Formalism of Quantum Mechanics 2006 Quantum MechanicsProf. Y. F. Chen Formalism of Quantum Mechanics

Preview:

Citation preview

Formalism of Quantum Mechanics

2006 Quantum Mechanics Prof. Y. F. Chen

Formalism of Quantum Mechanics

linear DE. : the main foundation of QM consists in the Schrödinger eq.

The formalism of QM deals with linear operators & wave functions that f

orm a Hilbert space

ch4 will focus on the Hermitian operators & the superposition properties

of linear DE. in Hilbert space

2006 Quantum Mechanics Prof. Y. F. Chen

Formalism of Quantum Mechanics

Formalism of Quantum Mechanics

inhomogeneous linear differential :

(1) = linear differential operator acting upon

(2) = eigenvalue & = eigenfunction

(3) is a weight function

any function in this vector space can be expanded as

       , =a set of linearly indep. basis functions

inner product :

2006 Quantum Mechanics Prof. Y. F. Chen

Definition of Inner Product & Hilbert Space

Formalism of Quantum Mechanics

)(xyL )(xy

)(xw

)(xy

( ) ( ) ( )i i iy x w x y xL

)(xf

0

)()(n

nn xycxf

b

adxxwxgxfgf )()()(

)(xyn

orthogonal : if , then & are orthogonal.

the norm of :

a basis of orthnormal, linearly independent basis functions satisfie

s

2006 Quantum Mechanics Prof. Y. F. Chen

Definition of Inner Product & Hilbert Space

Formalism of Quantum Mechanics

0gf )(xf )(xg

)(xf b

adxxwxffff )()( 22/1

)(xn

ji

b

a jiji dxxwxx )()()(

Gram-Schmidt orthogonalization :

= linearly independent, not orthonormal basis

= orthonormal basis produced by the Gram-Schmidt orthogonalizat

ion, in which is to be normalized

2006 Quantum Mechanics Prof. Y. F. Chen

Gram-Schmidt Orthogonalization

Formalism of Quantum Mechanics

)(xn

)(xn

2/1)()(

nnnn xx

)(xn

1

0

21120022

10011

00

)()()(

)()()()(

)()()(

)()(

n

iiiinn yxxyx

yxyxxyx

yxxyx

xyx

although the Gram-Schmidt procedure constructed an orthonormal set,

are not unique. There is an infinite number of possible orthonor

mal sets.

construct the first three orthonormal functions over the range :

2006 Quantum Mechanics Prof. Y. F. Chen

Gram-Schmidt Orthogonalization

Formalism of Quantum Mechanics

)(xn

11 x

1/ 211/ 2

0 0 0 01

1 1 0 0 1 1 1

1/ 2

1 1 1

22 2 0 0 2 1 1 2

22

( ) 1 , 2 , ( ) 1/ 2

( ) ( ) ( ) , ( ) ( )

( ) 3 / 2

1( ) ( ) ( ) ( )

3

1 5 ( ) (3 1)

2 2

x dx x

x y x x y x y x x

x x

x y x x y x y x

x x

it can be shown that         

where is the nth-order Legendre polynomials

the eq. for Gram-Schmidt orthogonalization tend to be ill-conditioned be

cause of the subtractions. A method for avoiding this difficulty is to use t

he polynomial recurrence relation  

2006 Quantum Mechanics Prof. Y. F. Chen

Gram-Schmidt Orthogonalization

Formalism of Quantum Mechanics

)35(2

7

2

1)( 3

3 xxx

)(2

1)( n xP

nx n

)(xPn

the adjoint/Hermitian conjugate of a matrix A:

from inner product space, the definition of the adjoint :

the adjoint of an operator in inner product function :

2006 Quantum Mechanics Prof. Y. F. Chen

Definition of Self-Adjoint (Hermitian Operators)

Formalism of Quantum Mechanics

)()( TT† AAA

),(),( 1†

221 xAxAxx

fggf †LL

self-adjoint/Hermitian operator :

→(1)

→(2)

measurement of the physical quantity   :

(1) → , is real

(2) is not necessarily an eigenfunction of  

2006 Quantum Mechanics Prof. Y. F. Chen

Definition of Self-Adjoint (Hermitian Operators)

Formalism of Quantum Mechanics

†LL

fggf LL

dxxgxfdxxfxgdxxgxfb

a

b

a

b

a

)()()()()()( LLL

L

dLL

fggf †LL LL L

L

(1) the eigenvalues of an hermitian operator are real

(2) the eigenfunctions of an hermitian operator are orthogonal

(3) the eigenfunctions of an hermitian operator form a complete set

proof (1) & (2) :

