๐‘›โˆ’2 + โ‹ฏ+ ๐‘Ž๐‘›โˆ’1๐‘ฅ + ๐‘Ž๐‘›

First differences of the polynomial ๐‘“(๐‘ฅ) are calculated as:

โˆ† ๐‘“ ๐‘ฅ = ๐‘“ ๐‘ฅ + ๐‘• โˆ’ ๐‘“(๐‘ฅ)

= ๐‘Ž0 (๐‘ฅ + ๐‘•)๐‘› โˆ’ ๐‘ฅ๐‘› + ๐‘Ž1 (๐‘ฅ + ๐‘•)๐‘›โˆ’1 โˆ’ ๐‘ฅ๐‘›โˆ’1 + โ‹ฏ+ ๐‘Ž๐‘›โˆ’1 ๐‘ฅ + ๐‘• โˆ’ ๐‘ฅ = ๐‘Ž0๐‘›๐‘• ๐‘ฅ๐‘›โˆ’1 + ๐‘Ž1

โ€ฒ ๐‘ฅ๐‘›โˆ’1 + ๐‘Ž2โ€ฒ ๐‘ฅ๐‘›โˆ’2 + โ‹ฏ+ ๐‘Ž๐‘›โˆ’1

โ€ฒ ๐‘• + ๐‘Ž๐‘›โ€ฒ

where ๐‘Ž1โ€ฒ , ๐‘Ž2

โ€ฒ ,โ€ฆ ,๐‘Ž๐‘›โˆ’1โ€ฒ , ๐‘Ž๐‘›

โ€ฒ are new constants

โ‡’ First difference of a polynomial of degree ๐‘› is a polynomial of degree (๐‘› โˆ’ 1)

Similarly โˆ†2๐‘“ ๐‘ฅ = โˆ† ๐‘“ ๐‘ฅ + ๐‘• โˆ’ โˆ† ๐‘“ ๐‘ฅ

= ๐‘Ž0๐‘›(๐‘› โˆ’ 1)๐‘•2 ๐‘ฅ๐‘›โˆ’2 + ๐‘Ž1โ€ฒโ€ฒ ๐‘ฅ๐‘›โˆ’3 + โ€ฆ+ ๐‘Ž๐‘›

โ€ฒโ€ฒ

โˆด Second difference of a polynomial of degree ๐‘› is a polynomial of degree (๐‘› โˆ’ 2)

Repeating the above process โˆ†๐‘›๐‘“ ๐‘ฅ = ๐‘Ž0๐‘›(๐‘› โˆ’ 1)โ€ฆ2.1๐‘•๐‘› ๐‘ฅ๐‘›โˆ’๐‘›

โ‡’ โˆ†๐‘›๐‘“ ๐‘ฅ = ๐‘Ž0๐‘›! ๐‘•๐‘› which is a constant

โˆด ๐‘›๐‘ก๐‘• Difference of a polynomial of degree ๐‘› is a polynomial of degree zero.

Thus (๐‘› + 1)๐‘ก๐‘•and higher order differences of a polynomial of ๐‘›๐‘ก๐‘• degree are all

zero.

The converse of above result is also true , i.e. if the ๐‘›๐‘ก๐‘• difference of a

polynomial given at equally spaced points are constant then the function is

a polynomial of degree โ€˜๐‘›โ€™.

6.3.2 Backward Difference Operator ๐›

Backward difference operator โ€˜ โˆ‡ โ€™ operates on ๐‘ฆ๐‘› as โˆ‡๐‘ฆ๐‘› = ๐‘ฆ๐‘›โˆ’ ๐‘ฆ๐‘›โˆ’1

โˆด The differences (๐‘ฆ1 โˆ’ ๐‘ฆ0) , (๐‘ฆ2 โˆ’ ๐‘ฆ1) , โ€ฆ , (๐‘ฆ๐‘› โˆ’ ๐‘ฆ๐‘›โˆ’1) when denoted by

โˆ‡๐‘ฆ1, โˆ‡๐‘ฆ2, โ€ฆ ,โˆ‡๐‘ฆ๐‘› are called first backward differences.

Also โˆ‡2๐‘ฆ๐‘› = โˆ‡๐‘ฆ๐‘› โˆ’ โˆ‡๐‘ฆ๐‘›โˆ’1 , โˆ‡3๐‘ฆ๐‘› = โˆ‡2๐‘ฆ๐‘› โˆ’ โˆ‡2๐‘ฆ๐‘›โˆ’1 denote second and third

backward differences respectively.

Table 6.2 shows the backward differences of various orders.

Table 6.2 Backward Differences

๐’™ ๐’š ๐› ๐›๐Ÿ ๐›๐Ÿ‘ ๐›๐Ÿ’ ๐›๐Ÿ“ ๐’™๐’ ๐‘ฆ๐‘œ

โˆ‡๐‘ฆ1 ๐’™๐Ÿ ๐‘ฆ1 โˆ‡2๐‘ฆ2

โˆ‡๐‘ฆ2 โˆ‡3๐‘ฆ3 ๐’™๐Ÿ y2 โˆ‡2๐‘ฆ3 โˆ‡4๐‘ฆ4

โˆ‡๐‘ฆ3 โˆ‡3๐‘ฆ4 โˆ‡5๐‘ฆ5 ๐’™๐Ÿ‘ ๐‘ฆ3 โˆ‡2๐‘ฆ4 โˆ‡4๐‘ฆ5

โˆ‡๐‘ฆ4 โˆ‡3๐‘ฆ5 ๐’™๐Ÿ’ ๐‘ฆ4 โˆ‡2๐‘ฆ5

โˆ‡๐‘ฆ5 ๐’™๐Ÿ“ ๐‘ฆ5

The arrow indicates the direction of differences from bottom to top. Differences in

each column notate difference of two adjoining consecutive entries of the previous

column, i.e. โˆ‡๐‘ฆ1

= ๐‘ฆ1โˆ’ ๐‘ฆ

๐‘œ, โˆ‡2๐‘ฆ

2= โˆ‡๐‘ฆ

2โˆ’ โˆ‡๐‘ฆ

1, โ€ฆ ,โˆ‡5๐‘ฆ5 = โˆ‡4๐‘ฆ5 โˆ’ โˆ‡4๐‘ฆ4.

Relation between ๐› and ๐‘ฌ

โˆ‡ and ๐ธ are connected by the relation โˆ‡ โ‰ก 1 โˆ’ ๐ธโˆ’1

Proof: we know that โˆ‡๐‘ฆ๐‘› = ๐‘ฆ๐‘›โˆ’ ๐‘ฆ๐‘›โˆ’1

= ๐‘ฆ๐‘›โˆ’ ๐ธโˆ’1๐‘ฆ๐‘›

โ‡’ โˆ‡๐‘ฆ๐‘› = 1 โˆ’ ๐ธโˆ’1 ๐‘ฆ๐‘›

โ‡’ โˆ‡ โ‰ก 1 โˆ’ ๐ธโˆ’1

6.3.3 Central Difference Operator ๐›…

Central difference operator โ€˜ ฮด โ€™ operates on ๐‘ฆ๐‘› as ฮด ๐‘ฆ๐‘› = ๐‘ฆ๐‘›+

1

2

โˆ’ ๐‘ฆ๐‘›โˆ’

1

2

โˆด The differences (๐‘ฆ1 โˆ’ ๐‘ฆ0) , (๐‘ฆ2 โˆ’ ๐‘ฆ1) , โ€ฆ , (๐‘ฆ๐‘› โˆ’ ๐‘ฆ๐‘›โˆ’1) when denoted by

ฮด๐‘ฆ1

2

, ฮด๐‘ฆ3

2

, โ€ฆ , ฮด๐‘ฆ๐‘›โˆ’

1

2

are called first central differences.

Also ฮด2๐‘ฆ๐‘› = ฮด๐‘ฆ๐‘›+

1

2

โˆ’ ฮด๐‘ฆ๐‘›โˆ’

1

2

, ฮด3๐‘ฆ๐‘› = ฮด2๐‘ฆ๐‘›+

1

2

โˆ’ ฮด2๐‘ฆ๐‘›โˆ’

1

2

denote second and third

central differences respectively as shown in Table 6.3.

