Histonas Canal de potasio Mioglobina · Proteínas Albúmina Transporte Canal de potasio Mioglobina...

Preview:

Citation preview

Proteínas

TransporteAlbúmina

Canalde potasio Mioglobina

Movimiento

Miosina

Estructura

Colágeno

Histonas

Lisozima

PepsinaPolimerasade DNA

CatálisisRegulacióny

SeñalizaciónFactor detranscripción

Inmuno-gamma-globulina

Insulina

Enlaces de hidrógenoInteracciones de van der WaalsInteracciones electrostáticasInteracciones hidrofóbicas

Red de interacciones• intramoleculares• intermoleculares

+

++−=

++=

+−=

iii

iii

iii

dNVdPSdTdG

dNVdPTdSdH

dNPdVTdSdE

μ

μ

μ

PVTSETSHNPTGGPVENPSHH

NVSEE

i

i

i

+−=−==+==

=

),,(),,(

),,(

( ) ( )

( ) ⎟⎟⎠

⎞⎜⎜⎝

⎛Δ+Δ=Δ

−Δ+Δ=ΔΔ−Δ=Δ

0P0

0P0

lnTTCTSS

TTCTHHSTHG

A

B

P2

2

PPP

)()()(⎟⎟⎠

⎞⎜⎜⎝

⎛∂Δ∂

−=⎟⎠⎞

⎜⎝⎛

∂Δ∂

=⎟⎠⎞

⎜⎝⎛

∂Δ∂

=ΔT

TGTT

TSTT

THC

∑+−=−=

−=Δ

iiidNPdVTdSWdQddE

WQEμ

00

≥≥Δ

dSS aisladosistemaunen

1a Ley de la Termodinámica Balance energético

2a Ley de la Termodinámica Direccionalidad o viabilidad

∑−<<

−==

iii

iii

dNPdVWdTdSQd

dNPdVWdTdSQd

μ

μ

leirreversib

reversible

000

<>=

dSdSdS

imposibleleirreversib

reversible

A

B

entorno

sistemaenergía

(Q,W)

0≥+= es dSdSdS

0=+= es dEdEdE

0≥−=+=TQddS

TQddSdS s

se

s

0≥− ss QdTdS

constanteVsi00 ≤=−≥− sssss dFTdSdEdETdS

constantePsi00 ≤=−≥− sssss dGTdSdHdHTdS

Supongamos que el sistemano es aislado, pero es cerrado

0,0,0,

≤≤≥

s

s

s

dGPTdFVTdSVE

constantesconstantesconstantes

STHGPVFTSHPVTSEG

sNPTGG

ΔΔΔ

Gibbdelibreenergía),,(

−=+=−=+−=

=

∑++−=++−−=i

iidNVdPSdTPdVVdPSdTTdSdEdG μ

BA 0BA 0,

BA 0

→<↔=

→/>

favorableprocesoequilibrioconstantes

favorablenoproceso

dGdGPTdG

A

B

exergónicaaendergónic

exotérmicaaendotérmic

00

00

<Δ>Δ

<Δ>Δ

Δ−Δ=Δ

GG

HH

STHG

-16

-12

-8

-4

0

4

kcal

/mol

ΔG ΔH -TΔS

( ) RSRTHRTGeq eeeK /// 000 ΔΔ−Δ− ==

ΔH cambio de energía almacenada en enlaces e interaccionesrefleja número, tipo y calidad de enlacesΔH < 0 ⇒ si T ↑, entonces Keq ↓ΔH > 0 ⇒ si T ↑, entonces Keq ↑

ΔS medida de desordenrefleja orden-desorden en enlaces, flexibilidad conformacional y solvatación

BA ↔

( )RTGPPT /expcte, ii Δ−∝⇒

iestados,...,1,0 Pni ⇒=

1ni

0ii =∑

=

=

P…

G0ii GGG −=Δ

exp(-ΔGn/RT)ΔGnGnn

exp(-ΔGi/RT)ΔGiGii

10G00

exp(-ΔG/RT)ΔGGi

( ) ( )∑=

=

Δ−=Δ−

=ni

0ii

ii /exp/exp RTGQ

QRTGP

función de partición

Sistema ergódico ⇒ AA =

∑=

=

=ni

0iii APA promedio de colectividad

∫ ′′=+∞→

t

ttdtA

tA

0)(1lim promedio temporal

En general, iAA ∀≠ ,i

A propiedad observable del sistema ⇒ ¿ medida de A ?

