Chapter5 Image Restoration - USTChome.ustc.edu.cn/~xuedixiu/image.ustc/course/dip/DIP14-ch5.pdf ·...

Preview:

Citation preview

Chapter5 Image Restoration

• Preview5 1 I d i• 5.1 Introduction

• 5.2 Diagonalizationi d i ( i fil i )• 5.3 Unconstrained Restoration( inverse filtering)

• 5.4 Constrained Restoration( wiener filtering)• 5.5 Estimating the Degradation Function• 5.6 Geometric Distortion Correction• 5.7 image inpaiting

2003 Digital Image Processing Prof.Zhengkai Liu Dr.Rong Zhang

1

5.1 Introduction5.1.1 Purpose

"compensate for" or "undo" defects which degrade an image.

5.1.2 Degrade Causes

( ) h i b l

co pe s e o o u do de ec s w c deg de ge.

(1) atmospheric turbulence(2) sampling, quantization p254(3) motion blur(4) camera misfocus(5) noise

2003 Digital Image Processing Prof.Zhengkai Liu Dr.Rong Zhang

2

5.1 Introduction5.1.3 degradation model

n(x,y)

f( ) H g(x y)f(x,y) H + g(x,y)

Assume it is a linear, position- invariant system, We can model a blurred image by

( , ) ( , )* ( , ) ( , )g x y f x y h x y n x y= +

h h( ) i ll d i d i ( )Where h(x,y) is called as Point Spread Function (PSF)

∑∑− −

+−−=1 1

),(),(),(),(M N

yxnnymxhnmfyxg2003 Digital Image Processing

Prof.Zhengkai Liu Dr.Rong Zhang3

∑∑= =

+0 0

),(),(),(),(m n

yxnnymxhnmfyxg

5.1 Introduction5.1.4 Methods

Unconstrained Restoration: inverse filteringConstrained Restoration: wiener filtering

5.1.5 problem expression

Estimate a true image f(x,y) from a degraded image g(x,y)b d i k l d f h( ) d h i i lbased on prior knowledge of PSF h(x,y)and the statisticalproperties of noise n(x,y)

2003 Digital Image Processing Prof.Zhengkai Liu Dr.Rong Zhang

4

5.2 Diagonalization 5.2.1 Matrix expression of degradation model: 1-D

( ) ( )* ( )g x f x h x=

( ) 0 1( )

f x x Af x

≤ ≤ −⎧= ⎨( )

0 elseef x = ⎨⎩

( ) 0 1( )

0 elsee

h x x Bh x

≤ ≤ −⎧= ⎨⎩ 0 else⎩

2003 Digital Image Processing Prof.Zhengkai Liu Dr.Rong Zhang

5

5.2 Diagonalization 5.2.1 Matrix expression of degradation model: 1-D

1

0( ) ( ) ( ) ( )

M

e e e eg x f m h x m n x−

= − +∑ x=0 1 M-1

M=A+B-1

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤

0m= x 0,1,…,M 1

(0) (0) ( 1) ( 1) (0) (0)(1) (1) (0) ( 2) (1) (1)

e e e e e e

e e e e e e

g h h h M f ng h h h M f n

g Hf n

− − +⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− +⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= + = = +⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥( -1) ( 1) ( 2) (0) ( -1) ( 1)e e e e e eg M h M h M h f M n M⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − −⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

2003 Digital Image Processing Prof.Zhengkai Liu Dr.Rong Zhang

6

5.2 Diagonalization 5.2.1 Matrix expression of degradation model: 1-D

( ) ( )h x h x M= +( ) ( )e eh x h x M+(0) ( 1) (1)e e eh h M h−⎡ ⎤

⎢ ⎥(1) (0) (2)