Table 6.3 Central Differences

๐’™ ๐’š ๐›… ๐›…๐Ÿ ๐›…๐Ÿ‘ ๐›…๐Ÿ’ ๐›…๐Ÿ“ ๐’™๐’ ๐‘ฆ๐‘œ

ฮด๐‘ฆ12

๐’™๐Ÿ ๐‘ฆ1 ฮด2๐‘ฆ1

ฮด๐‘ฆ32 ฮด3๐‘ฆ3

2

๐’™๐Ÿ y2 ฮด2๐‘ฆ2 ฮด4๐‘ฆ

2

ฮด๐‘ฆ52 ฮด3๐‘ฆ5

2

ฮด5๐‘ฆ52

๐’™๐Ÿ‘ ๐‘ฆ3 ฮด2๐‘ฆ3 ฮด4๐‘ฆ

3

ฮด๐‘ฆ72 ฮด3๐‘ฆ7

2

๐’™๐Ÿ’ ๐‘ฆ4 ฮด2๐‘ฆ4

ฮด๐‘ฆ92

๐’™๐Ÿ“ ๐‘ฆ5

Central differences in each column notate difference of two adjoining consecutive

entries of the previous column, i.e. ฮด๐‘ฆ1

2

= ๐‘ฆ1โˆ’ ๐‘ฆ

๐‘œ, โ€ฆ , ฮด5๐‘ฆ5

2

= ฮด4๐‘ฆ3 โˆ’ ฮด4๐‘ฆ2.

Relation between ๐›… and ๐‘ฌ

ฮด and ๐ธ are connected by the relation ฮด โ‰ก ๐ธ1

2 โˆ’ ๐ธโˆ’ 1

2

Proof: we know that ฮด ๐‘ฆ๐‘› = ๐‘ฆ๐‘›+

1

2

โˆ’ ๐‘ฆ๐‘›โˆ’

1

2

= ๐ธ1

2๐‘ฆ๐‘›โˆ’ ๐ธโˆ’ 1

2๐‘ฆ๐‘›

โ‡’ ฮด ๐‘ฆ๐‘› = ๐ธ1

2 โˆ’ ๐ธโˆ’ 1

2 ๐‘ฆ๐‘›

โˆด ฮด โ‰ก ๐ธ1

2 โˆ’ ๐ธโˆ’ 1

2

Observation: It is only the notation which changes and not the difference.

โˆด ๐‘ฆ1 โˆ’ ๐‘ฆ๐‘œ = โˆ†๐‘ฆ0 = โˆ‡๐‘ฆ1 = ฮด๐‘ฆ1

2

6.3.4 Averaging Operator ๐›

Averaging operator โ€˜ ฮผ โ€™ operates on ๐‘ฆ๐‘ฅ as ฮผ ๐‘ฆ๐‘ฅ =1

2 ๐‘ฆ

๐‘ฅ+๐‘•

2

+ ๐‘ฆ๐‘ฅโˆ’

๐‘•

2

Or ฮผ ๐‘“ ๐‘ฅ = 1

2 ๐‘“ ๐‘ฅ +

๐‘•

2 + ๐‘“ ๐‘ฅ โˆ’

๐‘•

2 , โ€˜ h โ€™ is the height of the interval.

Relation between ๐› and ๐‘ฌ

We know that ฮผ ๐‘ฆ๐‘› =1

2 ๐‘ฆ

๐‘›+๐‘•

2

+ ๐‘ฆ๐‘›โˆ’

๐‘•

2

=1

2 ๐ธ

1

2๐‘ฆ๐‘›+ ๐ธโˆ’ 1

2๐‘ฆ๐‘›

โ‡’ ฮผ ๐‘ฆ๐‘› =1

2 ๐ธ

1

2 + ๐ธโˆ’ 1

2 ๐‘ฆ๐‘›

โˆด ฮผ โ‰ก1

2 ๐ธ

1

2 + ๐ธโˆ’ 1

2

Result 2: Relation between ๐‘ฌ and ๐‘ซ, where ๐‘ซ โ‰ก๐’…

๐’…๐’™

We know ๐‘ฆ ๐‘ฅ + ๐‘• = ๐‘ฆ ๐‘ฅ + ๐‘• ๐‘ฆโ€ฒ ๐‘ฅ +๐‘•2

2! ๐‘ฆโ€ฒโ€ฒ ๐‘ฅ +. .. By Taylorโ€™s theorem

= ๐‘ฆ ๐‘ฅ + ๐‘• ๐ท๐‘ฆ(๐‘ฅ) +๐‘•2

2! ๐ท2๐‘ฆ(๐‘ฅ)+. ..

= 1 + ๐‘•๐ท +๐‘•2

2! ๐ท2 + โ‹ฏ ๐‘ฆ(๐‘ฅ)

โ‡’ ๐ธ ๐‘ฆ ๐‘ฅ = ๐‘’๐‘•๐ท๐‘ฆ(๐‘ฅ)

โˆด ๐ธ = ๐‘’๐‘•๐ท, ๐ท โ‰ก๐‘‘

๐‘‘๐‘ฅ

Result 3: Relation between โˆ† and ๐‘ซ, where ๐‘ซ โ‰ก๐’…

๐’…๐’™

We know that โˆ† โ‰ก ๐ธ โˆ’ 1

โ‡’ โˆ† โ‰ก ๐‘’๐‘•๐ท โˆ’ 1 โˆต ๐ธ = ๐‘’๐‘•๐ท

Result 4: Relation between ๐œต and ๐‘ซ, where ๐‘ซ โ‰ก๐’…

๐’…๐’™

We know that โˆ‡ โ‰ก 1 โˆ’ ๐ธโˆ’1 = 1 โˆ’ ๐‘’โˆ’๐‘•๐ท โˆต ๐ธ = ๐‘’๐‘•๐ท

Result 5: Relation between โˆ† and ๐œต

We know that ๐ธ โ‰ก 1 + โˆ† โ‹ฏโ‘ 

Also ๐ธโˆ’1 โ‰ก 1 โˆ’ โˆ‡

โ‡’ ๐ธ โ‰ก1

1โˆ’โˆ‡ โ‹ฏ โ‘ก

โ‡’ 1 + โˆ†โ‰ก1

1โˆ’โˆ‡ From โ‘  and โ‘ก

โ‡’ โˆ†โ‰ก1

1โˆ’โˆ‡โˆ’ 1

โ‡’ โˆ†โ‰กโˆ‡

1โˆ’โˆ‡

Result 6: Relation between ๐› , ๐œน and ๐‘ฌ

We have ฮผ โ‰ก1

2 ๐ธ

1

2 + ๐ธโˆ’ 1

2

Also ฮด โ‰ก ๐ธ1

2 โˆ’ ๐ธโˆ’ 1

2

โ‡’ ฮผฮด โ‰ก1

2 ๐ธ

1

2 + ๐ธโˆ’ 1

2 ๐ธ1

2 โˆ’ ๐ธโˆ’ 1

2

โ‡’ ฮผฮด โ‰ก1

2 ๐ธ โˆ’ ๐ธโˆ’ 1

Result 7: Relation between ๐› , ๐œน , โˆ† and โˆ‡

We have ฮผฮด โ‰ก1

2 ๐ธ โˆ’ ๐ธโˆ’ 1 =

1

2 1 + โˆ†) โˆ’ (1 โˆ’ โˆ‡

โ‡’ ฮผฮด โ‰ก1

2 โˆ† + โˆ‡

Result 8: โˆ†๐‘›๐‘ฆ๐‘Ÿ = โˆ‡๐‘›๐‘ฆ๐‘›+๐‘Ÿ

We have โˆ†๐‘›๐‘ฆ๐‘Ÿ = (๐ธ โˆ’ 1)๐‘›๐‘ฆ๐‘Ÿ โˆต โˆ†= ๐ธ โˆ’ 1

= ๐‘ฆ๐‘›+๐‘Ÿ โˆ’ ๐‘›๐ถ1๐‘ฆ๐‘›+๐‘Ÿโˆ’1 + ๐‘›๐ถ2๐‘ฆ๐‘›+๐‘Ÿโˆ’2 โˆ’โ‹ฏ+ โˆ’1 ๐‘Ÿ๐‘ฆ๐‘Ÿ

= ๐ธ๐‘› โˆ’ ๐‘›๐ถ1๐ธ๐‘›โˆ’1 + ๐‘›๐ถ2๐ธ

๐‘›โˆ’2 โˆ’โ‹ฏ+ โˆ’1 ๐‘› ๐‘ฆ๐‘Ÿ

= ๐ธ๐‘›๐‘ฆ๐‘Ÿ โˆ’ ๐‘›๐ถ1๐ธ๐‘›โˆ’1๐‘ฆ๐‘Ÿ + ๐‘›๐ถ2๐ธ

๐‘›โˆ’2๐‘ฆ๐‘Ÿ โˆ’โ‹ฏ+ โˆ’1 ๐‘›๐‘ฆ๐‘Ÿ

= ๐‘ฆ๐‘›+๐‘Ÿ โˆ’ ๐‘›๐ถ1๐‘ฆ๐‘›+๐‘Ÿโˆ’1 + ๐‘›๐ถ2๐‘ฆ๐‘›+๐‘Ÿโˆ’2 โˆ’โ‹ฏ+ โˆ’1 ๐‘›๐‘ฆ๐‘Ÿ

