FEM SOLID MECHANICS II - Simulación y Tecnología Part 1 Linear and nonlinear problems in solid...

Preview:

Citation preview

FEM in Solid MechanicsPart II

2www.simytec.com

Part II

Eduardo Dvorkin

Contents

Part 1

� Linear and nonlinear problems in solid mechanics� Fundamental equations:

� Kinematics� The stress tensor� Equilibrium

3www.simytec.com

� Equilibrium� Constitutive relations

� The principle of virtual work

Part 2

� FEM in solid mechanics� Elasto-plasticity� Structural elements� Nonlinear problems- Collapse� Dynamic problems

FEM in Solid Mechanics

P(t)

4www.simytec.com

The solution : ui=ui(x,y,z)Has to fulfill:• Compatibility with rigid boundary conditions• Internal equilibrium• Equilibrium between applied loads and stresses• Constitutive equations

FEM in Solid MechanicsAny continuous set of functions ui=ui(x,y,z) that satisfies the rigid boundary conditions can be our solution.

Approximate solutions:

We seek among a finite set of functions and we pick the one that best fits the solution.

5www.simytec.com

If we want to improve a solution we just increase the number offunctions in the trial set.

It can be shown that the requirements on the functions are:

Continuity of the functions (not necessarily of their derivatives).Continuity of the functions (not necessarily of their derivatives).Exact representation of rigid body movements.Exact representation of rigid body movements.Exact representations of constant strain cases.Exact representations of constant strain cases.

FEM in Solid Mechanics

6www.simytec.com

We can calculate the above integrals with functionsthat are only C0 continuous

FEM in Solid Mechanics

7www.simytec.com

We can calculate the above integrals with functionsthat are only C0 continuous

FEM in Solid MechanicsElements and nodes

8www.simytec.com

The interpolation functions

FEM in Solid Mechanics

1

2

r=1

s=1

2D example Natural coordinate systeminside each element (r, s)

9www.simytec.com

3

4

r=-1

s=-1

FEM in Solid Mechanics

2D four-nodes element

r

s

12

h1+1

10www.simytec.com

r

3 4

FEM in Solid Mechanics

2D four-nodes element

s

12

h2+1

11www.simytec.com

r

3 4

FEM in Solid Mechanics

2D four-nodes element

s

12

h3

12www.simytec.com

r

3 4

+1

FEM in Solid Mechanics

2D four-nodes element

s

12

h4

13www.simytec.com

r

3

+1

FEM in Solid Mechanics1D elements

14www.simytec.com

FEM in Solid Mechanics2D elements

15www.simytec.com

FEM in Solid Mechanics3D elements

16www.simytec.com

From Bathe, Finite Element Procedures

Pop Quiz # 4

and why?

17www.simytec.com

to be able to represent rigid translations

Show at home that it can also represent rigid rotations and constant strain states

Pop Quiz # 5 Are these meshes acceptable?

YES

18www.simytec.com

NOYES

YES

YES

Pop Quiz # 5 Isoparametric elements

19www.simytec.com

FEM in Solid Mechanics

1

2

12

Local 1Local 2Local 1

Local 2

20www.simytec.com

4

5

6

Local 3 Local 4

Local 3

Local 4

Vector of unknown nodal variables

X

Y

12

45

6

1 2

Local 1

Local 2

Local 3

Local 4

Local 1

Local 2

Local 3

Local 4

Interpolación Elemento 1

21www.simytec.com

Interpolación Elemento 2

FEM in Solid MechanicsInside each element

And calculating the derivatives via the Jacobian Matrix as shown above

x

u

22www.simytec.com

UB

z

u

x

w

y

w

z

v

x

v

y

uz

w

y

vx

zx

yz

xy

zz

yy

xx

=

∂+

∂∂

∂+

∂∂

∂+

∂∂

∂∂

∂∂

=

=

ε

ε

ε

ε

ε

ε

ε

2

2

2

FEM in Solid Mechanics

Matrix 3D 2D

Plane stress

2D

Plane strain

2D

Axisym.