( 1) ( 2) (0)

e e eh h hH

h M h M h

⎢ ⎥⎢ ⎥=⎢ ⎥⎢ ⎥⎢ ⎥⎣ ⎦( 1) ( 2) (0)e e eh M h M h⎢ ⎥− −⎢ ⎥⎣ ⎦

H is circulant

2003 Digital Image Processing Prof.Zhengkai Liu Dr.Rong Zhang

7

5.2 Diagonalization 5.2.1 Matrix expression of degradation model: 2-D

( , ) 0 1 and 0 1( )

f x y x A y Bf x

≤ ≤ − ≤ ≤ −⎧= ⎨( )

0 A 1 or B 1ef xx M y N

= ⎨ ≤ ≤ − ≤ ≤ −⎩

( , ) 0 1 and 0 1( )

h x y x C y Dh x

≤ ≤ − ≤ ≤ −⎧= ⎨( )

0 A 1 or B 1eh xx M y N

= ⎨ ≤ ≤ − ≤ ≤ −⎩

2003 Digital Image Processing Prof.Zhengkai Liu Dr.Rong Zhang

8

5.2 Diagonalization 5.2.1 Matrix expression of degradation model: 2-D

y=0 1 N-1

x=0,1,…,M-11 1

0 0( , ) ( , ) ( , )

M N

e e em n

g x y f m n h x m y n− −

= =

= − −∑∑y 0,1,…,N 1

0 1 1

1 0 2

(0) (0)(1) (1)

M e e

e e

H H H f nH H H f n

g Hf n

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥= + = +⎢ ⎥ ⎢ ⎥ ⎢ ⎥

1 2 0 ( -1) ( 1)M M e e

g f

H H H f MN n MN− −

⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

H is block-circulant

2003 Digital Image Processing Prof.Zhengkai Liu Dr.Rong Zhang

9

5.2 Diagonalization 5.2.1 Matrix expression of degradation model: 2-D

( 0) ( 1) ( 1)h i h i N h i−⎡ ⎤

where

( ,0) ( , 1) ( ,1)( ,1) ( ,0) ( , 2)

e e e

e e ei

h i h i N h ih i h i h i

H

−⎡ ⎤⎢ ⎥⎢ ⎥=⎢ ⎥⎢ ⎥( , 1) ( , 2) ( ,0)e e eh i N h i N h i⎢ ⎥− −⎢ ⎥⎣ ⎦

2003 Digital Image Processing Prof.Zhengkai Liu Dr.Rong Zhang

10

5.2 Diagonalization 5.2.2 Diagonliztion: 1-D

The eigenvector and eigenvalue of a circulant matrix H are

2 2( ) 1 exp exp ( 1)T

w k j k j M kM Mπ π⎡ ⎤⎛ ⎞ ⎛ ⎞= −⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

g g

M M⎝ ⎠ ⎝ ⎠⎣ ⎦

2 2( ) (0) ( 1)exp (1)exp ( 1)j jk h h M k h M kπ πλ ⎛ ⎞ ⎛ ⎞= + + +⎜ ⎟ ⎜ ⎟( ) (0) ( 1)exp (1)exp ( 1)e e ek h h M k h M kM M

λ = + − − + + − −⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

Combine the M eigenvectors to a matrix

[ (0) (1) ( 1)]W w w w M= −g

then the H can be expressed as1H WDW −= ( , ) ( )D k k kλ=

then the H can be expressed aswhere

2003 Digital Image Processing Prof.Zhengkai Liu Dr.Rong Zhang

11

5.2 Diagonalization 5.2.2 Diagonliztion: 1-D

g Hf n= +for

1 1 1

1 1 1

W g W Hf W nW WDW f W n

− − −

− − −

= +

= +1 1DW f W n− −= +

( ) ( ) ( ) ( )G u H u F u N u+( ) ( ) ( ) ( )G u H u F u N u= +

2003 Digital Image Processing Prof.Zhengkai Liu Dr.Rong Zhang

12

5.2 Diagonalization 5.2.2 Diagonliztion: 2-D

2( , ) exp NW i m j im WMπ⎛ ⎞= ⎜ ⎟

⎝ ⎠

2( , ) expNW k n j knNπ⎛ ⎞= ⎜ ⎟

⎝ ⎠

1H WDW −= ( , ) ( , ) ( , ) ( , )G u v H u v F u v N u v= +

g(x,y) = f(x,y)*h(x,y) +n(x,y) in Spatial Coordinates

G(u,v) = F(u,v)H(u,v) +N(u,v) in frequency domain

g = Hf + n in vector form

2003 Digital Image Processing Prof.Zhengkai Liu Dr.Rong Zhang

13

5.3 Inverse Filtering5.3 Inverse Filtering5.3.1 assumption

H i i d th i i li iblH is given, and the noise is negligible

G( )