QRTG ln−=Δ

( ) ( )∑∑ Δ−=Δ−=i

ii

ii RTGRTHQ /exp/expω

( )Q

RTGP ii

/exp Δ−=

( )T

TGT

TQRTH

∂Δ∂

−=∂

∂=Δ

/ln 22

TG

TQTQRS

∂Δ∂

−=⎟⎠⎞

⎜⎝⎛

∂∂

+=Δlnln

ΔSnΔHnΔGnn

ΔSiΔHiΔGii

0000

ΔSΔHΔGi

( )Q

RTGP ii

/exp Δ−=

( )

QNPNN

QRTGNPNN i

ii

1

/exp

00 ==

Δ−==

( )∑ Δ−=i

i RTGQ /exp

( )RTGNN

ii /exp0

Δ−=

⎪⎪⎭

⎪⎪⎬

∑∑ ==i

i

i

i

CC

NNQ

00

Equilibrio Conformacional

( )RTGPPT /expcte, ii Δ−∝⇒

iestados,...,1,0 Pni ⇒=

1ni

0ii =∑

=

=

P

G0ii GGG −=Δ

],...)[],[,,,,(ii LDpHPTGG μΔ=Δ

][])([ 0ii DmGDG −Δ=Δ

⎟⎟

⎜⎜

+

++Δ=Δ

=∑ pHpKa

pHpKa

ij

j

RTnGpHG,

1,

101

101ln)(1j

j0ii

( ))/ln()()()()( im,iP,im,iim,iP,im,ii TTCTSTTTCTHTG Δ+Δ−−Δ+Δ=Δ

⎟⎟⎠

⎞⎜⎜⎝

++

+Δ=Δ][1][1

ln])([iB,

B,10ii LK

LKRTGLG

Estudio de estabilidad de proteínas

• Bioquímica y BiofísicaInteracciones intramolecularesPlegamiento de proteínas

• BiotecnologíaIngeniería de proteínasSensores moleculares

• BiomedicinaEnfermedades conformacionales

• FarmacologíaFormulación de fármacosControl de calidad

Conformación nativa ≡ conformación de mínima energíaestructurada, estable, funcional, activa

• temperatura moderada• ausencia de agentes denaturalizantes• pH moderado

Pérdida de la Conformación Nativa

• pH ácido• temperatura extrema• agentes desnaturalizantes• hidrólisis• mutaciones

En un contexto dado, la estructura primaria de unaproteína determina su estructura tridimensional, que corresponde a un mínimo energético

Cuantificación dela estabilidad

Energía requerida paradesestabilizar la estructuratridimensional molecular

Técnicas Experimentales:

• Espectroscopía (UV, F, CD, NMR, FTIR)• Calorimetría (DSC)

• Propiedad con diferentes valores para cada estado• Señal medida proporcional al avance del proceso de desplegamiento• Información global o local

Espectroscopía

20 40 60 80 1000

10

20

30

40

50

60

Señ

al E

spec

trosc

ópic

a

Temperatura (oC)

30 40 50 60 70 80 90

0

2000

4000

6000

8000

<ΔC

P>ex

cess (c

al/K

·mol

)T (oC)

0°C

100°C

Calorimetría Diferencial de Barrido

Medida de la capacidad calorífica de una disolución de macromolécula en función de la temperatura

Desplegamiento Cooperativo Reducción del númerode estados accesibles

Estados parcialmente plegados no son significativamente poblados

0 2 4 6 8 10

20

40

60

80

100

120

Señ

al E

spec

trosc

ópic

a

[Urea] (M)

20 40 60 80 1000

10

20

30

40

50

60

Señ

al E

spec

trosc

ópic

a

Temperatura (oC)

20 40 60 80 100

0

2

4

6

8

10

12

14

<ΔC

P> (k

cal/K

·mol

)

Temperatura (oC)

?