ε 6 x 1 3 x 1 3 x 1 4 x 1

B 6 x 3*NNOD 3 x 2*NNOD 3 x 2*NNOD 4 x 2*NNOD

U 3*NNOD 2*NNOD 2*NNOD 2*NNOD

23www.simytec.com

U 3*NNOD 2*NNOD 2*NNOD 2*NNOD

zx

yz

xy

zz

yy

xx

ε

ε

ε

ε

ε

ε

2

2

2

yz

zz

yy

ε

ε

ε

2

yz

zz

yy

ε

ε

ε

2

θθε

ε

ε

ε

yz

zz

yy

2

FEM in Solid Mechanicsεθθ in axisymmetric problems

24www.simytec.com

oy ty= oy+v

y

z

( )y

v

y

yvy00

00

2

22=

−+=

π

ππεθθ

FEM in Solid Mechanicsεθθ in axisymmetric problems

( )y

v

y

yvy00

00

2

22=

−+=

π

ππεθθ

........................

25www.simytec.com

U

yh

h

yh

h

yh

h

n

k

k

NNOD

n

k

k

n

k

k

yz

zz

yy

=

∑∑∑0......00

........................

........................

........................

221

θθε

ε

ε

ε

FEM in Solid MechanicsFor linear elastic materials

26www.simytec.com

FEM in Solid MechanicsFor an isotropic linear elastic material:

27www.simytec.com

FEM in Solid MechanicsFor an elastic-plastic material we have to define an incremental relation:

From the references

28www.simytec.com

From the references

FEM in Solid Mechanics

For a rigid-viscoplastic material:

29www.simytec.com

FEM in Solid Mechanics

Linear elasticity

30www.simytec.com

[ ] [ ] [ ] [ ] [ ]

[ ] [ ] [ ]

[ ] [ ] [ ]dStHUdSut

dvbHUdvub

dvBUdvdv

T

S

S

T

i

S

i

V

TT

i

V

i

T

V

T

V V

T

ijij

∫∫

∫∫

∫∫ ∫

=

=

==

δδ

δδ

σδσδεδεσ

FEM in Solid Mechanics

Linear elasticity

[ ] [ ] [ ] [ ] [ ] [ ]

[ ] [ ]ext

T

S

S

V

TT

V

RF

dStHdvbHdvB

=

+= ∫∫∫

int

σ

31www.simytec.com

The nodes are always in equilibriumThe nodes are always in equilibrium

FEM in Solid Mechanics

Linear elasticity

[ ] [ ][ ] [ ] [ ]RUdvBCB ext

T

V

∫ =

Stiffness matrix

32www.simytec.com

[ ] [ ] [ ][ ]dvBCBKT

V

∫=

The stiffness matrix is symmetric

FEM in Solid Mechanics

Linear elasticity

In natural coordinates

[ ] [ ] [ ][ ] dtdsdrJBCBKT

∫ ∫ ∫− − −

=1 1 1

33www.simytec.com

[ ] [ ] [ ] [ ] [ ] dsdrJtHdtdsdrJBR S

T

S

T

ext ∫ ∫∫ ∫ ∫

∫ ∫ ∫

− −− − −

− − −

+=1

1

1

1

1

1

1

1

1

1

1 1 1

σ

Numerical Numerical integration is integration is used (e.g. Gauss)used (e.g. Gauss)

FEM in Solid MechanicsGetting to know the elements

1

34www.simytec.com

10

Pure bending using a 4-node element

Plane stress; E=2.1E6; ν=0.3; thickness= 0.1

FEM in Solid MechanicsGetting to know the elements

35www.simytec.com

Mesh

FEM in Solid MechanicsGetting to know the elements

36www.simytec.com

Vertical displacements

FEM in Solid MechanicsGetting to know the elements

Vertical displacement at the tip

Analytical= ML2/2EI 2.86

37www.simytec.com

FEM 0.072

FEM/Analytical 0.025

What is going on?

FEM in Solid MechanicsGetting to know the elements

Let’s examine the predicted stresses

38www.simytec.com

Shear stressesShould be zero … but are only zero at the element center

FEM in Solid MechanicsGetting to know the elements

Standard solution:

39www.simytec.com

Let’s use more elements!!

