Electron microscopy in molecular cell biology I · The wavelength of an electron moving at veolicty...

Preview:

Citation preview

Werner Kühlbrandt

Max Planck Institute of Biophysics

Electron microscopy in molecular cell biology I

Electron optics and image formation

bio

logy

chem

istry

• Galaxy 106 light years 1022 m • Solar system light minutes 1010 m• Planet 20,000 km 107 m• Man 1.7 m 100 m• Fly 3 mm 10-3 m• Cell 50 µm 10-5 m• Bacterium 1 µm 10-6 m• Virus 100 nm 10-7 m• Protein 10 nm 10-8 m• Sugar molecule 1 nm 10-9 m• Atom 0.1 nm = 1Å 10-10 m• Electron 0.1 pm 10-13 m

Objects of interest

• Galaxy 106 light years 1022 m • Solar system light minutes 1010 m• Planet 20,000 km 107 m• Man 1.7 m 100 m• Fly 3 mm 10-3 m• Cell 50 µm 10-5 m• Bacterium 1 µm 10-6 m• Virus 100 nm 10-7 m• Protein 10 nm 10-8 m• Sugar molecule 1 nm 10-9 m• Atom 0.1 nm = 1Å 10-10 m• Electron 0.1 pm 10-13 m

Which objects can we see?R

esol

utio

n lim

it w

ith v

isib

le li

ght

0.1nm=1Å 1nm 10nm 100nm 1µm 10µm 100µm 1mm 10mm

AFM

x-ray crystallography

electron microscopy

light microscopy

organisms

cellsproteins

small molecules

atomsviruses

bacteria

Structural methods in molecular cell biology

NMR

Part 1:

Electron optics

Microscopy with electrons

• Electrons are energy-rich elementary particles

• Electrons have much shorter wavelength than x-rays (~ 3 pm = 3 x 10-12 m for 100kV electrons)

• Resolution not limited by wavelength

• but by comparatively poor quality of magnetic lenses and radiation damage

• High vacuum is essential - no live specimens!

Electron microscopes300 kV 120 kV

The transmission electron microscope

electron gun

projector lenses

objective lens

condenser

viewing screen

projection chamber

specimen

camera

vacuum pump

electron source

specimen

objective lens

The transmission electron microscope

focus plane

diffraction plane

image plane

electron source

specimen

objective lens

The transmission electron microscope

focus plane

diffraction plane

image plane

Electron sources Thermionic emitters Tungsten filament: emits electrons at ~ 3000 °C (melts at 3380 °C) Large source size, poor coherence of electron beam

Lanthanum hexaboride (LaB6) crystal: single crystal, emits electrons at ~ 2000 °C Electrons are emitted from crystal tip -> smaller source size, better coherence Energy spread ΔE ~ 1 - 2 eV, depending on temperature

Field emitters Oriented tungsten single crystal, tip radius ~ 100 nm Small source size -> high coherence of electron beam, high brilliance Requires very high vacuum (10 -11 Torr) Electrons extracted from crystal by electric field applied to tip (extraction voltage)

Schottky emitter: Zr plated, heated to ~ 1200 °C to assist electron emission and prevent contamination, energy spread ΔE ~0.5 eV

Cold field emitter: not heated, very low energy spread, best temporal coherence, but contaminates easily (frequent ‘flashing’ with oxygen gas)

LaB6 vs FEG

FEG

LaB6

Field emission tip

LaB6 filament field emission tip

incoherent electron beam coherent electron beam

Coherence

temporal coherence: all waves have the same wavelength (they are monochromatic)

spatial coherence: all waves are emitted from the same point source (as in a laser)

According to the dualism of elementary particles in quantum mechanics, electrons can be considered as particles or waves. Both models are valid and used in electron optics.

Electrons can be regarded as particles to describe scattering.

The wave model is more useful to describe diffraction, interference, phase contrast and image formation.

Electrons: particles or waves?