Also โˆ‡๐‘›๐‘ฆ๐‘›+๐‘Ÿ = (1 โˆ’ Eโˆ’1)๐‘›๐‘ฆ๐‘›+๐‘Ÿ โˆต โˆ‡ โ‰ก 1 โˆ’ ๐ธโˆ’1

= 1 โˆ’ ๐‘›๐ถ1๐ธโˆ’1 + ๐‘›๐ถ2๐ธ

โˆ’2 โˆ’โ‹ฏ+ โˆ’1 ๐‘›๐ธโˆ’๐‘› ๐‘ฆ๐‘›+๐‘Ÿ

= ๐‘ฆ๐‘›+๐‘Ÿ โˆ’ ๐‘›๐ถ1๐‘ฆ๐‘›+๐‘Ÿโˆ’1 + ๐‘›๐ถ2๐‘ฆ๐‘›+๐‘Ÿโˆ’2 โˆ’โ‹ฏ+ โˆ’1 ๐‘›๐‘ฆ๐‘Ÿ

โˆด โˆ†๐‘›๐‘ฆ๐‘Ÿ = โˆ‡๐‘›๐‘ฆ๐‘›+๐‘Ÿ

Example 1 Evaluate the following:

i. โˆ†๐‘’๐‘ฅ ii. โˆ†2๐‘’๐‘ฅ iii. โˆ† ๐‘ก๐‘Ž๐‘›โˆ’1๐‘ฅ iv. โˆ† ๐‘ฅ+1

๐‘ฅ2โˆ’3๐‘ฅ+2 v. โˆ†๐‘“๐‘˜

2 = ๐‘“๐‘˜ + ๐‘“๐‘˜+1 โˆ†๐‘“๐‘˜

Solution: i. โˆ†๐‘’๐‘ฅ = ๐‘’๐‘ฅ+๐‘• โˆ’ ๐‘’๐‘ฅ = ๐‘’๐‘ฅ(๐‘’๐‘• โˆ’ 1)

โˆ†๐‘’๐‘ฅ = ๐‘’๐‘ฅ(๐‘’ โˆ’ 1) , if ๐‘• = 1

ii. โˆ†2๐‘’๐‘ฅ = โˆ†(โˆ†๐‘’๐‘ฅ)

= โˆ† ๐‘’๐‘ฅ ๐‘’๐‘• โˆ’ 1

= ๐‘’๐‘• โˆ’ 1 โˆ†๐‘’๐‘ฅ

= ๐‘’๐‘• โˆ’ 1 ๐‘’๐‘ฅ+๐‘• โˆ’ ๐‘’๐‘ฅ

= ๐‘’๐‘• โˆ’ 1 ๐‘’๐‘ฅ(๐‘’๐‘• โˆ’ 1)

= ๐‘’๐‘ฅ (๐‘’๐‘• โˆ’ 1)2

iii. โˆ†๐‘ก๐‘Ž๐‘›โˆ’1๐‘ฅ = ๐‘ก๐‘Ž๐‘›โˆ’1 ๐‘ฅ + ๐‘• โˆ’ ๐‘ก๐‘Ž๐‘›โˆ’1๐‘ฅ

= ๐‘ก๐‘Ž๐‘›โˆ’1 ๐‘ฅ+๐‘•โˆ’๐‘ฅ

1+(๐‘ฅ+๐‘•)๐‘ฅ

= ๐‘ก๐‘Ž๐‘›โˆ’1 ๐‘•

1+(๐‘ฅ+๐‘•)๐‘ฅ

iv. โˆ† ๐‘ฅ+1

๐‘ฅ2โˆ’3๐‘ฅ+2 = โˆ†

๐‘ฅ+1

๐‘ฅโˆ’1 (๐‘ฅโˆ’2)

= โˆ† โˆ’2

๐‘ฅโˆ’1+

3

๐‘ฅโˆ’2 = โˆ†

โˆ’2

๐‘ฅโˆ’1 + โˆ†

3

๐‘ฅโˆ’2

= โˆ’2 1

๐‘ฅ+1โˆ’1โˆ’

1

๐‘ฅโˆ’1 + 3

1

๐‘ฅ+1โˆ’2โˆ’

1

๐‘ฅโˆ’2

= โˆ’2 1

๐‘ฅโˆ’

1

๐‘ฅโˆ’1 + 3

1

๐‘ฅโˆ’1โˆ’

1

๐‘ฅโˆ’2

= โˆ’(๐‘ฅ+4)

๐‘ฅ ๐‘ฅโˆ’1 (๐‘ฅโˆ’2)

v. โˆ†๐‘“๐‘˜2 = ๐‘“๐‘˜+1

2 โˆ’ ๐‘“๐‘˜2 = ๐‘“๐‘˜+1 + ๐‘“๐‘˜ ๐‘“๐‘˜+1 โˆ’ ๐‘“๐‘˜ = ๐‘“๐‘˜ + ๐‘“๐‘˜+1 โˆ†๐‘“๐‘˜

Example 2 Evaluate the following:

i. โˆ†๐‘’๐‘ฅ log 2๐‘ฅ ii. โˆ† ๐‘ฅ2

cos 2๐‘ฅ

Solution: i. Let ๐‘“ ๐‘ฅ = ๐‘’๐‘ฅ and ๐‘” ๐‘ฅ = log 2๐‘ฅ

We have โˆ† ๐‘“ ๐‘ฅ ๐‘” ๐‘ฅ = ๐‘“ ๐‘ฅ + ๐‘• โˆ† ๐‘” ๐‘ฅ + ๐‘” ๐‘ฅ โˆ†๐‘“ ๐‘ฅ

โˆด โˆ†๐‘’๐‘ฅ log 2๐‘ฅ = ๐‘’๐‘ฅ+๐‘•โˆ† log 2๐‘ฅ + log 2๐‘ฅ โˆ†๐‘’๐‘ฅ

= ๐‘’๐‘ฅ+๐‘• log 2 ๐‘ฅ + ๐‘• โˆ’ log 2๐‘ฅ + log 2๐‘ฅ ๐‘’๐‘ฅ+๐‘• โˆ’ ๐‘’๐‘ฅ

= ๐‘’๐‘ฅ๐‘’๐‘• log 1 +๐‘•

๐‘ฅ + ๐‘’๐‘ฅ log 2๐‘ฅ ๐‘’๐‘• โˆ’ 1

= ๐‘’๐‘ฅ ๐‘’๐‘• log 1 +๐‘•

๐‘ฅ + log 2๐‘ฅ ๐‘’๐‘• โˆ’ 1

ii. Let ๐‘“ ๐‘ฅ = ๐‘ฅ2 and ๐‘” ๐‘ฅ = cos 2๐‘ฅ

We have โˆ† ๐‘“ ๐‘ฅ

๐‘” ๐‘ฅ =

๐‘” ๐‘ฅ โˆ†๐‘“ ๐‘ฅ โˆ’๐‘“(๐‘ฅ)โˆ†๐‘” ๐‘ฅ

๐‘” ๐‘ฅ+๐‘• ๐‘” ๐‘ฅ

=cos 2๐‘ฅ ๐‘ฅ+๐‘• 2โˆ’๐‘ฅ2 โˆ’๐‘ฅ2 cos 2 ๐‘ฅ+๐‘• โˆ’cos 2๐‘ฅ

cos 2 ๐‘ฅ+๐‘• cos 2๐‘ฅ

= ๐‘•2+2๐‘•๐‘ฅ cos 2๐‘ฅ+2๐‘ฅ2 sin 2๐‘ฅ+๐‘• sin ๐‘•

cos 2 ๐‘ฅ+๐‘• cos 2๐‘ฅ

Example 3 Evaluate โˆ†4 1 โˆ’ 2๐‘ฅ 1 โˆ’ 3๐‘ฅ 1 โˆ’ 4๐‘ฅ 1 โˆ’ ๐‘ฅ ,where interval of differencing is one.