FEM in Solid MechanicsGetting to know the elements

40www.simytec.com

New mesh

FEM in Solid MechanicsGetting to know the elements

New mesh

41www.simytec.com

Vertical displacements

FEM in Solid MechanicsGetting to know the elements

Vertical displacement at the tip

Analytical= ML2/2EI 2.86

42www.simytec.com

Analytical= ML2/2EI 2.86

FEM 1.93

FEM/Analytical 0.67

FEM in Solid MechanicsGetting to know the elements

Let’s examine the predicted stresses

43www.simytec.com

Shear stressesShould be zero … but are only zero at the element center

FEM in Solid MechanicsGetting to know the elements

The 4N displacement interpolation cannot model

44www.simytec.com

a constant bending situation

FEM in Solid MechanicsGetting to know the elements

1

45www.simytec.com

10

Pure bending using a 9-node element

Plane stress; E=2.1E6; ν=0.3; thickness= 0.1

FEM in Solid MechanicsGetting to know the elements

46www.simytec.com

Mesh

FEM in Solid MechanicsGetting to know the elements

47www.simytec.com

Vertical displacements

FEM in Solid MechanicsGetting to know the elements

Vertical displacement at the tip

Analytical= ML2/2EI 2.86

48www.simytec.com

FEM 2.86

FEM/Analytical 1.00

FEM in Solid MechanicsGetting to know the elements

Vertical displacement at the tip

49www.simytec.com

Shear stresses

Zero everywhere!!

FEM in Solid MechanicsGetting to know the elements

50www.simytec.com

Axial stresses

Exact result!!

FEM in Solid MechanicsGetting to know the elements

51www.simytec.com

Transverse stresses

Zero everywhere!!

FEM in Solid MechanicsGetting to know the elements

The 9N element exactly representsa constant bending situation

52www.simytec.com

Always?

FEM in Solid MechanicsGetting to know the elements

Distorted 9N – det(J)‡const

53www.simytec.com

Mesh

FEM in Solid MechanicsGetting to know the elements

54www.simytec.com

Vertical displacements

FEM in Solid MechanicsGetting to know the elements

Vertical displacement at the tip

Analytical= ML2/2EI 2.86

55www.simytec.com

FEM 0.74

FEM/Analytical 0.26

FEM in Solid MechanicsGetting to know the elements

56www.simytec.com

Shear stresses

Should be zero … but are only zero at the element center

FEM in Solid MechanicsGetting to know the elements

57www.simytec.com

Axial stresses

Bad results

FEM in Solid MechanicsGetting to know the elements

Locking in elasto-plastic problemsThe mixed elements

58www.simytec.com

The mixed elements

FEM in Solid MechanicsGetting to know the elements

p

59www.simytec.com

p

R=10

R=20

E=2.1E6ν=0.3σy=2100ET=0.0

FEM in Solid MechanicsGetting to know the elements

60www.simytec.com

Mesh

FEM in Solid MechanicsGetting to know the elements

61www.simytec.com

Lambda

Displacement Based Element

FEM in Solid MechanicsGetting to know the elements

62www.simytec.com

Mixed Element

FEM in Solid MechanicsGetting to know the elements

The displacement based element shows an improper hardeningThe mixed element shows the correct flat response

63www.simytec.com

HOWEVERHOWEVER

The pressure predictions clearly show whatdoes locking mean

FEM in Solid MechanicsGetting to know the elements

64www.simytec.com

Displacement based: locking

FEM in Solid MechanicsGetting to know the elements

65www.simytec.com

Mixed: non-locking

Structural Elements

Beam elements (Bernoulli and Timoshenko)Plate / Shell elements

66www.simytec.com

Plate / Shell elements

Structural ElementsThe Bernoulli (Hermitian) beam element (2 nodes only)

It is the classical beam we know from strengthof materials

67www.simytec.com

of materialsNo shear deformationNo stresses through the thickness

Cannot be used in conjunction with modern Cannot be used in conjunction with modern plate/shell elementsplate/shell elements

Structural ElementsThe Bernoulli (Hermitian) beam element: d.o.f.

12

6 6 d.o.fd.o.f. / node. / node

v

θy

68www.simytec.com

u

w

vθx

θz

Structural ElementsThe Bernoulli (Hermitian) beam element: d.o.f.