Estabilidad ΔG Energía de Gibbs de estabilizacióno desplegamientoDiferencia de energía de Gibbs entre el estado nativo y el estadodesplegado

][][

ln

NUK

KRTG

=

−=Δ

⎩⎨⎧

↓↑Δ

⇒↑K

GdEstabilida

⎩⎨⎧

<>Δ

⇒1

0Estable

KG

UN ↔

NU GGG −=Δ

Equilibrio de desplegamiento o desnaturalización

No se obtiene información cinéticaNo se consideran procesos irreversibles

G

N

UTS

ΔG‡ΔG

UN ↔

Enlaces de hidrógenoInteracciones de van der WaalsInteracciones electrostáticasInteracciones hidrofóbicasEntalpía de solvataciónEntropía de solvataciónEntropía conformacional

ΔG = ΔH - TΔS

El papel del agua es extremadamente importante

Balance entre estado nativo y desplegado, tomando como referencia la interacción con el solvente

Desplegamiento de dos estados

⎪⎪

⎪⎪

+=

+=

+=

KKP

KP

KQ

1

11

1

U

N

KΔGGU

10GN

exp(-ΔG/RT)ΔGGi

UN ↔

],...)[],[,,,,( LDpHPTGG μΔ=Δ

][])([ 0 DmGDG −Δ=Δ

⎟⎟

⎜⎜

+

++Δ=Δ

−=

=∑ pHpKa

pHpKa

RTnGpHGUj,

Nj,

101

101ln)(mj

1jj

0

( ))/ln()()()()( mPmmPm TTCTSTTTCTHTG Δ+Δ−−Δ+Δ=Δ

⎟⎟⎠

⎞⎜⎜⎝

++

+Δ=Δ][1][1

ln])([UB,

NB,0

LKLK

RTGLG

Desnaturalización Térmica

( ))/ln()()()()( mPmmPm TTCTSTTTCTHTG Δ+Δ−−Δ+Δ=Δ

)()( mm TTHTH =Δ=Δ )()( mm TTSTS =Δ=Δ

P2

2

PPP ⎟⎟

⎞⎜⎜⎝

⎛∂Δ∂

−=⎟⎠⎞

⎜⎝⎛∂Δ∂

=⎟⎠⎞

⎜⎝⎛∂Δ∂

=ΔT

GTTST

THC

KRTTG ln)( −=Δ

⎪⎪

⎪⎪

Δ=Δ

==

=

⇒=Δ

m

mm

UNm

)()(

21

1

0)(

TTHTS

PP

K

TG

ΔH(Tm) > 0 Ruptura de interacciones de van der WaalsRuptura de enlaces de hidrógenoSolvatación de grupos polares y apolares

ΔS(Tm) > 0 Libertad conformacionalSolvatación de grupos polares y apolares

ΔCP > 0 Solvatación de grupos polares y apolares

ΔCP = cte

ΔCP = a + bT + cT2

0 20 40 60 80 1000

10

20

30

40

50

60

Señ

al E

spec

trosc

ópic

a

Temperatura (oC)

UUNN APAPA +=

( )TbaA NNN +=

( )TbaPA UUUU +=

( ) ( )( ) ( )( )( ) RTTTCTSTTTCTH

RTTTCTSTTTCTH

eTbaeTbaA /)/ln()()()(

UU/)/ln()()()(

NNmPmmPm

mPmmPm

1 Δ+Δ−−Δ+Δ−

Δ+Δ−−Δ+Δ−

++++

=

0 20 40 60 80 1000

10

20

30

40

50

60

Señ

al E

spec

trosc

ópic

a

Temperatura (oC)

