Foundations of Analytical and Numerical Field Computation · 2019. 2. 28. · Stephan Russenschuck,...

Preview:

Citation preview

Ste

phan

Rus

sens

chuc

k, C

ER

N-A

T-M

EL

1

Foundations of Analytical and Numerical

Field Computation

Stephan RussenschuckCERN, TE-MCS, 1211 Geneva, Switzerland

Ste

phan

Rus

sens

chuc

k, C

ER

N-A

T-M

EL

2

Permanent Magnet Circuits

Ste

phan

Rus

sens

chuc

k, C

ER

N-A

T-M

EL

3

Pole shimming

Rogowski profiles

Ste

phan

Rus

sens

chuc

k, C

ER

N-A

T-M

EL

4

Different Incarnations of Maxwell’s Equations

Integral form

Local form

Global form

Ste

phan

Rus

sens

chuc

k, C

ER

N-A

T-M

EL

5

Directional Derivative

Ste

phan

Rus

sens

chuc

k, C

ER

N-A

T-M

EL

6

The Differential Operators

Conclusion: This is horrible, so let’s try the geometrical approach

Ste

phan

Rus

sens

chuc

k, C

ER

N-A

T-M

EL

7

Maxwell’s House

Ste

phan

Rus

sens

chuc

k, C

ER

N-A

T-M

EL

8

Maxwell’s Equations in Differential Form

Ste

phan

Rus

sens

chuc

k, C

ER

N-A

T-M

EL

9

Maxwell’s House

Would be even more symmetric with magnetic monopoles

Outeroriented

Inneroriented

Ste

phan

Rus

sens

chuc

k, C

ER

N-A

T-M

EL

10

Maxwell’s Facade

Only forCartesian components

Constant permeablity and no sources

No sources

Ste

phan

Rus

sens

chuc

k, C

ER

N-A

T-M

EL

11

Method of Separation

How do you solve differential equations: Look them up in a book

Ste

phan

Rus

sens

chuc

k, C

ER

N-A

T-M

EL

12

Solution of Laplace’s Equation

What have we won? If we know the field at a reference radius, we know it everywhere inside

Ste

phan

Rus

sens

chuc

k, C

ER

N-A

T-M

EL

13

Multipoles and Scaling Laws

Ste

phan

Rus

sens

chuc

k, C

ER

N-A

T-M

EL

14

Ideal Pole Shape of Conventional Magnets

Ste

phan

Rus

sens

chuc

k, C

ER

N-A

T-M

EL

15

Numerical Field Computation

Principles of numerical field computation–

Formulation of the Problem–

Weighted residual–

Weak form–

Discretization–

Numerical exampleTotal vector potential formulation–

Weak form in 3-DElement shape functions–

Global shape functions–

Barycentric coordinatesMesh generation

Ste

phan

Rus

sens

chuc

k, C

ER

N-A

T-M

EL

16

The Model Problem (1-D)

or

Ste

phan

Rus

sens

chuc

k, C

ER

N-A

T-M

EL

17

Shape Functions

Ste

phan

Rus

sens

chuc

k, C

ER

N-A

T-M

EL

18

Shape Functions

Cramer’s rule

What have we won? We can express the field in the element as a function of the node potentials using known polynomials in the spatial coordinates

Ste

phan

Rus

sens

chuc

k, C

ER

N-A

T-M

EL

19

The Weighted Residual

What have we won? Removal of the second derivative, a way to incorporate Neumann boundary conditions

Ste

phan

Rus

sens

chuc

k, C

ER

N-A

T-M

EL

20

Galerkin’s Method

Linear equation system for the nodepotentials

Ste

phan

Rus

sens

chuc

k, C

ER

N-A

T-M

EL

21

Numerical Example

Ste

phan

Rus

sens

chuc

k, C

ER

N-A

T-M

EL

22

Numerical Example

Essential boundary conditions (Dirichlet)

Ste

phan

Rus

sens

chuc

k, C

ER

N-A

T-M

EL

23

Higher order elements

Ste

phan

Rus

sens

chuc

k, C

ER

N-A

T-M

EL

24

Two Quadratic Elements

Ste

phan

Rus

sens

chuc

k, C

ER

N-A

T-M

EL

25

Curl-Curl Equation

Problem in 3-D: Gauging

Ste

phan

Rus

sens

chuc

k, C

ER

N-A

T-M

EL

26

Weak Form in the FEM Problem

Ste

phan

Rus

sens

chuc

k, C

ER

N-A

T-M

EL

27

Weak Form in the FEM Problem

Conclusion: 3-D is more complicated than addition just one dimension in space; it’s a different mathematics, and thus often a separate software package