5.3.2 degradation model

F(u,v) H G(u,v)

( , ) ( , ) ( , )G u v H u v F u v=

2003 Digital Image Processing Prof.Zhengkai Liu Dr.Rong Zhang

14

5.3 Inverse Filtering5.3 Inverse Filtering5.3.3 restoration

( , )ˆ ( , ) ( , ) ( , )( , ) I

G u vF u v G u v H u vH u v

= =

1( , )( , )IH u v

H u v= deconvolution

5.3.4 properties ( , )ˆ ( , )( )

G u vF u vH u v

=( , )

( , ) ( , ) ( , )( , )

H u vH u v F u v N u v

H u v+

=( , )( , )( , )( , )

N u vF u vH u v

= +

2003 Digital Image Processing Prof.Zhengkai Liu Dr.Rong Zhang

15

5.3 Inverse Filtering5.3 Inverse Filtering5.3.4 properties

sensitive to additive noise: if H(u,v) has zero or very small value,the N(u,v)/H(u,v) could easily dominate the estimate

5.3.5 improvements p2 2 2

01/ ( , ) if ( , )

1 elseH u v u v w

M u v⎧ + <

= ⎨⎩

H(u,v)⎩

or if ( , )

( , )1/ ( , ) elsek H u v d

M u vH u v

<⎧= ⎨⎩

u,v

2003 Digital Image Processing Prof.Zhengkai Liu Dr.Rong Zhang

16

5.3 Inverse Filtering5.3.4 examples: without noise

Original image Blurred image Restored image

2003 Digital Image Processing Prof.Zhengkai Liu Dr.Rong Zhang

17

5.3 Inverse Filtering5.3.4 examples: with noise

Blurred and noised image Restored image

2003 Digital Image Processing Prof.Zhengkai Liu Dr.Rong Zhang

18

5.3 Inverse Filtering5.3.4 examples: deferent cutoff

2003 Digital Image Processing Prof.Zhengkai Liu Dr.Rong Zhang

19

5 4 Wiener Filtering5.4 Wiener Filtering5.4.1 assumption

H is given, and consider the image and noise as random processes

5 4 2 request5.4.2 requestThe mean square error between uncorrupted image and estimated image is minimized This error measure is given byimage is minimized. This error measure is given by

{ }{ }2 2ˆ( )e E f f= −

2003 Digital Image Processing Prof.Zhengkai Liu Dr.Rong Zhang

20

5 4 Wiener Filtering5.4 Wiener Filtering5.4.3 restoration

ˆ ( , ) ( , ) ( , )WF u v G u v H u v=

Wi filt2

2

( , )1( , )( , ) ( , ) ( , ) / ( , )

Wn f

H u vH u v

H u v H u v S u v S u v= ×

+

Wiener filter, 1942

*

2( , )

( , ) ( , ) / ( , )n f

H u vH u v S u v S u v

=+ f

where2( , ) ( , )nS u v N u v= Power spectrum of the noise

2( , ) ( , )fS u v F u v= Power spectrum of the undegraded image

2003 Digital Image Processing Prof.Zhengkai Liu Dr.Rong Zhang

21

5 4 Wiener Filtering5.4 Wiener Filtering5 4 5 estimate the power spectrum S (u v)= S (u v) / |H(u v)|5.4.5 estimate the power spectrum

Sn(u,v)

Sf(u,v)= Sg(u,v) / |H(u,v)|

2( , ) ( , ) ( , ) ( , )g f nS u v H u v S u v S u v= +

u,vSg(u,v)