Rest mass m0 = 9.1091x10−31

kgCharge Q = −e = −1.602x10−19

CKinetic energy E = eU,1eV = 1.602x10

−19Nm

Rest energy E0 = m0c 2= 511keV = 0.511MeV

Velocity of li ght c = 2.9979x108ms −1

Planck’s constant h = 6.6256x10−34Nms

Non-relativistic (E << E0) Relativistic (E ~ E0)

Mass m = m 0 m = m0 1− v 2 / c2( )−1 / 2

Energy E = eU =12

m0v2

mc 2= m0c2 + eU = E 0 + E

m = m0 1 + E / E0( )

Velocity v = 2E / m0( )1 / 2

v = c [1−1

1+ E / E0( )2

1 / 2

Momentum p = m 0v = 2m 0E( )1/ 2

p = mv = 2m0E 1+ E /2E0 ( )[ ]1 / 2

=1c

2EE0 + E2

( )1 / 2

deBrogli e wavelength λ =hp = h 2m0E( )

−1 / 2

λ = h 2m0 E 1+ E / 2E0( )[ ]− 1 / 2

=hc 2EE0 + E2

( )−1 / 2

Electron parameters

]

Electrons in an electrostatic (Coulomb) field

The force produced by an electrostatic field E on a particle of (negative) charge e- is

F = -eE

This means that the electron is accelerated towards the anode. The kinetic energy E [eV] of the electron after passing through a voltage U [V] is

E = eU

The wavelength of an electron moving at veolicty v (de Broglie wavelength) is

λ = h/mv where h is Planck’s constant, m the rest mass of the electron. Both the mass and the velocity of the electron are energy dependent. Relativistic treatment is necessary for acceleration voltages > 80 kV.

Electron beams are monochromatic except for a small thermal energy spread arising from the temperature of the electron emitter.

de Broglie wavelength

acceleration velocity wavelength voltage

100 kV 1.64 x 108 m/s 3.7 pm = 0.037 Å

200 kV 2.5 pm = 0.025 Å

300 kV 2.0 pm = 0.02 Å

Highest possible resolution:

1/d = 2/λ

d = λ/2

θ = 90°

Resolution limit in crystallographyReciprocal space!

2 sin θ = (1/d)/(1/nλ)

Resolution limit

Diffraction (Rayleigh) limit: ~ 0.5 λ

• ~150 nm = 1,500 Å for visible light• 0.5 Å for x-rays• 0.01 Å = 1 pm for 300 kV electrons

electron source

specimen

objective lens

The transmission electron microscope

focus plane

diffraction plane

image plane

E

E-ΔE

E E -ΔEE E -ΔE

Z = 0

Z = t

E-ΔE

Incident beam of energy E

elastic inelastic

Electron-­‐specimen  interactions

R. Henderson, Quart. Rev. Biophys. 1995

scattering cross section

radiation damage

Scattering of electrons, X-rays and neutrons

~105

10 x 8000 eV

4 x 20 eV

carbon

~105

10 x 8000 eV

4 x 20 eV

Large  elastic  cross  section  • ~106  higher  than  for  x-­‐rays     high  signal  per  scattering  event  

…  but  even  larger  inelastic  cross  section  •      σinel/σel  ≈  18/Z                  high  radiation  damage,  especially  for       light  atoms,  e.g.  C:       3  electrons  scattered  inelastically         per  elastic  event  

Good  ratio  of  elastic/inelastic  scattering  • 1000  times  better  than  for  1.5  Å  x-­‐rays  

carbon

Energy  deposited  per  elastic  event

Electrons    80-­‐500  keV

X-­‐rays  1.5  Å

Neutrons  1.8  Å

Ratio  inelastic/elastic   3 10 0.08

Energy  deposited  per  inelastic  event

20  eV 8000  eV 2000  eV

Effective  energy  deposited  per  elastic  event

60  eV   80  000  eV   160  eV

Considerations  for  biological  specimens

• Biological  specimens  consist  mainly  of  light  atoms        (H,  N,  C,  O),  which  suffer  most  from  radiation  damage  

• This  makes  it  essential  to  minimize  the  electron  dose  to  about  ~25  e/Å2  for  single-­‐particle  cryoEM  

