Frequency Response - ITESO

Preview:

Citation preview

Dr. J.E. Rayas Sánchez1

Frequency Response

(Part 2)

Dr. J.E. Rayas Sánchez2

The FET High-Frequency Model

GD

S

gmvgs rοvgs

Cgd

Cgs

)(2 tGSm VVKg −=

DS

Ao I

Vr =

λ/1=AV

(input capacitance)gdgsiss CCC +=

(output capacitance)gddsoss CCC +=

(reverse capacitance)gdrss CC =

Dr. J.E. Rayas Sánchez3

The FET Unity-Gain Frequency (fT)

It is the frequency at which the magnitude of the short-circuit current gain of the Common Source configurationbecomes unity

)(2 gdgs

mT CC

gf+

20 MHz ≤ fT ≤ 100 MHz for JFETs

100 MHz ≤ fT ≤ 2 GHz for MOSFETs

5 GHz ≤ fT ≤ 15 GHz for GaAs MESFETs

10 GHz ≤ fT ≤ 200 GHz for SiGe MOSFETs

Dr. J.E. Rayas Sánchez4

The BJT High-Frequency Hybrid π Model

T

Cm V

Ig =C

Ao I

Vr =mg

r βπ =

rπgmvπ rο

B C

rx

Eπrhr iex −= rehrr /πµ =

(Collector-Base capacitance)cbob CCC ==µ

(Base-Emitter capacitance)ebCC =π

Dr. J.E. Rayas Sánchez5

Typical Behaviour of Cπ

Dr. J.E. Rayas Sánchez6

Capacitancia de Difusión (repaso)

DT

d IV

C τ=

1IID = 12 IIID >=

)( jd CC >>ebCC =π

Dr. J.E. Rayas Sánchez7

Capacitancia de la Región de Desértica (repaso)

( ) 00

12 ψ

ε

AD

DAj NN

NqNAC+

=

0

0

D

jj V

CC

−=

cbobj CCCC === 00µ

Dr. J.E. Rayas Sánchez8

Typical Behaviour of β

dB

20

40

60

20 log β o

fβfT

β

0

Frequency (Hz - Log Scale)109108107106105

f

- 3 dB

- 20 dB/decade

fT Unity-Gain Bandwidth

Dr. J.E. Rayas Sánchez9

The BJT Unity-Gain Bandwidth (fT)

It is the frequency at which the magnitude of theshort-circuit current gain of the common emitterconfiguration becomes unity