5.4.4 properties

•optimal in terms of the mean square error

Wh H( ) 0 H ( ) 0•When H(u,v)=0, Hw(u,v)=0

2003 Digital Image Processing Prof.Zhengkai Liu Dr.Rong Zhang

22

5.4 Wiener Filtering5.4 Wiener Filtering5.4.5 experimental results:

2003 Digital Image Processing Prof.Zhengkai Liu Dr.Rong Zhang

23

5.4 Wiener Filtering5 4 5 experimental results:5.4.5 experimental results:

The first raw:Image corrupted byImage corrupted bymotion blur andadditive noise

The second raw:R l f i fil iResults of inverse filtering

The third raw:The third raw:Results of Wiener filtering

2003 Digital Image Processing Prof.Zhengkai Liu Dr.Rong Zhang

24

5 5Estimating the Degradation Function5.5Estimating the Degradation Function(blind deconvolution)

5.5.1 Estimation by image observation

(1) Choose observed sub-image ( , )sg x y(1) Choose observed sub image ( , )sg y

(2) Denote the constructed sub-image as ˆ ( , )sf x y

(3) Assume noise is negligible

thenthen( , )( , ) ˆ ( )

ss

G u vH u vF u v

=( , )sF u v

2003 Digital Image Processing Prof.Zhengkai Liu Dr.Rong Zhang

25

5 5Estimating the Degradation Function5.5Estimating the Degradation Function 5.5.2 Estimation by experimentation

δ(x y) h(x y) g(x y)If f(x,y)=δ(x,y)

Impulseδ(x,y) h(x,y) g(x,y)

then( ) ( )* ( ) ( )h hδ

Impulseresponse

( , ) ( , )* ( , ) ( , )g x y x y h x y h x yδ= =

2003 Digital Image Processing Prof.Zhengkai Liu Dr.Rong Zhang

26

5 5Estimating the Degradation Function5.5Estimating the Degradation Function 5.5.3 Estimation by modeling

An atmospheric turbulence model based on the physical characteristics

Hufnagel and2 2 5 / 6( )( , ) k u vH u v e− +=

Hufnagel and Stanley, 1964

( , )where k is a constant

it has the same form as the Gaussian lowpass filter

2003 Digital Image Processing Prof.Zhengkai Liu Dr.Rong Zhang

27

5.5Estimating the Degradation Function 5.5.3 Estimation by modeling

2003 Digital Image Processing Prof.Zhengkai Liu Dr.Rong Zhang

28

5 5Estimating the Degradation Function5.5Estimating the Degradation Function 5.5.3 Estimation by modeling :restoration of uniform linear motion

If T is the duration of the exposure, the effect of image motionfollows that

[ ]0 00( , ) ( ), ( )

Tg x y f x x t y y t dt= − −∫

follows that

0∫

where x0(t) and y0(t) are the time varying components ofi i h di i d di i i f i

2 ( )( , ) ( , ) j ux vyG u v g x y e dxdyπ∞ ∞ − +

∞ ∞= ∫ ∫

motion in the x-direction and y-direction. Its Fourier transform is

−∞ −∞∫ ∫2 ( )

0 00[ ( ), ( )]

T j ux vyf x x t y y t dt e dxdyπ∞ ∞ − +

−∞ −∞

⎡ ⎤= − −⎢ ⎥⎣ ⎦∫ ∫ ∫2003 Digital Image Processing

Prof.Zhengkai Liu Dr.Rong Zhang29

5 5Estimating the Degradation Function5.5Estimating the Degradation Function 5.5.3 Estimation by modeling :restoration of uniform linear motion

Reversing the order of integration:

2 ( )0 00

( , ) [ ( ), ( )]T j ux vyG u v f x x t y y t e dxdy dtπ∞ ∞ − +

−∞ −∞

⎡ ⎤= − −⎢ ⎥⎣ ⎦∫ ∫ ∫Using the translation Properties of Fourier transformation, then