Ste

phan

Rus

sens

chuc

k, C

ER

N-A

T-M

EL

28

Weak Form in the FEM Problem

Ste

phan

Rus

sens

chuc

k, C

ER

N-A

T-M

EL

29

Meshing the Coil

Ste

phan

Rus

sens

chuc

k, C

ER

N-A

T-M

EL

30

Nodal versus Edge-Elements

Notice: Finer discretization does not help! Use edge-elements, or a different formulation (scalar potential, whenever possible. Remember: This problem does not exist in 2-D

Ste

phan

Rus

sens

chuc

k, C

ER

N-A

T-M

EL

31

Total Scalar Potential / Reduced Scalar Potential

Ste

phan

Rus

sens

chuc

k, C

ER

N-A

T-M

EL

32

Shape Functions

Ste

phan

Rus

sens

chuc

k, C

ER

N-A

T-M

EL

33

Barycentric Coordinates

Ste

phan

Rus

sens

chuc

k, C

ER

N-A

T-M

EL

34

Barycentric Coordinates

Ste

phan

Rus

sens

chuc

k, C

ER

N-A

T-M

EL

35

Higher Order Elements

Higher accuracy of the field solution, but also better modeling of the iron contour

Ste

phan

Rus

sens

chuc

k, C

ER

N-A

T-M

EL

36

Mapped Elements

Use of the same shape functions for the transformation of the elements

Ste

phan

Rus

sens

chuc

k, C

ER

N-A

T-M

EL

37

Mapped Elements

Ste

phan

Rus

sens

chuc

k, C

ER

N-A

T-M

EL

38

Transformation of Differential Operators

Complicated Easy

But how about the Jacobian being singular?

Ste

phan

Rus

sens

chuc

k, C

ER

N-A

T-M

EL

39

Collinear Sides yield Singular Jacobi Matrices

Note: Bad meshing is not a trivial offence

Ste

phan

Rus

sens

chuc

k, C

ER

N-A

T-M

EL

40

Topology Decomposition

Ste

phan

Rus

sens

chuc

k, C

ER

N-A

T-M

EL

41

Paving and Mesh Closing in Simple Domains

The number of nodes is less than 6

The domian does not contain “bottlenecks” , i.e., C2/a approaches 4π

The biggest inner angle is less then π

For triangles: a+b < c

Ste

phan

Rus

sens

chuc

k, C

ER

N-A

T-M

EL

42

Examples for FEM Meshes

Ste

phan

Rus

sens

chuc

k, C

ER

N-A

T-M

EL

43

Point Based Morphing

Always use morphing (if available) for sensitivity analysis

Ste

phan

Rus

sens

chuc

k, C

ER

N-A

T-M

EL

44

Magnet Extremities

Ste

phan

Rus

sens

chuc

k, C

ER

N-A

T-M

EL

45

Reduced Vector Potential Formulation

Advantages: No meshing of the coil, no cancellation errors, distinction between source field and iron magnetization

Ste

phan

Rus

sens

chuc

k, C

ER

N-A

T-M

EL

46

Source, Reduced, Total Field

Ste

phan

Rus

sens

chuc

k, C

ER

N-A

T-M

EL

47

BEM-FEM Coupling (Elementary Model Problem)

Ste

phan

Rus

sens

chuc

k, C

ER

N-A

T-M

EL

48

The FEM Part (Vector Laplace Equation)

Ste

phan

Rus

sens

chuc

k, C

ER

N-A

T-M

EL

49

FEM Part

Ste

phan

Rus

sens

chuc

k, C

ER

N-A

T-M

EL

50

BEM Part

From Green’s second theorem:

Vector Laplace Weighted Residual

Ste

phan

Rus

sens

chuc

k, C

ER

N-A

T-M

EL

51

BEM Part

Ste

phan

Rus

sens

chuc

k, C

ER

N-A

T-M

EL

52

BEM-FEM Coupling

FEM

BEM

Ste

phan

Rus

sens

chuc

k, C

ER

N-A

T-M

EL

53

Ste

phan

Rus

sens

chuc

k, C

ER

N-A

T-M

EL

54

Ste

phan

Rus

sens

chuc

k, C

ER

N-A

T-M

EL

55

Always check convergence of your computation

Recommended