Solution: โˆ†4 1 โˆ’ 2๐‘ฅ 1 โˆ’ 3๐‘ฅ 1 โˆ’ 4๐‘ฅ 1 โˆ’ ๐‘ฅ

= โˆ†4 24๐‘ฅ4 + โ‹ฏ+ 1 = 24.4!. 14 = 576

โˆต โˆ†๐‘›๐‘“ ๐‘ฅ = ๐‘Ž0๐‘›! ๐‘•๐‘› and โˆ†4๐‘ฅ๐‘› = 0 when ๐‘› < 4

Example 4 Prove that โˆ†3๐‘ฆ3 = โˆ‡3๐‘ฆ6

Solution: โˆ†3๐‘ฆ3 = (๐ธ โˆ’ 1)3๐‘ฆ3 โˆต โˆ†= ๐ธ โˆ’ 1

= ๐ธ3 โˆ’ 1 โˆ’ 3๐ธ2 + 3๐ธ ๐‘ฆ3

= ๐ธ3๐‘ฆ3 โˆ’ ๐‘ฆ3 โˆ’ 3๐ธ2๐‘ฆ3 + 3๐ธ๐‘ฆ3

= ๐‘ฆ6 โˆ’ ๐‘ฆ3 โˆ’ 3๐‘ฆ5 + 3๐‘ฆ4

Also โˆ‡3๐‘ฆ6 = (1 โˆ’ Eโˆ’1)3๐‘ฆ6 โˆต โˆ‡ โ‰ก 1 โˆ’ ๐ธโˆ’1

= 1 โˆ’ Eโˆ’3 โˆ’ 3๐ธโˆ’1 + 3๐ธโˆ’2 ๐‘ฆ6

= ๐‘ฆ6 โˆ’ ๐‘ฆ3 โˆ’ 3๐‘ฆ5 + 3๐‘ฆ4

Example 5 Prove that โˆ† + โˆ‡ = โˆ†

โˆ‡โ€“โˆ‡

โˆ†

Solution: L.H.S. = โˆ† + โˆ‡ = ๐ธ โˆ’ 1 + 1 โˆ’ ๐ธโˆ’1

= ๐ธ โˆ’ ๐ธโˆ’1

R.H.S. =โˆ†

โˆ‡โ€“โˆ‡

โˆ†

=๐ธโˆ’1

1โˆ’๐ธโ€“1โˆ’

1โˆ’๐ธ โ€“1

๐ธโˆ’1

= ๐ธโˆ’1 2 โˆ’ 1โˆ’ ๐ธ โ€“1

2

1โˆ’๐ธ โ€“1 ๐ธโˆ’1

= ๐ธ2+1โˆ’ 2๐ธ โˆ’ 1+ ๐ธโ€“2โˆ’2๐ธโ€“1

๐ธ + ๐ธโ€“1โˆ’2

=๐ธ2โˆ’๐ธโˆ’2โˆ’2๐ธ+2๐ธโ€“1

๐ธ + ๐ธโ€“1โˆ’2

= ๐ธ+๐ธโ€“1 ๐ธโˆ’๐ธ โ€“1 โˆ’ 2 ๐ธโˆ’ ๐ธโ€“1

๐ธ + ๐ธโ€“1โˆ’2

= ๐ธ โˆ’ ๐ธโ€“1 ๐ธ + ๐ธ โ€“1โˆ’2

๐ธ + ๐ธโ€“1โˆ’2

= ๐ธ โˆ’ ๐ธโˆ’1 = R.H.S.

Example 6 Prove that ๐ธ = 1 +1

2ฮด2 + ฮด 1 +

1

4ฮด2

Solution: R.H.S. = 1 +1

2ฮด2 + ฮด 1 +

1

4ฮด2

= 1 +1

2 ๐ธ

1

2 โˆ’ ๐ธโˆ’ 1

2 2

+ ๐ธ1

2 โˆ’ ๐ธโˆ’ 1

2 1 +1

4 ๐ธ

1

2 โˆ’ ๐ธโˆ’ 1

2 2

โˆต ฮด โ‰ก ๐ธ1

2 โˆ’ ๐ธโˆ’ 1

2

= 1 +1

2 ๐ธ + ๐ธโˆ’1 โˆ’ 2 + ๐ธ

1

2 โˆ’ ๐ธโˆ’ 1

2 1 +1

4 ๐ธ + ๐ธโˆ’1 โˆ’ 2

= 1 +1

2 ๐ธ + ๐ธโˆ’1 โˆ’ 2 + ๐ธ

1

2 โˆ’ ๐ธโˆ’ 1

2 1

4 ๐ธ + ๐ธโˆ’1 + 2

= 1 +1

2 ๐ธ + ๐ธโˆ’1 โˆ’ 2 + ๐ธ

1

2 โˆ’ ๐ธโˆ’ 1

2 1

4 ๐ธ

1

2 + ๐ธโˆ’ 1

2 2

= 1 +1

2 ๐ธ + ๐ธโˆ’1 โˆ’ 2 +

1

2 ๐ธ

1

2 โˆ’ ๐ธโˆ’ 1

2 ๐ธ1

2 + ๐ธโˆ’ 1

2

=1

2 ๐ธ + ๐ธโˆ’1 +

1

2 ๐ธ โˆ’ ๐ธโˆ’1 = ๐ธ = L.H.S.

Example 7 Prove that โˆ‡ = โˆ’1

2ฮด2 + ฮด 1 +

1

4ฮด2

Solution: R.H.S. = โˆ’1

2ฮด2 + ฮด 1 +

1

4ฮด2

= โˆ’1

2 ๐ธ

1

2 โˆ’ ๐ธโˆ’ 1

2 2

+ ๐ธ1

2 โˆ’ ๐ธโˆ’ 1

2 1 +1

4 ๐ธ

1

2 โˆ’ ๐ธโˆ’ 1

2 2

โˆต ฮด โ‰ก ๐ธ1

2 โˆ’ ๐ธโˆ’ 1

2

= โˆ’1

2 ๐ธ + ๐ธโˆ’1 โˆ’ 2 + ๐ธ

1

2 โˆ’ ๐ธโˆ’ 1

2 1 +1

4 ๐ธ + ๐ธโˆ’1 โˆ’ 2

= โˆ’1

2 ๐ธ + ๐ธโˆ’1 โˆ’ 2 + ๐ธ

1

2 โˆ’ ๐ธโˆ’ 1

2 1

4 ๐ธ + ๐ธโˆ’1 + 2

= โˆ’1

2 ๐ธ + ๐ธโˆ’1 โˆ’ 2 + ๐ธ

1

2 โˆ’ ๐ธโˆ’ 1

2 1

4 ๐ธ

1

2 + ๐ธโˆ’ 1

2 2

= โˆ’1

2 ๐ธ + ๐ธโˆ’1 โˆ’ 2 +

1

2 ๐ธ

1

2 โˆ’ ๐ธโˆ’ 1

2 ๐ธ1

2 + ๐ธโˆ’ 1

2

= โˆ’1

2 ๐ธ + ๐ธโˆ’1 โˆ’ 2 +

1

2 ๐ธ โˆ’ ๐ธโˆ’1 = 1 โˆ’ ๐ธโˆ’1 = โˆ‡= L.H.S.

Example 8 Prove that (i) โˆ† โˆ’ โˆ‡ = ฮด2 (ii) ฮผ = 1 +1

4ฮด2 = 1 +

โˆ†

2 1 + โˆ† โˆ’

1

2

Solution: (i) ฮด2 = ๐ธ1

2 โˆ’ ๐ธโˆ’ 1

2 2

= ๐ธ + ๐ธโˆ’1 โˆ’ 2 โˆต ฮด โ‰ก ๐ธ1

2 โˆ’ ๐ธโˆ’ 1

2

= ๐ธ โˆ’ 1 โˆ’ 1 โˆ’ ๐ธโˆ’1 = โˆ† โˆ’ โˆ‡

โˆต ๐ธ โˆ’ 1 โ‰ก โˆ† and 1 โˆ’ ๐ธโˆ’1 = โˆ†

(ii) 1 +1

4ฮด2 = 1 +

1

4 ๐ธ

1

2 โˆ’ ๐ธโˆ’ 1

2 2

โˆต ฮด โ‰ก ๐ธ1

2 โˆ’ ๐ธโˆ’ 1

2

= 1 +1

4 ๐ธ + ๐ธโˆ’1 โˆ’ 2

= 1

4 ๐ธ + ๐ธโˆ’1 + 2

= 1

4 ๐ธ

1

2 + ๐ธโˆ’ 1

2 2

=1

2 ๐ธ

1

2 + ๐ธโˆ’ 1

2 = ฮผ โˆต ฮผ โ‰ก1

2 ๐ธ

1

2 + ๐ธโˆ’ 1

2

Also 1 +โˆ†

2 1 + โˆ† โˆ’

1

2 = 1 +๐ธโˆ’1

2 1 + ๐ธ โˆ’ 1 โˆ’

1

2

โˆต โˆ† โ‰ก ๐ธ โˆ’ 1

= ๐ธ+1

2 ๐ธโˆ’

1

2

=1

2 ๐ธโˆ’