0 02 [ ( ) ( )]

0( , ) ( , )

T j ux t vy tG u v F u v e dtπ− += ∫0 02 [ ( ) ( )]

0( , )

T j ux t vy tF u v e dtπ− += ∫

2003 Digital Image Processing Prof.Zhengkai Liu Dr.Rong Zhang

30

5 5Estimating the Degradation Function5.5Estimating the Degradation Function 5.5.3 Estimation by modeling :restoration of uniform linear motion

0 02 [ ( ) ( )]

0( , )

T j ux t vy tH u v e dtπ− += ∫By defining

( , ) ( , ) ( , )G u v H u v F u v=thenSuppose that the image in question undergoes uniform linear

2 [ ( ) ( )]T j ux t vy tπ +∫

pp g q gmotion in the x-direction only, at a rate given by 0 ( ) /x t at T=

0 02 [ ( ) ( )]

0( , ) j ux t vy tH u v e dtπ− += ∫

2 /

0

T juat Te dtπ−= ∫0∫sin( ) j uaT ua e

uaππ

π−=

2003 Digital Image Processing Prof.Zhengkai Liu Dr.Rong Zhang

31

uaπ

5 5Estimating the Degradation Function5.5Estimating the Degradation Function 5.5.3 Estimation by modeling :restoration of uniform linear motion

If we allow the y-component to wary as well with the motiongiven by then the degradation function becomes0 ( ) /y t bt T=

( )( , ) sin[ ( )]( )

j ua vbTH u v ua vb eua vb

πππ

− += ++

2003 Digital Image Processing Prof.Zhengkai Liu Dr.Rong Zhang

32

2003 Digital Image Processing Prof.Zhengkai Liu Dr.Rong Zhang

33

5 6 Geometric Transformation5.6 Geometric Transformation5.6.introduction

f(x,y) T g(x,y)

( , ) [( ( , )] ( ', ')g x y T f x y f x y= =

' ( , ) ' ( , )x r x y y s x y= =where

for example: zoom out ' / 2 ' / 2x x y y= =

zoom in ' 2 ' 2x x y y= =

2003 Digital Image Processing Prof.Zhengkai Liu Dr.Rong Zhang

34

2003 Digital Image Processing Prof.Zhengkai Liu Dr.Rong Zhang

35

5 6 Geometric Distortion Correction5.6 Geometric Distortion Correction5.6.1 introduction

A geometric transformation consists of two basic operations:(1) Spatial transformation

. . . .(1) Spatial transformation

. . ..(2) Gray-level interpolation

. .空间变换

(x,y)),( ,, yx. Direct transform

f(x,y)

灰度赋值最近邻

),( ,, yxg

Inverse transform

2003 Digital Image Processing Prof.Zhengkai Liu Dr.Rong Zhang

36

5 6 Geometric Distortion Correction5.6 Geometric Distortion Correction5.6.2 spatial transformations

Linear correction

1 2 3( , )( )

r x y a x a y as x y b x b y b

= + += + +

Quadratic correction

1 2 3( , )s x y b x b y b= + +

2 21 2 3 4 5 6

2 2

( , )

( )

r x y a x a y a xy a x a y a

b b b b b b

= + + + + +2 2

1 2 3 4 5 6( , )s x y b x b y b xy b x b y b= + + + + +

2003 Digital Image Processing Prof.Zhengkai Liu Dr.Rong Zhang

37

2003 Digital Image Processing Prof.Zhengkai Liu Dr.Rong Zhang

38

5 6 Geometric Distortion Correction5.6 Geometric Distortion Correction5.6.3 gray-level interpolation

•Nearest neighbor interpolationf(i,j)

f(i j+1)( , ) ( ', ')g x y f x y=

(i j+1)

f(i,j+1)

( , )f i u j v= + +

(i,j)

(i,j+1)f(i+1,j+1), (0,1)u v∈ ,i j Z∈ v

' ( ') ' ( ')x round x y round y= =(i 1 j)