)(2 µππ CCgf m

T +=

2 MHz ≤ fT ≤ 100 MHz for general purpose BJTs

1 GHz ≤ fT ≤ 10 GHz for high speed BJTs

1 GHz ≤ fT ≤ 50 GHz for HBTs and HEMTs

Dr. J.E. Rayas Sánchez10

Typical Behaviour of fT

fT

log I C

fTmax

ICM

Dr. J.E. Rayas Sánchez11

High-Frequency Response of FET Amplifiers

Common Source

gmvgs rο||rLvgs

Cgd

Cgs vo

rS

virL vovi

rS

Sgs rR = )1(/ gs

oS

Sgs

ogsgd v

vrrvvv

R −=−

=

)||)(( LogsmS

gso rrvg

rv

v +−= )]/1)(||(1[ SmLoSgd rgrrrR ++=

)/(1 gdgdgsgsH CRCR +≈ω

Dr. J.E. Rayas Sánchez12

High-Frequency Response of FET Amplifiers

gmvgs

rLvgs Cgd

Cgs vo

rS

vi

roCommon Gate

rL vovi

rS

1|| ZrR Sgs =Lo

gs

rvv

Z/1

−= L

o

ogsgsmo r

rvv

vgv

−−+−= )(

oLLm

oLL

rrrgrrrZ/

)/1(1 +

+=m

Lo gZrr 1thenif 1 ≈>>

To calculate Rgd, assume ro >> rS , then vgs = 0 : Logd rrR ||=

)/(1 gdgdgsgsH CRCR +≈ω

Dr. J.E. Rayas Sánchez13

High-Frequency Response of FET Amplifiers

Common Drain

gmvgs rL

Cgs

Cgdvo

rS

vi+ vgsrL vo

vi

rS

Logsm

gsgs rvvg

vR

/−=

L

ogsm

S

ogs

rvvg

rvv

−=+

Sgd rR =

LS

gs

LS

Smgso rr

vrr

rgvv

/1/1)1(

+−

≈+

−=

)(1)/(11

SLm

SL

SLmgs rrg

rrrrg

R++

+=++

=

)/(1 gdgdgsgsH CRCR +≈ω

Dr. J.E. Rayas Sánchez14

High-Frequency Response of BJT Amplifiers

Common Emitter

rL vovi

rS rπgmvπ rovπ

rx

CµrS

vorLvi

)1(/ π

πππ

πµ v

vRRvvvR oo −=−=ππ rrrR xS ||)( +=

)||)(( Lomo rrvgRvv π

π

π +−= )]/1)(||(1[ ππµ RgrrRR mLo ++=

)/(1 µµππω CRCRH +≈

Dr. J.E. Rayas Sánchez15

High-Frequency Response of BJT Amplifiers

Common Base

rL vo

rS

vi

It can be shown that

Sm

Sx

rgrrrR

++=

1||ππ LSxoL rrrrrR ≈+= )||(||µ

)/(1 µµππω CRCRH +≈

Dr. J.E. Rayas Sánchez16

High-Frequency Response of BJT Amplifiers

Common Collector

rL vovi

rS

It can be shown that

)||(1)||(||

oLm

oLSx

rrgrrrrrR

+++= ππ )(1

||xSLm

xSL

rrrgrrrrR+++

++= πµ

)/(1 µµππω CRCRH +≈

Dr. J.E. Rayas Sánchez17

Comparison of Low-Frequency FET Responses

CD

CG

CS

GCRSCR

DCR

mS g

R 1||21 || GGSS RRR + DL RR +

)1||(m

SSS gRR +21 || GG RR

LD RR +

Lm

S Rg

R +)1||( DR21 || GGSS RRR +

DCSCGCL CRCRCR

DSG

111 ++≈ω

Dr. J.E. Rayas Sánchez18

Comparison of Low-Frequency BJT Responses

CC

CB

CE

CCRBCR

ECR

1)||||(|| 21

++

βπ BBS

ERRRrR)||||( 21 πrRRR BBS + )||( oCL rRR +

)]||)(1([|||| 21 SEBB RRrRR βπ ++ mES grRR /1|||| π+ )||( oCL rRR +

)]||([|| LEoC RRrR +1

)||||(|| 21

+++

βπ BBS

ELRRRrRR)]||)(1([|||| 21 LEBBS RRrRRR βπ +++

CCECBCL CRCRCR

CEB

111 ++≈ω

Dr. J.E. Rayas Sánchez19

Comparison of High-Frequency FET Responses

gsR

)]/1)(||(1[ SmLoS rgrrr ++

CD

CG

CS

gdR

Sr

mS g

r 1|| Lo rr ||

)(1 SLm

SL

rrgrr++

+Sr

)/(1 gdgdgsgsH CRCR +≈ω

Dr. J.E. Rayas Sánchez20