• Low  electron  dose  means  low  image  contrast

electron source

specimen

objective lens

The transmission electron microscope

focus plane

diffraction plane

image plane

Electrons in a magnetic field Lorentz force on a charge e- moving with velocity v in a magnetic field B (vectors are bold): F = -e (v x B)

The direction of F is perpendicular on v and B. v, B, and F form a right-handed system (right-hand rule, where v = index finger, B = middle finger and c = thumb)

In a homogenous magnetic field, if

v = 0 then F = 0

v is perpendicular to B: the electron is forced on a circle with a radius depending on the field strength |B|

v is parallel to B: no change of direction

Note that unlike the electric field, the magnetic field does not change the energy of the electron, i. e. the wavelength does not change!

Electromagnetic field

Passing a current through a coil of wire produces a strong magnetic field in the centre of the coil. The field strength depends on the number of windings and the current passing through the coil.

Electromagnetic Lens

Pole pieces of soft ironconcentrate the magnetic field

Electromagnetic Lens

The magnetic field is rotationally symmetric and changes gradually

A light beam is refracted (bent) when the wave enters a medium of a different optical density. The refractive index changes abruptly at the interface.

Refraction in light optics

Path of electron moving with velocity v in magnetic field B of a ring coil, exerting force F

Diagram by Elena Orlova, Birkbeck College London

Magnetic lens

Magnetic lenses are electromagnetic coils with soft iron pole pieces. The strength of the magnetic field depends on the number of windings NI and on the pole piece gap. The field is cylindrically symmetrical about the optical axis. The field strength B(z) along the optical axis is bell-shaped. Upon passing through the lens, the image rotates around the optical axis.

The light microscope is focussed by varying the object distance. The electron microscope is focussed by varying the focal length of the lens f.

The lens diagram looks the same for glass and magnetic lenses

grid square with holey carbon film

20 µm x 20 µm

600x

EM grid

2mm x 2mm

hole

2µm x 2µm

6,000x60x 60,000x

FAS in vitreous buffer

0.2 µm x 0.2 µm

Magnification steps

electron source

specimen

objective lens

The transmission electron microscope

focus plane

diffraction plane

image plane

Electron diffraction

diffraction angle

Bragg’s law: nλ = 2d sinθ

d

Electron diffraction

diffraction angle

Bragg’s law: nλ = 2d sinθ

d

Elastic scattering by atoms (Rayleigh scattering)

n is an integer: scattered waves are in phase, resulting in constructive interference

Bragg’s law: nλ = 2d sinθ

n is not an integer: scattered waves are out of phase, resulting in destructive interference

θd

path length difference nλ x 2 (sin θ = nλ/d)

Interference

constructive  interference destructive  interference

superposition

1st  wave

2nd  wave

Highest possible resolution:

1/d = 2/λ

d = λ/2

θ = 90°

Resolution limit in crystallographyReciprocal space!

2 sin θ = (1/d)/(1/nλ)

Large 2D crystal of LHC-II

2D crystals of LHC-II

Kühlbrandt, Nature 1984

Electron diffraction pattern: amplitudes, no phases

3.2 Å

The image is generated by interference of the direct electron beam with the diffracted beams

Part 2:

Phase contrast and image formation

electron source

specimen

objective lens

diffraction plane

image plane

The transmission electron microscope

focus plane(UNDERfocus, i.e. weaker objective lens)

E

E-ΔE

E E -ΔEE E -ΔE

Z = 0

Z = t

E-ΔE

Incident beam of energy E

elastic inelastic

Electron-­‐specimen  interactions

Contrast  mechanisms

no    interaction

phase    object

amplitude    object

modified  phase

electron  wave

modified    amplitude,  unchanged  phase

modified  phase,    unchanged    amplitude

Image

amplitude    contrast

phase    contrast shorter  

wavelength  within  object

The scattered electron wave experiences three phase shifts

by the imaged object this carries the information about the structure and is the one we need to determine

by the inner potential of the specimen this is 90° for all scattered waves

by the spherical aberration of the objective lens this depends on the scattering angle (= resolution) and gives rise to the oscillation of the contrast transfer function (CTF)

(note that this only holds for the weak phase approximation!)