(i+1,j+1)f(i+1,j)u

(i+1,j)

2003 Digital Image Processing Prof.Zhengkai Liu Dr.Rong Zhang

39

5 6 Geometric Distortion Correction5.6 Geometric Distortion Correction5.6.3 gray-level interpolation

f(x’,y’)

f(i,j)

f(i j+1)A

•Bi-linear interpolation

( ' ') ( )f f i j+ +

(i j+1)

f(i,j+1)(x’,y’)( ', ') ( , )f x y f i u j v= + +

, (0,1)u v∈ ,i j Z∈

(i,j)

(i,j+1)f(i+1,j+1)

B(1 )(1 ) ( , ) (1 ) ( , 1)

(1 ) ( 1 ) ( 1 1)u v f i j u vf i j

u v f i j uvf i j= − − + − ++ − + + + +

(i 1 j)

(i+1,j+1)f(i+1,j) (1 ) ( 1, ) ( 1, 1)u v f i j uvf i j+ + + + +

It can be operated by a mask(i+1,j)

(1 )(1 ) (1 )(1 )u v u v

u v uv− − −

2003 Digital Image Processing Prof.Zhengkai Liu Dr.Rong Zhang

40

5 6 Geometric Distortion Correction5.6 Geometric Distortion Correction5.6.3 gray-level interpolation

Y

Rotation in 2D plane(x,y)

(x',y')

' cos( ) cos cos sin sinx r r rα θ α θ α θ= + = −(x,y)

θ

αX' sin( ) cos sin sin cosy r r rα θ α θ α θ= + = +

The original coordinated of the point in polar coordinates are:

cosx r α= siny r α=

2003 Digital Image Processing Prof.Zhengkai Liu Dr.Rong Zhang

41

5 6 Geometric Distortion Correction

Notes:

5.6 Geometric Distortion Correction5.6.3 gray-level interpolation

Rotation in 2D planeNotes:

1. The origin is in the center of' cos sinx x yθ θ= −

' sin cosy x yθ θ= +

the center of image and the direction of x-y yaxis is opposite

2. The result2. The result image’s size is depended on the

x

45θ =

rotate angle

3. Interpolation is

2003 Digital Image Processing Prof.Zhengkai Liu Dr.Rong Zhang

42

45θ = pneededy

5 6 Geometric Distortion Correction5.6 Geometric Distortion Correction5.6.4 experimental results

grid Changed grid

spatial transform result

2003 Digital Image Processing Prof.Zhengkai Liu Dr.Rong Zhang

43

5 6 Geometric Distortion Correction5.6 Geometric Distortion Correction5.6.4 experimental results

Spatial transform Nearest neighborhood i l i

Bi- linear interpolation

2003 Digital Image Processing Prof.Zhengkai Liu Dr.Rong Zhang

44

interpolation interpolation

Summary • Inverse filtering is a very easy and accurate way to restore an image provided that we know what the bl i filt i d th t h iblurring filter is and that we have no noise

•Wiener filtering is the optimal tradeoff between the inverse filtering and noise smoothing

It i ibl t t i ith t h i ifi• It is possible to restore an image without having specific knowledge of degradation filter and additive noise. However, not knowing the degradation filter h imposes the strictest limitationsknowing the degradation filter h imposes the strictest limitations on our restoration capabilities.

2003 Digital Image Processing Prof.Zhengkai Liu Dr.Rong Zhang

45

homework

• 画出图象变质及图象恢复模型的方框图,数学公式表示及说明其物理意义。

• 列出逆滤波和维纳滤波图象恢复的具体• 列出逆滤波和维纳滤波图象恢复的具体步骤。

推导水平匀速直线运动模糊的点扩展函• 推导水平匀速直线运动模糊的点扩展函数的数学公式并画出曲线。

• 写出图像任意角度旋转算法

2003 Digital Image Processing Prof.Zhengkai Liu Dr.Rong Zhang

46

The End

2003 Digital Image Processing Prof.Zhengkai Liu Dr.Rong Zhang

47

Recommended