Comparison of High-Frequency BJT Responses

πR

)]/1)(||(1[ ππ RgrrR mLo ++πrrr xS ||)( +

Sm

Sx

rgrrr

++

1||π )||(|| SxoL rrrr +

)||(1)||(||

oLm

oLSx

rrgrrrrr

+++

π

)/(1 µµππω CRCRH +≈

CC

CB

CE

µR

)(1||

xSLm

xSL

rrrgrrrr+++

++π

Dr. J.E. Rayas Sánchez21

Miller´s Theorem

V2

Z1

V1

Z2

ZV2

V1

1

2

VVAV =

VAZZ

−=

11 12 −=

V

V

AZAZ

V1

C1

V2

C2

CV2

V1)1(1 VACC −=

−=V

V

AACC 1

2

Dr. J.E. Rayas Sánchez22

Miller Effect

Common Source

gmvgs rο||rLvgs

Cgd

Cgs vo

rS

virL vovi

rS

)]/1)(||(1[ SmLoSgd rgrrrR ++=

)]/1)(||(1[ ππµ RgrrRR mLo ++=

rL vovi

rS rπgmvπ rovπ

rx

CµrS

vorLvi

Common Emitter

Dr. J.E. Rayas Sánchez23

The Cascode Configuration

RC

R3

R2

vs

RS

CS

RE CE

VCC

RLvo

CCR1

CBQ2

Q1

Dr. J.E. Rayas Sánchez24

The Cascode Configuration (cont)

vs

RS RC || RLvo

Q2

Q1

R3 || R2

Dr. J.E. Rayas Sánchez25

The Cascode Amplifier at High Frequencies

23 |||| RRRr SS =23

23

||)||(

RRRRRvv

S

si +=

rS

vi ro1

gm1vπ 1

Cµ 1

Cπ 1

rx1

vπ 1

rπ 1 rπ 2

gm2vπ 2

ro2

vπ 2Cπ 2 Cµ 2rLvo

11

1'π

π

rrrrvvxS

ii ++

= 11 ||)(' πrrrr xSS +=

vi'gm1vπ 1

Cµ 1

Cπ 1 vπ 1

rπ 2

gm2vπ 2

ro2

vπ 2Cπ 2 Cµ 2rLvo

rS'

Dr. J.E. Rayas Sánchez26

The Cascode Amplifier at High Frequencies

22

21|| em

rg

r =π

vi'gm1vπ 1

Cµ 1

Cπ 1

rS'

rπ 2 vπ 2Cπ 2 1/gm2vπ 1

vi'gm1vπ 1

Cµ 1

Cπ 1

rS'

re2Cπ 2vπ 1

vx

'1 SrR =π 22 erR =π )1(''/ 11

11

ππ

πµ v

vrrvvvR x

SS

x −=−=

2111 )'

( emS

x rvgrvv π

π +−=2

221 '2)

'1(' eS

S

eemS rr

rrrgrR +≈++=µ

Dr. J.E. Rayas Sánchez27

The Cascode Configuration

RC

R3

R2

vs

RS

CS

RE CE

VCC

RLvo

CCR1

CBQ2

Q1

'1 SrR =π 22 erR =π

21 '2 eS rrR +=µ

)/(1 112211 µµππππω CRCRCRH ++≈

11 ||)(' πrrrr xSS +=

23 |||| RRRr SS =

Dr. J.E. Rayas Sánchez28

Frequency Response of a Differential Amplifier

ππ rrRR xS ||)( +=

)]/1)(||(1[ ππµ RgRrRR mCo ++=

)/(1 µµππω CRCRH +≈

vC1

RC

RS

+vd /2vC1 vC2

I

VCC

VEE

RCRC

vdRS

RS

Dr. J.E. Rayas Sánchez29

Cascode Differential Amplifier

RS RCvC1+vd /2

vC1 vC2

I

VCC

VEE

RCRC

vdRS

RS

R2

R1

VCC

VEE

])/[(1 21 µµπππω CRCRRH ++≈

erR =2π

erRR += 12 πµ

ππ rrRR xS ||)(1 +=

Dr. J.E. Rayas Sánchez30

Hybrid Microwave Integrated Circuits

M. Pozar (1998),Microwave Engineering. Amherst, MA: John Wiley and Sons.

Dr. J.E. Rayas Sánchez31

Hybrid Microwave Integrated Circuits (cont)

M. Pozar (1998), Microwave Engineering. Amherst, MA: John Wiley and Sons.

Dr. J.E. Rayas Sánchez32

Monolithic Microwave Integrated Circuits

M. Pozar (1998), Microwave Engineering. Amherst, MA: John Wiley and Sons.

Dr. J.E. Rayas Sánchez33

Active Device Models at Microwave Frequencies

rπgmvπ rοvπ

rx

B

E

C

Recommended