×

×         

2006 Quantum Mechanics Prof. Y. F. Chen

The Properties of Hermitian Operators

Formalism of Quantum Mechanics

)()( xyxy iii L

)()( xyxy jjj L

)(xy j

)(xyi

dxxwxyxydxxyxy i

b

a jii

b

a j )()()()()( L

dxxwxyxydxxyxy j

b

a ijj

b

a i )()()()()( L

integrating

dxxwxyxydxxyxy i

b

a jii

b

a j )()()()()(

Lcomplex

conjugate

proof (1) & (2) :

→ if i=j, then → →   is real

if i≠j, then → & are orthogonal

∵ the eigenfunctions of an hermitian operator form a complete set

∴any function

2006 Quantum Mechanics Prof. Y. F. Chen

The Properties of Hermitian Operators

Formalism of Quantum Mechanics

dxxgxfdxxfxgdxxgxfb

a

b

a

b

a

)()()()()()( LLL

0)()()( b

a jiji dxxwxyxy

0)()()( b

a ii dxxwxyxy ii i

0)()()( b

a ji dxxwxyxy )(xyi )(xy j

0

)()(n

nn xycxy

general form of SL eq. :

with ,where p(x), q(x), and r(x) are real functions of x

Ex. Legendre’s eq. :                

& eigenvalues l(l+1)

linear operator that are self-adjoint can be written in the form :

linear operator=Hermitian over [a,b] satisfies BCs :

2006 Quantum Mechanics Prof. Y. F. Chen

The Sturm-Liouville Eq.

Formalism of Quantum Mechanics

0)()()()()(

)()(

)(2

2

xyxwxyxqxd

xydxr

xd

xydxp

xd

xpdxr

)()(

2( ) 1 , ( ) 2 , ( ) 0, ( ) 1,p x x r x x q x w x

0)()()()()()( xyxwxyxqxyxp

0)()()(

bx

axji xyxpxy

BCs : (1) → the wave with fixed ends

(2) → the wave with free ends

(3) → the periodic wave

show that subject to the BCs, the SL operator is Hermitian over [a, b] :

putting into

 

2006 Quantum Mechanics Prof. Y. F. Chen

The Sturm-Liouville Eq.

Formalism of Quantum Mechanics

0)()( byay

0)()( byay

0)()( bpap

)()()()()( xyxqxyxpxy L ( ) ( ) ( ) ( )b b

a af x g x dx g x f x dx

L L

b

a jijij

b

a i dxxyxqxyxyxpxydxxyxy )()()()()()()()( L

2006 Quantum Mechanics Prof. Y. F. Chen

The Sturm-Liouville Eq.

Formalism of Quantum Mechanics

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

b bx b

i j i j i jx aa a

b

i ja

i j

y x p x y x y x p x y x y x p x y x dx

p x y x y x dx

p x y x y x

( ) ( ) ( )

( ) ( ) ( )

bx b

j ix a a

b

j ia

y x p x y x dx

y x p x y x dx

integrating by parts for the first term & using the BCs

→ the SL operators is Hermitian over the prescribed interval

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

b bx b

i j i j j ix aa a

b

j ia

p x y x y x dx p x y x y x y x p x y x dx

y x p x y x dx

b

a ijij

b

a jiji

dxxyxqxyxyxpxy

dxxyxqxyxyxpxy

)()()()()()(

)()()()()()(

2006 Quantum Mechanics Prof. Y. F. Chen

Transforming an Eq. into SL Form

Formalism of Quantum Mechanics

any eq. can be put into

self-adjoin form by introducing in place of

proof : Let

→ to satisfy the requirement of SL eq. form for

0)()()()()()()()( xyxwxyxqxyxrxyxp

)(x )(xy

dxxp

xrxpxxy

)(2

)()(exp)()(

)()()( xxFxy

0)()()()(

)()(

)(

)()(

)()()(

)()(2)()(

xxwxqxF

xFxr

xF

xFxp

xxrxF

xFxpxxp

)(x

)()(

)()(2)( xr

xF

xFxpxp

)(2

)()(exp)(

xp

xrxpxF

2006 Quantum Mechanics Prof. Y. F. Chen

Transforming an Eq. into SL Form

Formalism of Quantum Mechanics

rewrite eq.

as the SL form for :

with

0)()()()(

)()(

)(

)()(

)()()(

)()(2)()(

xxwxqxF

xFxr

xF

xFxp

xxrxF

xFxpxxp

)(x

0)()()()(~)()( xxwxxqxxp

)()(2

)()()(

)(2

)()(

)(2

)()()()(~

2

xqxp

xrxpxr

xp

xrxp

xp

xrxpxpxq

Recommended