1

2 + ๐ธ1

2 = ฮผ

Example 9 Prove that (i) โˆ† โ‰ก ๐ธโˆ‡ โ‰ก โˆ‡E = ฮด๐ธ 12 (ii) Er = ฮผ +

๐›ฟ

2

2๐‘Ÿ

Solution: (i) ๐ธโˆ‡ = E 1 โˆ’ ๐ธโˆ’ 1 = ๐ธ โˆ’ 1 = โˆ† โˆต โˆ‡ โ‰ก 1 โˆ’ ๐ธโˆ’1

โˆ‡E = 1 โˆ’ ๐ธโˆ’ 1 ๐ธ = ๐ธ โˆ’ 1 = โˆ†

ฮด๐ธ 12 = ๐ธ

1

2 โˆ’ ๐ธโˆ’ 1

2 ๐ธ 12 = ๐ธ โˆ’ 1 = โˆ† โˆต ฮด โ‰ก ๐ธ

1

2 โˆ’ ๐ธโˆ’ 1

2

(ii) R.H.S. = ฮผ +๐›ฟ

2

2๐‘Ÿ

= 1

2 ๐ธ

1

2 + ๐ธโˆ’ 1

2 +1

2 ๐ธ

1

2 โˆ’ ๐ธโˆ’ 1

2

2๐‘Ÿ

โˆต ฮผ โ‰ก1

2 ๐ธ

1

2 + ๐ธโˆ’ 1

2 and ฮด โ‰ก ๐ธ1

2 โˆ’ ๐ธโˆ’ 1

2

= 1

2 2๐ธ

1

2

2๐‘Ÿ

= ๐ธ1

2 2๐‘Ÿ

= Er = L.H.S

Example 10 Prove that (i) ๐ท โ‰ก 1

๐‘•๐‘™๐‘œ๐‘” ๐ธ (iii) ๐‘•๐ท โ‰ก ๐‘™๐‘œ๐‘” 1 + โˆ† โ‰ก โˆ’log(1 โˆ’ โˆ‡)

(iii) โˆ‡2 โ‰ก ๐‘•2๐ท2 โˆ’ ๐‘•3๐ท3 +7

12๐‘•4๐ท4 + โ‹ฏ

Solution: (i) We know that ๐ธ โ‰ก ๐‘’๐‘•๐ท

โ‡’ ๐‘™๐‘œ๐‘”๐ธ โ‰ก ๐‘™๐‘œ๐‘” ๐‘’๐‘•๐ท

โ‡’ ๐‘™๐‘œ๐‘”๐ธ โ‰ก ๐‘•๐‘‘ ๐‘™๐‘œ๐‘” ๐‘’

โ‡’ ๐ท โ‰ก 1

๐‘•๐‘™๐‘œ๐‘” ๐ธ โˆต ๐‘™๐‘œ๐‘” ๐‘’ = 1

(ii) ๐‘• ๐ท โ‰ก ๐‘™๐‘œ๐‘”๐ธ From relation (i)

โ‰ก log(1 + โˆ†) โˆต ๐ธ โ‰ก 1 + โˆ†

Also ๐‘• ๐ท โ‰ก ๐‘™๐‘œ๐‘”๐ธ โ‰ก โˆ’ log๐ธโˆ’1

โ‰ก โˆ’log(1 โˆ’ โˆ‡) โˆต โˆ‡ โ‰ก 1 โˆ’ ๐ธโˆ’1

(iii) We know that โˆ‡ โ‰ก 1 โˆ’ ๐ธโˆ’1

โ‡’ โˆ‡ โ‰ก 1 โˆ’1

๐ธ

โ‰ก 1 โˆ’ ๐‘’โˆ’๐‘•๐ท โˆต ๐ธ = ๐‘’๐‘•๐ท

โ‡’ โˆ‡โ‰ก 1 โˆ’ 1 โˆ’ ๐‘•๐‘‘ +๐‘•2๐ท2

2!โˆ’

๐‘•3๐ท3

3!+ โ‹ฏ

โ‡’ โˆ‡โ‰ก ๐‘•๐‘‘ โˆ’๐‘•2๐ท2

2! +

๐‘•3๐ท3

3!+ โ‹ฏ

โˆด โˆ‡2 โ‰ก ๐‘•๐‘‘ โˆ’๐‘•2๐ท2

2! +

๐‘•3๐ท3

3!+ โ‹ฏ

2

โ‡’ โˆ‡2 โ‰ก ๐‘•2๐ท2 + ๐‘•2๐ท2

2!

2

+ โ‹ฏโˆ’ 2 ๐‘•๐‘‘ ๐‘•2๐ท2

2! + 2 ๐‘•๐‘‘

๐‘•3๐ท3

3! โˆ’โ‹ฏ

โ‡’ โˆ‡2 โ‰ก ๐‘•2๐ท2 โˆ’ ๐‘•3๐ท3 + ๐‘•4๐ท4

4+

๐‘•4๐ท4

3 โˆ’โ‹ฏ

โ‡’ โˆ‡2 โ‰ก ๐‘•2๐ท2 โˆ’ ๐‘•3๐ท3 +7

12๐‘•4๐ท4 โˆ’โ‹ฏ

Remark: In order to prove any relation, we can express the operators (โˆ† ,โˆ‡,๐›ฟ) in

terms of fundamental operator ๐ธ.

Example 11 Form the forward difference table for the function

๐‘“ ๐‘ฅ = ๐‘ฅ3 โˆ’ 2๐‘ฅ2 โˆ’ 3๐‘ฅ โˆ’ 1 for ๐‘ฅ = 0, 1, 2, 3, 4.

Hence or otherwise find โˆ†3๐‘“ ๐‘ฅ , also show that โˆ†4๐‘“ ๐‘ฅ = 0

Solution: ๐‘“ 0 = โˆ’1, ๐‘“ 1 = โˆ’5, ๐‘“ 2 = โˆ’7, ๐‘“ 3 = โˆ’1, ๐‘“ 4 = 19

Constructing the forward difference table:

๐’™ ๐’‡(๐’™) โˆ† โˆ†๐Ÿ โˆ†๐Ÿ‘ โˆ†๐Ÿ’ ๐ŸŽ โˆ’1 โˆ’4

1 โˆ’5 2 โˆ’2 6 ๐Ÿ โˆ’7 8 0 6 6 ๐Ÿ‘ โˆ’1 14 20 ๐Ÿ’ 19

From the table, we see that โˆ†3๐‘“ ๐‘ฅ = 6 and โˆ†4๐‘“ ๐‘ฅ = 0

Note: Using the formula โˆ†๐‘›๐‘“ ๐‘ฅ = ๐‘Ž0๐‘›! ๐‘•๐‘› , โˆ†3๐‘“ ๐‘ฅ = 1.3!. 1๐‘› = 6

Also โˆ†๐‘›+1๐‘“ ๐‘ฅ = 0 for a polynomial of degree ๐‘›, โˆด โˆ†4๐‘“ ๐‘ฅ = 0

Example 12 If for a polynomial, five observations are recorded as: ๐‘ฆ0 = โˆ’8,

๐‘ฆ1 = โˆ’6, ๐‘ฆ2 = 22, ๐‘ฆ3 = 148, ๐‘ฆ4 = 492, find ๐‘ฆ5.

Solution: ๐‘ฆ5 = ๐ธ5๐‘ฆ0 = (1 + โˆ†)5๐‘ฆ0 โˆต ๐ธ โ‰ก 1 + โˆ†

= ๐‘ฆ0 + 5๐ถ1โˆ†๐‘ฆ0 + 5๐ถ2โˆ†2๐‘ฆ0 + 5๐ถ3โˆ†

3๐‘ฆ0 + 5๐ถ4โˆ†4๐‘ฆ0 + โˆ†5๐‘ฆ0 โ€ฆโ‘ 

Constructing the forward difference table:

๐’™ ๐’š โˆ† โˆ†๐Ÿ โˆ†๐Ÿ‘ โˆ†๐Ÿ’ ๐’™๐ŸŽ โˆ’8

2 ๐’™๐Ÿ โˆ’6 26

28 72 ๐’™๐Ÿ 22 98 48

126 120 ๐’™๐Ÿ‘ 148 218

344 ๐’™๐Ÿ’ 492

From table โˆ†๐‘ฆ0 = 2, โˆ†2๐‘ฆ0 = 26 , โˆ†3๐‘ฆ0 = 72 , โˆ†3๐‘ฆ0 = 48 โ€ฆ โ‘ก

โ‡’ ๐‘ฆ5

= โˆ’8 + 5 2 + 10 26 + 10 72 + 5 48 = 1222 using โ‘ก in โ‘ 

6.4 Missing values of Data Missing data or missing values occur when an observation is missing for a

particular variable in a data sample. Concept of finite differences can help to locate

the requisite value using known concepts of curve fitting.

To determine the equation of a line (equation of degree one), we need at least two

given points. Similarly to trace a parabola (equation of degree two), at least three

points are imperative. Thus we essentially require ๐‘› + 1 known observations to

determine a polynomial of ๐‘›๐‘ก๐‘• degree.

To find missing values of data using finite differences, we presume the degree of

the polynomial by the number of known observations and use the result

โˆ†๐‘›+1๐‘“ ๐‘ฅ = 0 for a polynomial of degree ๐‘›.