ΔH(Tm) 101 ± 2 kcal/molTm 60.69 ± 0.04 °CΔCP 2.2 ± 0.7 kcal/K⋅mol

0 20 40 60 80 100

0.0

0.2

0.4

0.6

0.8

1.0

P N, P

U

Temperatura (oC)

∫Δ

Δ=Δ

1

0

1

0

Pm

Pm

)(

)(

T

T

T

T

dTTC

TS

dTCTH

40 60 80-2

0

2

4

6

8

10

12

14

CP>

(kca

l/K·m

ol)

Temperatura (oC)40 60 80

0

30

60

90

120

150

180

<ΔH

> (k

cal/m

ol)

Temperatura (oC)

∫ Δ=ΔT

TdTCH

0P

TmΔCP

ΔHcal

HPHPHPH

Δ=

Δ+Δ=Δ

U

UUNN

)()( mPm TTCTH −Δ+Δ

( ) P2

2

2P

P 11C

KK

RTH

KK

TH

C Δ+

+=⎟⎟

⎞⎜⎜⎝

⎛∂Δ∂

40 60 80

0

2

4

6

8

10

12

14

<ΔC

P> (k

cal/K

·mol

)

Temperatura (oC)

( )

TQRTH

RTGQ

∂∂

Δ−+=ln

/exp1

2

( ))/ln()()()()(

mPm

mPm

TTCTSTTTCTHTG

Δ+Δ−−Δ+Δ=Δ

40 60 80

0

2

4

6

8

10

12

14

<ΔC

P> (k

cal/K

·mol

)

Temperatura (oC)

Tm 60.75 ± 0.03 °CΔH(Tm) 102 ± 0.3 kcal/molΔCP 2.51 ± 0.02 kcal/K⋅mol

-40 -20 0 20 40 60 80 100-10

-5

0

5

10

ΔG (k

cal/m

ol)

Temperatura (oC)

STG

RTH

TK

Δ−=⎟⎠⎞

⎜⎝⎛∂Δ∂

Δ=⎟

⎠⎞

⎜⎝⎛

∂∂

P

2P

ln

⎟⎟⎠

⎞⎜⎜⎝

⎛⎟⎟⎠

⎞⎜⎜⎝

⎛ΔΔ

−−Δ−Δ=Δ

⎟⎟⎠

⎞⎜⎜⎝

⎛ΔΔ

−==Δ

mP

mmPm

mP

mmSmax

)(exp1)(max

)(exp

TCTHTCTHG

TCTHTTT

T

GT

GST

Δ⇒=Δ max0

Tmax ΔG

P2

2

P ⎟⎟⎠

⎞⎜⎜⎝

⎛∂Δ∂

−=ΔT

GTC

Tm

30 40 50 60 70 80 90-20-15

-10

-5

05

10

ΔG(k

cal/m

ol)

Temperatura (oC)

0

3

6

9

12

CP>

(kca

l/K·m

ol)

0.00.2

0.40.6

0.81.0

Frac

ción PN PU

Enlaces de hidrógenoInteracciones de van der WaalsInteracciones electrostáticasInteracciones hidrofóbicas

0 20 40 60 80 100-20

-15

-10

-5

0

5

10

ΔG

ΔG (k

cal/K

·mol

)

Temperatura (oC)

-250-200-150-100-50050100150200

ΔH

, -TΔ

S (k

cal/K

·mol

)

ΔH -TΔS

Tm

TH TS

+

-

estabilizado entálpicamente

estabilizado entrópicamente

Estabilidad “marginal”Dificultad para cálculos predictivos

ΔG = ΔH - TΔSP

mHH

maxSS

)(0)(

0)(

CTHTTTH

TTTS

m

GT

ΔΔ

−=⇒=Δ

=⇒=Δ Δ

Posible justificación de una estabilidad no muy elevada:

Razones para una estabilidad no muy baja:

• Permitir cierta flexibilidad y dinámica relacionadascon la función molecular• Posibilitar la degradación mediante proteasas• Impedir cinética de plegamiento lenta con intermedios de plegamiento muy estables• Evitar la aparición de estructuras incorrectamenteplegadas estables (trampas cinéticas)

• Estados parcial- o totalmente desplegadossignificativamente poblados (inactivos y susceptiblesde degradación)

30 40 50 60 70 80 90

0

1

2

3

4

5

6 Subtype B Subtype A Subtype C Subtype G

<ΔC

P> (k

cal/K

·mol

)

Temperatura (oC)

mWT

mWT

m )()( TTSTG ΔΔ≈ΔΔ

)()()( WTm

WTWTm

MUTWTm TGTGTG Δ−Δ=ΔΔ

WTP

MUTP CC Δ≈Δ

Diferencias de estabilidad

Problema: ΔG= ΔG(T)

Utilizar una temperatura común

( )WTm

MUTm

WTm

WT

XXXGX

XGG −⎟

⎠⎞

⎜⎝⎛∂Δ∂

−=Δ⎟⎠⎞

⎜⎝⎛∂Δ∂

−≈ΔΔ

-40 -20 0 20 40 60 80 100-30

-20

-10

0

10

20

30

ΔG (k

cal/m

ol)

Temperatura (°C)

Tm

Estabilidad a elevada y baja temperatura

¿ Qué proteína es más estable ?

ΔH(Tm) 180 kcal/molΔS (Tm) 0.54 kcal/(K⋅mol)ΔCP 5.0 kcal/(K⋅mol)

ΔH (Tm) 350 kcal/molΔS (Tm) 1.05 kcal/(K⋅mol)ΔCp 8.0 kcal/(K⋅mol).

40 60 80

0

2

4

6

8

10

12

14

<ΔC

P> (k

cal/K

·mol

)

Temperatura (oC)

Tm 60.75 ± 0.03 °CΔH(Tm) 102 ± 0.3 kcal/molΔCP 2.51 ± 0.02 kcal/K⋅mol

-40 -20 0 20 40 60 80 100-10

-5

0

5

10

ΔG (k

cal/m

ol)

Temperatura (oC)

⎟⎟⎠

⎞⎜⎜⎝

⎛⎟⎟⎠

⎞⎜⎜⎝

⎛ΔΔ

−−Δ−Δ=Δ

⎟⎟⎠

⎞⎜⎜⎝

⎛ΔΔ

−==Δ

mP

mmPm

mP

mmSmax

)(exp1)(max

)(exp

TCTHTCTHG

TCTHTTT

T

GT

Tmax ΔG

P2

2

P ⎟⎟⎠

⎞⎜⎜⎝

⎛∂Δ∂

−=ΔT

GTC

TmTf

0)()( fm =Δ=Δ TGTG

mSfHm

2m

f 22-3

TTTTT

TT −≈≈

-60 -40 -20 0 20 40 60 80 100 120-50

-40

-30

-20

-10

0

10

20

ΔG (k

cal/m

ol)

Temperatura (oC)

TmTf

Desnaturalización Fría

Para una proteína globular típica:

Tm ~ 50-70 °CΔH(Tm) ~ 80-120 kcal/molΔCP ~ 2-3 kcal/K·molΔG(25 °C) ~ 5-10 kcal/molTmaxΔG ~ 20-30 °CTf < 0 °C

Desplegamiento de tres estados

K1K2ΔG1+ΔG2

K2ΔG2

K1ΔG1

10exp(-ΔGi/RT)ΔGii

Q = 1 + K1 + K2 + K1K2

( )Q

RTGP /exp ii

Δ−=

= (1 + K1) (1 + K2)

K1K2ΔG1+ΔG2

K1ΔG1

10exp(-ΔGi/RT)ΔGii

Q = 1 + K1 + K1K2

( )Q

RTGP /exp ii

Δ−=

≠ (1 + K1) (1 + K2)

20 40 60 80 100

0

2

4

6

8

10

<ΔC

P> (k

cal/K

·mol

)

Temperatura (oC)

?