Origin  of  the  phase  shift

The  potential  V(x,y,z)  experienced  by  the  scattered  electron  upon  passing  through  a  sample  of  thickness  t  causes  a    phase  shift

The  vacuum  wavelength  λ  of  the  electron  changes  to  λ`  within  the  sample:

When  passing  through  a  sample  of  thickness  dz,  the  electron  experiences  a  phase  shift  of:

Vt (x,y) = V (x,y,z)dz0

t

λ =h2meE

" λ =h

2me(E +V (x,y,z))

dϕ = 2π (dz$ λ −dzλ)

dϕ =πλE

V (x,y,z)dz =σV (x,y,z)dz

ψincident

ψexit

V(x,y,z)

(how  many  times  does  λ  fit  into  the  thickness  dz?)(by  how  many  degrees  out  of  2π  =  360°  does  this  change  the  phase  φ?)

The  potential  V  of  the  specimen  shift  modifies  the  phase  of  the  incident  plane  wave  ψincident  to:

àFor  thin  biological  specimens  there  is  a      linear  relation  between  the  transmitted  exit  wave  function  and    the  projected  potential  of  the  sample:

ϕ =σ V (x,y,z)dz∫ =σVt (x,y)As  we  have  seen,  the  phase  shift  is  proportional  to  the  projected  potential  of  the  specimen:

Ψexit =Ψincidente− iϕ =Ψincidente

−iσVt

Ψexit ≈ Ψincident

≡1(background )! " # (1− iϕ) =1− iϕ =1− iσVt

Ψexit =Ψincidente− iϕ

≈ Ψincident (1− iϕ) =Ψincident − iΨincidentϕ =Ψincident − iΨscattered

For  Vt<<1  and  thus  φ<<2π  as  for  thin  biological  specimens:

i = eiπ2 = cos(π2 ) + isin(π2 )

ψincident

ψexit

V(x,y,z)

The  weak  phase  approximation

Taylor  series

f (n )(a)n!n=0

∑ (x − a)n

sin(x) ≈ x − x3

3!+x 5

5!−x 7

7!+O(xn )

ex ≈1+ x +x 2

2!+x 3

3!+O(xn )

e−iϕ ≈1− iϕ +ϕ2

2!− iϕ

3

3!+O(ϕn )

≈1− iϕ if φ << 1 !

taken  from  Wikipedia...

Any  function  can  be  approximated  by  a  finite  number  of  polynomial  terms      

à

à

à

à  

Phase  contrastexit  wave                        =              scattered  wave        +            unscattered  wave        

exit  wave

imaginary

real

Ψexit  =  ψunscattered  +  iψscattered

Vector  notation.  Vector  length  shows  amplitude  (not  drawn  to  scale)  

Cosine  wave  notation  (amplitudes  not  drawn  to  scale)

Scattered  wave  is  90°  out  of  phase  with  unscattered  wave.  

Phase  contrastexit  wave                        =              scattered  wave        +            unscattered  wave        

à Positive  phase  contrast A  perfect  lens  in  focus  gives  minimal  phase  contrast

Since ψscattered = φψunscattered with φ << 1:

ψscattered << ψunscattered

Iimage= |ψexit|2 =| ψunscattered + iψscattered|2 ≈ |ψunscattered|2 = Iincident

exit  wave

Ψexit  =  ψunscattered  +  iψscattered

Lens  aberrations  cause  an  additional  phase  shift  that  generates  phase  contrast

Minimal  contrast

Minimal  contrast

Maximal  contrast

        Defocus  phase  contrast

exit  wave                        =              scattered  wave        +            unscattered  wave        

Phase  contrast

Lens  aberrations

Spherical  aberration Chromatic  aberration

Lens with spherical aberration

Image plane

Perfect lensImage plane

f1f2

χ = e.g. 3λ/2

Spherical aberration causes a path length difference χ which depends on the scattering angle

In a perfect lens, the number of wavelengths from object to focal point is the same for each ray, independent of scattering angle (Fermat’s principle)