Example 13 Use the concept of missing data to find ๐‘ฆ5 if ๐‘ฆ0 = โˆ’8, ๐‘ฆ1 = โˆ’6,

๐‘ฆ2 = 22, ๐‘ฆ3 = 148, ๐‘ฆ4 = 492

Solution: Constructing the forward difference table taking ๐‘ฆ5 as missing value

๐’™ ๐’š โˆ† โˆ†๐Ÿ โˆ†๐Ÿ‘ โˆ†๐Ÿ’ โˆ†๐Ÿ“ ๐’™๐’ โˆ’8

2 ๐’™๐Ÿ โˆ’6 26

28 72 ๐’™๐Ÿ 22 98 48

126 120 ๐‘ฆ5 โˆ’ 1222 ๐’™๐Ÿ‘ 148 218 ๐‘ฆ5 โˆ’ 1174

344 ๐‘ฆ5 โˆ’ 1054 ๐’™๐Ÿ’ 492 ๐‘ฆ5 โˆ’ 836

๐‘ฆ5 โˆ’ 492 ๐’™๐Ÿ“ ๐‘ฆ5

Since 5 observations are known, let us assume that the polynomial represented by

given data is of 4๐‘ก๐‘• degree. โˆด โˆ†5๐‘ฆ = 0 โ‡’ ๐‘ฆ5โˆ’ 1222 = 0 or ๐‘ฆ5 = 1222

Example 14 Find the missing values in the following table

๐’™ ๐ŸŽ ๐Ÿ“ ๐Ÿ๐ŸŽ ๐Ÿ๐Ÿ“ ๐Ÿ๐ŸŽ ๐Ÿ๐Ÿ“

๐’‡(๐’™) 6 ? 13 17 22 ?

Solution: Since there are 4 known values of ๐‘“ ๐‘ฅ in the given data, let us assume

the polynomial represented by the given data to be of 3๐‘Ÿ๐‘‘degree.

Constructing the forward difference table taking missing values as ๐‘Ž and ๐‘.

๐’™ ๐’š โˆ† โˆ†๐Ÿ โˆ†๐Ÿ‘ โˆ†๐Ÿ’ ๐ŸŽ 6

๐‘Ž โˆ’ 6 ๐Ÿ“ ๐‘Ž 19 โˆ’ 2๐‘Ž

13 โˆ’ ๐‘Ž 3๐‘Ž โˆ’ 28 ๐Ÿ๐ŸŽ 13 ๐‘Ž โˆ’ 9 38 โˆ’ 4๐‘Ž

4 10 โˆ’ ๐‘Ž 15 17 1 ๐‘Ž + ๐‘ โˆ’ 38

5 ๐‘ โˆ’ 28 2๐ŸŽ 22 ๐‘ โˆ’ 27

๐‘ โˆ’ 22

25 ๐‘

Since the polynomial represented by the given data is considered to be of

3๐‘Ÿ๐‘‘degree, 4๐‘กโ„Žand higher order differences are zero i.e. โˆ†4๐‘ฆ = 0

โˆด 38 โˆ’ 4๐‘Ž = 0 and ๐‘Ž + ๐‘ โˆ’ 38 = 0 Solving these two equations, we get ๐‘Ž = 9.5 ๐‘ = 28.5

6.5 Finding Differences Using Factorial Notation We can conveniently find the forward differences of a polynomial using factorial

notation.

6.5.1 Factorial Notation of a Polynomial

A product of the form ๐‘ฅ ๐‘ฅ โˆ’ 1 ๐‘ฅ โˆ’ 2 โ€ฆ ๐‘ฅ โˆ’ ๐‘Ÿ + 1 is called a factorial

polynomial and is denoted by ๐‘ฅ ๐‘Ÿ

โˆด ๐‘ฅ = ๐‘ฅ

๐‘ฅ 2 = ๐‘ฅ(๐‘ฅ โˆ’ 1)

๐‘ฅ 3 = ๐‘ฅ ๐‘ฅ โˆ’ 1 (๐‘ฅ โˆ’ 2)

โ‹ฎ

๐‘ฅ ๐‘› = ๐‘ฅ ๐‘ฅ โˆ’ 1 ๐‘ฅ โˆ’ 2 โ€ฆ ๐‘ฅ โˆ’ ๐‘› + 1

In case, the interval of differencing is ๐‘•, then

๐‘ฅ ๐‘› = ๐‘ฅ ๐‘ฅ โˆ’ ๐‘• ๐‘ฅ โˆ’ ๐‘• โ€ฆ ๐‘ฅ โˆ’ ๐‘›โ€“ 1 ๐‘•

The results of differencing ๐‘ฅ ๐‘Ÿ are analogous to that differentiating ๐‘ฅ๐‘Ÿ

โˆด โˆ† ๐‘ฅ ๐‘› = ๐‘› ๐‘ฅ ๐‘›โˆ’1

โˆ†2 ๐‘ฅ ๐‘› = ๐‘›(๐‘› โˆ’ 1) ๐‘ฅ ๐‘›โˆ’2

โˆ†3 ๐‘ฅ ๐‘› = ๐‘› ๐‘› โˆ’ 1 (๐‘› โˆ’ 2) ๐‘ฅ ๐‘›โˆ’3

โ‹ฎ

โˆ†๐‘› ๐‘ฅ ๐‘› = ๐‘› ๐‘› โˆ’ 1 ๐‘› โˆ’ 2 โ€ฆ 3.2.1 = ๐‘›!

โˆ†๐‘›+1 ๐‘ฅ ๐‘› = 0

Also 1

โˆ† ๐‘ฅ =

๐‘ฅ 2

2 ,

1

โˆ† ๐‘ฅ 2 =

๐‘ฅ 3

3 and so on

1

โˆ†2 ๐‘ฅ =

1

โˆ† ๐‘ฅ 2

2 =

๐‘ฅ 3

6

โ‹ฎ

Remark:

i. Every polynomial of degree ๐‘› can be expressed as a factorial

polynomial of the same degree and vice-versa.

ii. The coefficient of highest power of ๐‘ฅ and also the constant term

remains unchanged while transforming a polynomial to factorial

notation.

Example15 Express the polynomial 2๐‘ฅ2 + 3๐‘ฅ + 1 in factorial notation.

Solution: 2๐‘ฅ2 โˆ’ 3๐‘ฅ + 1 = 2๐‘ฅ2 โˆ’ 2๐‘ฅ + 5๐‘ฅ + 1

= 2๐‘ฅ ๐‘ฅ โˆ’ 1 + 5๐‘ฅ + 1

= 2 ๐‘ฅ 2 + 5 ๐‘ฅ + 1

Example16 Express the polynomial 2๐‘ฅ3 โˆ’ ๐‘ฅ2 + 3๐‘ฅ โˆ’ 4 in factorial notation.

Solution: 2๐‘ฅ3 โˆ’ ๐‘ฅ2 + 3๐‘ฅ โˆ’ 4 = 2 ๐‘ฅ 3 + ๐ด ๐‘ฅ 2 + ๐ต ๐‘ฅ โˆ’ 4

Using remarks i and ii

= 2๐‘ฅ ๐‘ฅ โˆ’ 1 ๐‘ฅ โˆ’ 2 + ๐ด๐‘ฅ ๐‘ฅ โˆ’ 1 + ๐ต๐‘ฅ โˆ’ 4

= 2๐‘ฅ3 + ๐ด โˆ’ 6 ๐‘ฅ2 + โˆ’๐ด + ๐ต + 4 ๐‘ฅ โˆ’ 4

Comparing the coefficients on both sides

A โˆ’ 6 = โˆ’1, โˆ’๐ด + B + 4 = 3

โ‡’ A = 5, B = 4

โˆด 2๐‘ฅ3 โˆ’ ๐‘ฅ2 + 3๐‘ฅ โˆ’ 4 = 2 ๐‘ฅ 3 + 5 ๐‘ฅ 2 + 4 ๐‘ฅ โˆ’ 4

We can also find factorial polynomial using synthetic division as shown:

Coefficients ๐ด and ๐ต can be found as remainders under ๐‘ฅ2 and ๐‘ฅ columns

๐‘ฅ3 ๐‘ฅ2 ๐‘ฅ

1 2 โ€“1 3 โ€“4

โ€“ 2 1

2 2 1 4 = ๐ต

โ€“ 4

2 5 = A

Example 17 Find โˆ†3๐‘“ ๐‘ฅ for the polynomial ๐‘“ ๐‘ฅ = ๐‘ฅ3 โˆ’ 2๐‘ฅ2 โˆ’ 3๐‘ฅ โˆ’ 1

Also show that โˆ†4๐‘“ ๐‘ฅ = 0

Solution: Finding factorial polynomial of ๐‘“ ๐‘ฅ as shown:

Let ๐‘ฅ3 โˆ’ 2๐‘ฅ2 โˆ’ 3๐‘ฅ โˆ’ 1 = ๐‘ฅ 3 + ๐ด ๐‘ฅ 2 + ๐ต ๐‘ฅ โˆ’ 1

Coefficients ๐ด and ๐ต can be found as remainders under ๐‘ฅ2 and ๐‘ฅ columns

๐‘ฅ3 ๐‘ฅ2 ๐‘ฅ

1 1 โ€“2 โ€“3 โ€“1

โ€“ 1 โ€“1

2 1 โ€“1 โ€“ 4 = ๐ต

โ€“ 2

1 1 = A

โˆด ๐‘“ ๐‘ฅ = ๐‘ฅ3 โˆ’ 2๐‘ฅ2 โˆ’ 3๐‘ฅ โˆ’ 1 = ๐‘ฅ 3 + ๐‘ฅ 2 โˆ’ 4 ๐‘ฅ โˆ’ 1

โˆ†3๐‘“ ๐‘ฅ = โˆ†3 ๐‘ฅ 3 + ๐‘ฅ 2 โˆ’ 4 ๐‘ฅ โˆ’ 1

= 3! + 0 = 6 โˆต โˆ†๐‘› ๐‘ฅ ๐‘› = ๐‘›! and โˆ†๐‘›+1 ๐‘ฅ ๐‘› = 0

Also โˆ†4๐‘“ ๐‘ฅ = โˆ†4 ๐‘ฅ 3 + ๐‘ฅ 2 โˆ’ 4 ๐‘ฅ โˆ’ 1 = 0

Note: Results obtained are same as in Example 11, where we have used

forward difference table to compute the differences.

Example 18: Obtain the function whose first difference is 8๐‘ฅ3 โˆ’ 3๐‘ฅ2 + 3๐‘ฅ โˆ’ 1

Solution: Let ๐‘“ ๐‘ฅ be the function whose first difference is 8๐‘ฅ3 โˆ’ 3๐‘ฅ2 + 3๐‘ฅ โˆ’ 1

โ‡’ โˆ†๐‘“ ๐‘ฅ = 8๐‘ฅ3 โˆ’ 3๐‘ฅ2 + 3๐‘ฅ โˆ’ 1

Let 8๐‘ฅ3 โˆ’ 3๐‘ฅ2 + 3๐‘ฅ โˆ’ 1 = 8 ๐‘ฅ 3 + ๐ด ๐‘ฅ 2 + ๐ต ๐‘ฅ โˆ’ 1

Coefficients ๐ด and ๐ต can be found as remainders under ๐‘ฅ2 and ๐‘ฅ columns

๐‘ฅ3 ๐‘ฅ2 ๐‘ฅ

1 8 โ€“3 3 โ€“1

โ€“ 8 5

2 8 5 8 = ๐ต

โ€“ 16

8 21 = A

โˆด โˆ†๐‘“ ๐‘ฅ = 8๐‘ฅ3 โˆ’ 3๐‘ฅ2 + 3๐‘ฅ โˆ’ 1 = 8 ๐‘ฅ 3 + 21 ๐‘ฅ 2 + 8 ๐‘ฅ โˆ’ 1

๐‘“ ๐‘ฅ = 1

โˆ† 8 ๐‘ฅ 3 + 21 ๐‘ฅ 2 + 8 ๐‘ฅ โˆ’ 1

=8 ๐‘ฅ 4

4+

21 ๐‘ฅ 3

3+

8 ๐‘ฅ 2

2โˆ’ ๐‘ฅ โˆต

1

โˆ† ๐‘ฅ =

๐‘ฅ 2

2 ,

1

โˆ† ๐‘ฅ 2 =

๐‘ฅ 3

3, โ€ฆ

= 2 ๐‘ฅ 4 + 7 ๐‘ฅ 3 + 4 ๐‘ฅ 2 โˆ’ [๐‘ฅ] = 2๐‘ฅ ๐‘ฅ โˆ’ 1 ๐‘ฅ โˆ’ 2 ๐‘ฅ โˆ’ 3 + 7๐‘ฅ ๐‘ฅ โˆ’ 1 ๐‘ฅ โˆ’ 2 + 4๐‘ฅ ๐‘ฅ โˆ’ 1 โˆ’ ๐‘ฅ

= ๐‘ฅ 2 ๐‘ฅ โˆ’ 1 ๐‘ฅ โˆ’ 2 ๐‘ฅ โˆ’ 3 + 7 ๐‘ฅ โˆ’ 1 ๐‘ฅ โˆ’ 2 + 4 ๐‘ฅ โˆ’ 1 โˆ’ 1 = ๐‘ฅ 2๐‘ฅ3 โˆ’ 5๐‘ฅ2 + 5๐‘ฅ โˆ’ 3 = 2๐‘ฅ4 โˆ’ 5๐‘ฅ3 + 5๐‘ฅ2 โˆ’ 3๐‘ฅ

โ‡’ ๐‘“ ๐‘ฅ = 2๐‘ฅ4 โˆ’ 5๐‘ฅ3 + 5๐‘ฅ2 โˆ’ 3๐‘ฅ

6.6 Series Summation Using Finite Differences The method of finite differences may be used to find sum of a given series by

applying the following algorithm:

1. Let the series be represented by ๐‘ข0, ๐‘ข1 , ๐‘ข2 , ๐‘ข3, โ€ฆ

2. Use the relation ๐‘ข๐‘Ÿ = ๐ธ๐‘Ÿ๐‘ข0 to introduce the operator ๐ธ in the series.

3. Replace ๐ธ by โˆ† by substituting ๐ธ โ‰ก 1 + โˆ† and find the sum the series by

any of the applicable methods like sum of a G.P., exponential or logarithmic

series or by binomial expansion and operate term by term on ๐‘ข0 to find the

required sum.

Example 19 Prove the following using finite differences:

i. ๐‘ข0 + ๐‘ข1๐‘ฅ

1!+ ๐‘ข2

๐‘ฅ2

2!+ โ‹ฏ = ๐‘’๐‘ฅ ๐‘ข0 + ๐‘ฅ

โˆ† ๐‘ข0

1!+ ๐‘ฅ2 โˆ†2 ๐‘ข0

2!+ โ‹ฏ

ii. ๐‘ข0 โˆ’ ๐‘ข1 + ๐‘ข2 โˆ’ ๐‘ข3 + โ‹ฏ = 1

2 ๐‘ข0 โˆ’

1

4โˆ† ๐‘ข0 +

1

8โˆ†2 ๐‘ข0 โˆ’โ‹ฏ

Solution: i. ๐‘ข0 + ๐‘ข1๐‘ฅ

1!+ ๐‘ข2

๐‘ฅ2

2!+ โ‹ฏ = ๐‘ข0 +

๐‘ฅ

1!๐ธ๐‘ข0 +

๐‘ฅ2

2!๐ธ2๐‘ข0 + โ‹ฏ

= 1 +๐‘ฅ๐ธ

1!+

๐‘ฅ2๐ธ2

2!๐‘ข0 + โ‹ฏ ๐‘ข0

= ๐‘’๐‘ฅ๐ธ ๐‘ข0 = ๐‘’๐‘ฅ(1+โˆ†) ๐‘ข0

= ๐‘’๐‘ฅ๐‘’๐‘ฅโˆ† ๐‘ข0

= ๐‘’๐‘ฅ 1 +๐‘ฅโˆ†

1!+

๐‘ฅ2โˆ†2

2!+ โ‹ฏ ๐‘ข0

= ๐‘’๐‘ฅ ๐‘ข0 + ๐‘ฅโˆ† ๐‘ข0

1!+ ๐‘ฅ2 โˆ†2 ๐‘ข0

2!+ โ‹ฏ

ii. ๐‘ข0 โˆ’ ๐‘ข1 + ๐‘ข2 โˆ’ ๐‘ข3 + โ‹ฏ = ๐‘ข0 โˆ’ ๐ธ๐‘ข0 + ๐ธ2๐‘ข0 โˆ’ ๐ธ3๐‘ข0 + โ‹ฏ

= 1 โˆ’ ๐ธ + ๐ธ2 โˆ’ ๐ธ3 + โ‹ฏ ๐‘ข0

= 1 + ๐ธ โˆ’1 ๐‘ข0

= 2 + โˆ† โˆ’1 ๐‘ข0

= 2โˆ’1 1 +โˆ†

2 โˆ’1

๐‘ข0

=1

2 1 โˆ’

โˆ†

2+

โˆ†2

4โˆ’โ‹ฏ ๐‘ข0

= 1

2 ๐‘ข0 โˆ’

1

4โˆ† ๐‘ข0 +

1

8โˆ†2 ๐‘ข0 โˆ’โ‹ฏ

Example 20 Sum the series 12, 22, 32,โ€ฆ, ๐‘›2 using finite differences.