No shear deformation means:

v∂=θ

69www.simytec.com

x

w

x

v

y

z

∂−=

∂=

θ

θ

Structural ElementsTimoshenko (isoparametric) beam element(2,3 and 4 nodes to describe curved beams)

Includes shear deformationNo stresses through the thickness

70www.simytec.com

No stresses through the thickness

Can be used in conjunction with modern Can be used in conjunction with modern plate/shell elementsplate/shell elements

Structural ElementsTimoshenko (isoparametric) beam element

71www.simytec.com

6 6 d.o.fd.o.f. / node. / node

Structural ElementsTimoshenko (isoparametric) beam element

In order to avoid locking use:

Nodes Integration points

2 1

72www.simytec.com

2 1

3 2

4 3

Structural ElementsTimoshenko (isoparametric) beam element

Timoshenko beam element: locking Section

73www.simytec.com

M 1

1100

Structural ElementsTimoshenko beam element: locking

74www.simytec.com

Structural ElementsTimoshenko beam element: locking

Tip displacement

2-points integration along 0.74266E-3

75www.simytec.com

2-points integration along length

0.74266E-3

1-point integration along length(default in ADINA)

2.85714

Analytical 2.85714

Structural ElementsThe isoparametric shell element: geometric definition

5 d.o.f. / node

76www.simytec.com

Structural ElementsThe isoparametric shell element: locking

77www.simytec.com

Structural ElementsThe isoparametric shell element: locking

78www.simytec.com

Structural ElementsThe isoparametric shell element: locking

Use nonUse non--locking elements (e.g. MITC4)locking elements (e.g. MITC4)

79www.simytec.com

Structural ElementsThe isoparametric shell element: b.c.

80www.simytec.com

Structural ElementsThe isoparametric shell element: b.c.

81www.simytec.com

Structural ElementsThe isoparametric shell element: b.c.

82www.simytec.com

Structural ElementsThe isoparametric shell element: b.c.

6 d.o.f. at intersection nodes

83www.simytec.com

Structural ElementsThe isoparametric shell element: b.c.

6 d.o.f. at intersection nodes

84www.simytec.com

Nonlinear ProblemsIterative methods

PVW

σσσ += ∆− ttt

85www.simytec.com

σσσ += ∆− ttt

hence,

Nonlinear ProblemsIterative methods

86www.simytec.com

Nonlinear ProblemsIterative methods

Nomenclature:

87www.simytec.com

Hence, for equilibrium:

Nonlinear ProblemsIterative methods

Since the problem is nonlinear (plasticity, contacts, etc.) we must iterate to get the solution:

88www.simytec.com

Iterate until:

Nonlinear ProblemsIterative methods

We have plenty of freedom to select the matrix

because we just have to get,

89www.simytec.com

independently of the iteration path.

Iterative methods: full Newton, modified Newton, BFGS.Iterative methods: full Newton, modified Newton, BFGS.Combine with line searches.Combine with line searches.

Nonlinear ProblemsIterative methods

Iteration tolerances

A fundamental decision:

90www.simytec.com

A fundamental decision:If too restrictive we may not get a solutionIf too ample we may get a very bad solution

91www.simytec.com

Nonlinear ProblemsIterative methods

Examples:

P

Softening problem

Alone is not enough

92www.simytec.com

Alone is not enough

P

Stiffening problem

Alone is not enough

Nonlinear ProblemsIterative methods

93www.simytec.com

Cannot iterate controlling loadUse LDC (Collapse analysis in ADINA)

Nonlinear ProblemsIterative methods: LDC

94www.simytec.com

Dynamic Problems

)(tRUKUCUM =++•••

95www.simytec.com

)(tRUKUCUM =++

Dynamic ProblemsExplicit Integration

Conditionally stableCheapM: lumped

Tt <∆

96www.simytec.com

limTt <∆

Dynamic ProblemsExplicit Integration

Simple stability example 1

97www.simytec.com

lim2.0 Tt =∆ lim6.0 Tt =∆ lim9.0 Tt =∆

Dynamic ProblemsExplicit Integration

Simple stability example 1

98www.simytec.com

lim001.1 Tt =∆

Dynamic ProblemsExplicit Integration

Simple stability analysis 2

99www.simytec.com

Dynamic ProblemsExplicit Integration

Simple stability analysis 2

100www.simytec.com

lim02.0 Tt =∆ lim6.0 Tt =∆

Dynamic ProblemsExplicit Integration

Simple stability analysis 2

101www.simytec.com

lim001.1 Tt =∆

Dynamic ProblemsImplicit integration

Uconditionally stable

102www.simytec.com

Dynamic ProblemsNonlinear Analysis

Implicit No iterationsMay give incorrect solution

103www.simytec.com

May give incorrect solutionCareful

Explicit integration Iterate at every stepMay not convergeCareful

Recommended