Defocus generates an additional phase shift

Depending  on  its  phase  shift,  the  scattered  wave  reinforces  or  weakens  the  exit  wave

Ψexit  =  ψunscattered  +  iψscattered

exit  wave                        =              scattered  wave        +            unscattered  wave        

scattered  and  unscattered  wave  are  in  phase:  exit  wave  gets  stronger

scattered  and  unscattered  wave  are  out  of  phase  by  π  =  180°  (half  a  wavelength):                                                          exit  wave  gets  weaker

scattered  wave  is  shifted  by  π/2  =  90°    (quarter  of  a  wavelength)  relative  to  unscattered  wave:  exit  wave  is  nearly  same  as  unscattered  wave,                                              therefore  phase  contrast  is  minimal  

The phase shift χ(θ) introduced by the spherical aberration Cs of the objective lens depends on the scattering angle θ and on the amount of defocus Δf.

χ(θ) = (2π/λ) [Δf θ2/2 - Cs θ4/4]

The spatial frequency R (measured in Å -1) is the reciprocal of the distance between any two points of the specimen. For small scattering angles, R ≈ θ / λ. With this approximation, the phase shift expressed as a function of R is

χ(R) = (π/2) [2Δf R2 λ - Cs R4 λ3] (Scherzer formula)

At Scherzer focus, the terms containing Δf and Cs nearly add up to 1, and a positive phase shift of χ ≈ +π/2 applies to a wide resolution range.

Optimal  (Scherzer)  focus

Defocus  and  spherical  aberration  have  similar  but  opposite  effects

exact focus

Scherzer focus

high underfocus

Contrast transfer in

(Erikson and Klug, 1971)

The phase Contrast Transfer Function B(θ) of the electron microscope is defined as

B(θ) = -2 sin χ(θ)

For any particular defocus Δf, the CTF indicates the range of scattering angles θ in which the object is imaged with positive (or negative) phase contrast.

For scattering angles where CTF = 0, there is no phase contrast.

As spherical aberration Cs is constant, Δf can be adjusted to produce maximum phase contrast of ±π/2 for a particular range of scattering angles.

The contrast transfer function (CTF)

Fourier transforms of amorphous carbon film images

Contrast Transfer Function, CTF

underfocus underfocus

FT FT

CTF as a function of defocus

Movie by Henning Stahlberg, UC Davis

Phase contrast at high resolution is reduced (damped) by incoherence

Spatial  and  temporal  incoherence  of  the  electron  beam  damp  the  CTF    due  to  lens  aberrations:

Edamping(k)    =    Espatial(Z,Cs,α,k)      • Etemporal(Cc,ΔE,k)    • Especimen• Edetector• ….  

CS  is  the  spherical  aberration  coefficient,  CC  is  the  coefficient  for  chromatical  aberration

spatial  frequency  [1/nm]

Z=100  nm,  CS=  3  mm,  CC  =  3  mm Z=100  nm,  CS=  0  mm,  CC  =  3  mm Z=100  nm,  CS=  0  mm,  CC  =  0  mm

Chromatic aberration (Cc)

corrector

Max Haider

electron source

specimen

objective lens

diffraction plane

image plane

The transmission electron microscope

focus plane

Janet Vonck, Deryck Mills

Film image

CCD vs. direct detector

300 kV electrons

conventional CCD detector

Direct electron detector

Richard Henderson, Greg McMullan (MRC-LMB Cambridge, UK)

Scintillator

Fiber optics

CCD chip

Peltier coolerSeparate vacuum

-35°C

50 µm• CMOS active pixel sensor• 5 - 15 µm pixels• radiation-hard• back-thinned• rapid readout (17 - 400 Hz)

DQE of electron detectors (300 kV)

McMullan, Faruqi and Henderson http://arxiv.org/pdf/1406.1389.pdf

DQE = SNR2o/SNR2i

counting mode,

CCD

Greg McMullan, MRC LMB Cambridge

Matteo Allegretti, Janet Vonck, Deryck Mills

Fast readout overcomes drift

Frame displacement in Å

3.36 Å

Science, 28 March 2014Science, 28 March 2014

Recommended