Solution: Let the series 12, 22, 32,โ€ฆ, ๐‘›2 be represented by ๐‘ข0, ๐‘ข1 , ๐‘ข2 ,โ€ฆ, ๐‘ข๐‘›โˆ’1

โˆด ๐‘† = ๐‘ข0 + ๐‘ข1 + ๐‘ข2 + โ‹ฏ+๐‘ข๐‘›โˆ’1

โ‡’ ๐‘† = ๐‘ข0 + ๐ธ๐‘ข0 + ๐ธ2๐‘ข0 + โ‹ฏ+๐ธ๐‘›โˆ’1๐‘ข0

= 1 + ๐ธ + ๐ธ2 + โ‹ฏ+ ๐ธ๐‘›โˆ’1 ๐‘ข0

=1โˆ’๐ธ๐‘›

1โˆ’๐ธ๐‘ข0 =

๐ธ๐‘›โˆ’1

๐ธโˆ’1๐‘ข0 โˆต ๐‘†๐‘› = ๐‘Ž

1โˆ’๐‘Ÿ๐‘›

1โˆ’๐‘Ÿ

โ‡’ ๐‘† =(1+โˆ†)๐‘›โˆ’1

(1+โˆ†)โˆ’1๐‘ข0

=1

โˆ† 1 + ๐‘›โˆ† +

๐‘›(๐‘›โˆ’1)

2!โˆ†2 +

๐‘› ๐‘›โˆ’1 (๐‘›โˆ’2)

3!โˆ†3 + โ‹ฏ โˆ’ 1 ๐‘ข0

= ๐‘›๐‘ข0 +๐‘›(๐‘›โˆ’1)

2!โˆ†๐‘ข0 +

๐‘› ๐‘›โˆ’1 (๐‘›โˆ’2)

3!โˆ†2๐‘ข0 + โ‹ฏ

Now ๐‘ข0 = 12 = 1

โˆ†๐‘ข0 = ๐‘ข1 โˆ’ ๐‘ข0 = 22 โˆ’ 12 = 3

โˆ†2๐‘ข0 = โˆ†๐‘ข1 โˆ’ โˆ†๐‘ข0 = ๐‘ข2 โˆ’ 2๐‘ข1 + ๐‘ข0 = 32 โˆ’ 2( 22) + 12 = 2

โˆ†3๐‘ข0, โˆ†4๐‘ข0 โ€ฆ are all zero as given series is an expression of degree 2

โˆด ๐‘† = ๐‘› + ๐‘›(๐‘›โˆ’1)

2! 3 +

๐‘› ๐‘›โˆ’1 (๐‘›โˆ’2)

3! 2 + 0

= ๐‘› +3๐‘› ๐‘›โˆ’1

2+

๐‘› ๐‘›โˆ’1 ๐‘›โˆ’2

3

=1

6 6๐‘› + 9๐‘› ๐‘› โˆ’ 1 + 2๐‘› ๐‘› โˆ’ 1 ๐‘› โˆ’ 2

=1

6๐‘› 6 + 9๐‘› โˆ’ 9 + 2๐‘›2 โˆ’ 6๐‘› + 4

=1

6๐‘› 2๐‘›2 + 3๐‘› + 1 =

1

6๐‘› ๐‘› + 1 (2๐‘› + 1)

Example 21 Prove that ๐‘ข0 + ๐‘ข1๐‘ฅ + ๐‘ข2๐‘ฅ2 + โ‹ฏ =

๐‘ข0

1โˆ’๐‘ฅ+

๐‘ฅโˆ†๐‘ข0

(1โˆ’๐‘ฅ)2+

๐‘ฅ2โˆ†๐‘ข02

(1โˆ’๐‘ฅ)3+ โ‹ฏ

and hence evaluate 1.2 + 2.3๐‘ฅ + 3.4๐‘ฅ2 + 4.5๐‘ฅ3 + โ‹ฏ

Solution: ๐‘ข0 + ๐‘ข1๐‘ฅ + ๐‘ข2๐‘ฅ2 + โ‹ฏ = ๐‘ข0 + ๐‘ฅ๐ธ๐‘ข0 + ๐‘ฅ2๐ธ

2๐‘ข0 + โ‹ฏ

= 1 + ๐‘ฅ๐ธ + ๐‘ฅ2๐ธ2 + โ‹ฏ ๐‘ข0

=1

1โˆ’๐‘ฅ๐ธ๐‘ข0 โˆต ๐‘†โˆž =

๐‘Ž

1โˆ’๐‘Ÿ

=1

1โˆ’๐‘ฅ(1+โˆ†)๐‘ข0 =

1

(1โˆ’๐‘ฅ)โˆ’๐‘ฅโˆ†๐‘ข0

=1

1โˆ’๐‘ฅ

1

1โˆ’๐‘ฅโˆ†

1โˆ’๐‘ฅ ๐‘ข0

=1

1โˆ’๐‘ฅ 1 โˆ’

๐‘ฅโˆ†

1โˆ’๐‘ฅ โˆ’1๐‘ข0

=1

1โˆ’๐‘ฅ 1 +

๐‘ฅโˆ†

1โˆ’๐‘ฅ +

๐‘ฅ2โˆ†2

(1โˆ’๐‘ฅ)2+ โ‹ฏ ๐‘ข0

= ๐‘ข0

1โˆ’๐‘ฅ+

๐‘ฅโˆ†๐‘ข0

(1โˆ’๐‘ฅ)2+

๐‘ฅ2โˆ†๐‘ข02

(1โˆ’๐‘ฅ)3+ โ‹ฏ = R.H.S.

Now to evaluate the series 1.2 + 2.3๐‘ฅ + 3.4๐‘ฅ2 + 4.5๐‘ฅ3 + โ‹ฏ

Let ๐‘ข0 = 1.2 = 2, ๐‘ข1 = 2.3 = 6, ๐‘ข2 = 3.4 = 12, ๐‘ข3 = 4.5 = 20,โ€ฆ

Forming forward difference table to calculate the differences

๐’– โˆ† โˆ†๐Ÿ โˆ†๐Ÿ‘ โˆ†๐Ÿ’ ๐’–๐ŸŽ = ๐Ÿ.๐Ÿ = ๐Ÿ

4 ๐’–๐Ÿ = ๐Ÿ.๐Ÿ‘ = ๐Ÿ” 2

6 0 ๐’–๐Ÿ = ๐Ÿ‘.๐Ÿ’ = ๐Ÿ๐Ÿ 2 0

8 0 ๐’–๐Ÿ‘ = ๐Ÿ’.๐Ÿ“ = ๐Ÿ๐ŸŽ 2

10 ๐’–๐Ÿ’ = ๐Ÿ“.๐Ÿ” = ๐Ÿ‘๐ŸŽ

โˆด 1.2 + 2.3๐‘ฅ + 3.4๐‘ฅ2 + 4.5๐‘ฅ3 + โ‹ฏ = ๐‘ข0

1โˆ’๐‘ฅ+

๐‘ฅโˆ†๐‘ข0

(1โˆ’๐‘ฅ)2+

๐‘ฅ2โˆ†๐‘ข02

(1โˆ’๐‘ฅ)3+ โ‹ฏ

=2

1โˆ’๐‘ฅ+

4๐‘ฅ

(1โˆ’๐‘ฅ)2+

2๐‘ฅ2

(1โˆ’๐‘ฅ)3+ 0

=2

(1โˆ’๐‘ฅ)3

Exercise 6A

1. Express ๐‘ฆ4 in terms of successive forward differences.

2. Prove that โˆ†๐‘›๐‘’3๐‘ฅ+5 = ๐‘’3 โˆ’ 1 ๐‘›๐‘’3๐‘ฅ+5

3. Evaluate โˆ†2 5๐‘ฅ+12

๐‘ฅ2+5๐‘ฅ+6

4. If ๐‘ข0 = 3, ๐‘ข1 = 12, ๐‘ข2 = 81, ๐‘ข3 = 2000, ๐‘ข4 = 100, calculate โˆ†4๐‘ข0.

5. Prove that ฮผ =2+โˆ†

2 1+โˆ†= 1 +

1

4ฮด2

6. Find the missing value in the following table

๐‘ฅ 0 5 10 15 20 25

๐‘ฆ 6 10 - 17 - 31

7. Sum the series 13, 23, 33,โ€ฆ, ๐‘›3 using finite differences.

Answers

1. ๐‘ฆ4 = ๐‘ฆ0 + 4โˆ†๐‘ฆ0 + 6โˆ†2๐‘ฆ0 + 4โˆ†3๐‘ฆ0 + โˆ†4๐‘ฆ0

3. โ€“3(๐‘ฅ2+9๐‘ฅ+15)

๐‘ฅ(๐‘ฅ+1)(๐‘ฅ+4)(๐‘ฅ+5)(๐‘ฅ+8)(๐‘ฅ+9)

4. โˆ’7459

6. 13.25, 22.5

Recommended