20 40 60 80 100

0

50

100

150

200

250

<ΔH

> (k

cal/m

ol)

Temperatura (oC)

∫ Δ=ΔT

TdTCH

0P

0 20 40 60 80 100

-20

-10

0

10

ΔG1ΔG2ΔG1+ΔG2

ΔG(k

cal/m

ol)

Temperatura (oC)

02468

10

<ΔC

P>(k

cal/K

·mol

)

0.00.20.40.60.81.0

Frac

ción PN

PI

PU P ∼ 0

Reducción del númerode estados accesibles

20 40 60 80 100

0

2

4

6

8

10

12

CP>

(kca

l/K·m

ol)

Temperatura (oC)

¿Transición de dos estados ?

20 40 60 80 100

0

50

100

150

200

250

300

<ΔH

> (k

cal/m

ol)

Temperatura (oC)

∫ Δ=ΔT

TdTCH

0P

Tests de dos estados

• Superposición de las curvas de desplegamiento obtenidas con diversas técnicas (espectroscopía)

• Valor del cociente (calorimetría)cal

vH

HH

ΔΔ

Refolding

FluorescenciaCD (far UV)

Dos estados Tres estados

Genzor et al. Protein Science (1996) 5, 1376-1388 Irún et al. J. Mol. Biol. (2001) 306, 877-888

¡ Cuidado !

• Superposición de curvas obtenidas con distintas técnicas es condición necesaria pero no suficiente

• Espectroscopía nos informa de comportamiento global y/o local

• Transición de dos estados implica total cooperatividad (ausencia de otros estados parcialmente plegados)

• Errores y ruido en las medidas pueden enmascarar algunos detalles y fenómenos

cal

maxP2

mvH

4H

CRTHΔ

>Δ<=Δ

2

lnRT

HT

K Δ=

∂∂

1

1

1

cal

vH

cal

vH

cal

vH

>ΔΔ

<ΔΔ

=ΔΔ

HHHHHH unidad cooperativa ≡ molécula (dos estados)

unidad cooperativa < molécula (estados intermedios)

unidad cooperativa > molécula (nativo está asociado)

van’t Hoff enthalpy

20 40 60 80 100

0

2

4

6

8

10

12

<ΔC

P> (k

cal/K

·mol

)

Temperatura (oC)

ΔHcal 144.3 kcal/molTm 63.5 ºC< ΔCP>max 10.2 kcal/K·mol

ΔHvH 63.4 kcal/molΔHvH/ΔHcal 0.44

0 20 40 60 80 100

-20

-10

0

10

ΔG1ΔG2ΔG1+ΔG2

ΔG(k

cal/m

ol)

Temperatura (oC)

02468

1012

<ΔC

P>(k

cal/K

·mol

)

0.00.20.40.60.81.0

Frac

ción PN PI

PU P ≠ 0

20 40 60 80 100

0

4

8

12

16

20

24

28

<ΔC

P> (k

cal/K

·mol

)

Temperatura (oC)

30 40 50 60 70 80 90

0

10

20

30

40

50

CP>

(kca

l/K·m

ol)

Temperatura (oC)

ΔHvH /ΔHcal 1ΔHvH/ΔHcal 0.5

Tm 60ºC 60ºCΔH(Tm) 200 kcal/mol 2 × 100 kcal/molΔCP 4 kcal/K·mol 2 × 2 kcal/K·mol

2m

vH

4m

RTH

TP

TT

N Δ−=

∂∂

=

0 20 40 60 80 100-40

-30

-20

-10

0

10

20

ΔG (k

cal/m

ol)

Temperatura (oC)

0 20 40 60 80 100

0.0

0.2

0.4

0.6

0.8

1.0

Frac

ción

Nat

iva

Temperatura (oC)30 40 50 60 70 80 90

-50

0

50

100

150

200

250

300

350

<ΔH

> (k

cal/m

ol)

Temperatura (oC)

K1K2kΔG1+ΔG2+ΔgK2kΔG2+ΔgK1kΔG1+Δg10

exp(-ΔGi/RT)ΔGii

Q = 1 + kK1 + kK2 + kK1K2

( )Q

RTGP /exp ii

Δ−=

Dos dominios interaccionantes

≠ (1 + kK1) (1 + kK2)

0 20 40 60 80 10005

101520253035404550

<ΔC

P> (k

cal/K

·mol

)

Temperatura (oC)

k Δg (kcal/mol)1 010-1 1.410-2 2.710-3 4.110-4 5.510-5 6.810-6 8.310-7 9.5

85.0vH ≈ΔΔ

calHH

0 20 40 60 80 100

Temperatura (oC)

Frac

ción

k = 1 Δg = 0 independenciak ≠ 1 Δg ≠ 0 cooperatividad

0 20 40 60 80 10005

101520253035404550

<ΔC

P> (k

cal/K

·mol

)

Temperatura (oC)

0 20 40 60 80 1000.00

0.25

0.50

0.75

1.00

Temperatura (oC)

0.00

0.25

0.50

0.75

1.00

Frac

ción

k Δg (kcal/mol)1 010-6 8.3

k = 1

k = 10-6

0 20 40 60 80 100-30-25-20-15-10

-505

10152025

ΔG1 ΔG2 ΔG1+ΔG2

ΔG1+Δg ΔG2+Δg ΔG1+ΔG2+Δg

ΔG (k

cal/m

ol)

Temperatura (oC)

05101520253035404550

<ΔC

P> (k

cal/K

·mol

)

Reducción del númerode estados accesibles

Cooperatividad ⇒ No aditividad

Todd et al. J. Mol. Biol. (1998) 283, 475-88

Unión de Ligandosy

Estabilidad de Proteínas

UN ↔

0

0

TU

0T

N

1][][

11

][][

KK

PUP

KPNP

+==

+==

00

0

ln][][

KRTGNUK

−=Δ

=K0

K0ΔG0

10exp(-ΔGi/RT)ΔGii

Q = 1 + K0

( )Q

RTGP /exp ii

Δ−=

NL

L

UN+↔

( )][1ln

][1][11

][][

][][][

0

0

LKRTGG

LKK

LKNU

NLNUK

a

aa

++Δ=Δ

+=

+=

+=

0

0

TU

0T

N

][11][][

][1][1

11

][][][

KLKK

KK

PUP

KLKLK

KPNLNP

a

a

a

++=

+==

+++

=+

=+

=

K0

Ka

K0ΔG0

Ka[L]ΔGbind

10exp(-ΔGi/RT)ΔGii

Q = 1 + Ka[L] + K0

( )Q

RTGP /exp ii

Δ−=

0 20 40 60 80 100-12-8-4048

12

ΔG(k

cal/m

ol)

Temperatura (oC)

02468

1012

<ΔC

P>(k

cal/K

·mol

)

0.00.20.40.60.81.0 1:0

1:1 1:5 1:25 1:125

P U

Ka 10-6 M-1

[L]T/[P]T

G

−RTln(1+Ka[L])

UL

L

UN+

( ) ( )

( )][1ln

][1][1][][

][][][

0

0

LKRTGG

LKKLKNU

NULUK

a

aa

+−Δ=Δ

+=+=+

=

( )( )( )][11

][11][

][][

][111

11

][][

0

0

TU

0T

N

LKKLKK

KK

PULUP

LKKKPNP

a

a

a

+++

=+

=+

=

++=

+==

K0

Ka

K0Ka[L]ΔG0+ΔGbind

K0ΔG0

10exp(-ΔGi/RT)ΔGii

Q = 1 + K0(1+Ka[L])

( )Q

RTGP /exp ii

Δ−=

0 20 40 60 80 100

-12-8-4048

ΔG(k

cal/m

ol)

Temperatura (oC)

02468

<ΔC

P>(k

cal/K

·mol

)

0.00.20.40.60.81.0

P U

G

−RTln(1+Ka[L])

ULNL

LL

UN++

⎟⎟⎠

⎞⎜⎜⎝

++

+Δ=Δ

++

=++

=++

=

][1][1

ln

][1][1

][1][1

][][

][][][][

U,

N,0

N,

U,0

N,

U,

LKLK

RTGG

LKLK

KLKLK

NU

NLNULUK

a

a

a

a

a

a

( )( )

( )][1][1][1

1][][][

][1][1][1

11

][][][

U,0

N,

U,0

TU

U,0

N,

N,

TN

LKKLKLKK

KK

PULUP

LKKLKLK

KPNLNP

aa

a

aa

a

++++

=+

=+

=

++++

=+

=+

=

K0

Ka,N Ka,U

G

−RTln(1+Ka,N[L])

−RTln(1+Ka,U[L])

20 40 60 80 100-20-15-10-505

10

ΔG (k

cal/m

ol)

Temperatura (oC)

048

121620

<ΔC

P> (k

cal/m

ol)

Estabilización de proteínas

ΔΔH 2.5 kcal/molΔΔS 2.5 kcal/mol

mWT

mWT

m )()( TTSTG ΔΔ≈ΔΔ

Estabilización de proteínas

• Enlace disulfuro intramolecular• Interacción catión-π• Resíduo con mayor propensión helicoidal• Carga positiva en extremo C de α-hélice• Carga negativa en extremo N de α-hélice • Rellenado de cavidad intramolecular• Optimización de carga electrostática• Neutralización de enlaces de hidrógeno superficiales

ΔΔH, ΔΔS ⇒ ΔΔG > 0

Estudio de unión de ligandos

• Bioquímica y BiofísicaInteracciones intramolecularesPlegamiento de proteínas

• BiotecnologíaIngeniería de proteínasMotores moleculares

• BiomedicinaInhibidores y activadoresEnfermedades conformacionales

• FarmacologíaControl de calidad

ΔG = ΔH – TΔSconf-PR – TΔSconf-Inh – TΔSsolv

• Cómo interaccionan M y L entre sí?• Cómo interaccionan M y L con el disolvente?

Interacciones M-L• van der Waals• enlaces de H• de/protonación

Desolvatación

Ganancia de entropía debido a la desolvatación

Pérdida de entropía debido a una pérdida de grados de libertad

Tipos de interacciones:

M + L ↔ ML

M + nL ↔ MLn

mM ↔ Mm

mM + L ↔ MmL

Mm + L ↔ mML

Técnicas experimentales

Método 1

• Diálisis• Ultracentrifugación analítica

Método 2

• Espectroscopía• Calorimetría

Diálisis

2111

2121

22

11

][][][][][

][][][][

][][][

LLLLML

LLLL

MLLL

TT

L

T

T

−=−=

=⇒==

+=

μμ

⇒ concentraciones en equilibrio

Ultracentrifugación

molecular peso⇒= WβM0)( eCrC

Distribución de pesos molecularesen disolución ⇒ concentraciones en equilibrio

Espectroscopía

seña

l

concentración de ligando

KB ≡ 1/KD 2

lnRT

HTKB Δ

=∂

Calorimetría

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0

2.0

4.0

6.0

8.0

10.0

Q (k

cal/m

ol)

[Ligand]T/[Macromolecule]T

ΔH

n

KB ≡ 1/KD

0.0

0.5

1.0

1.5

2.0

2.5

3.00 30 60 90 120

dQ/d

t (μc

al/s

)

time (min)

MLLM ↔+

( )1][][ −−Δ= iii MLMLHVq

( ) ( )/RTGΔexp/RTHΔexpωPPT, iiii −=−∝⇒constant

iPn1,...,0,i ⇒= states

1Pn

0ii =∑

=

G [ML]][MLRTlnGGGΔ i

0ii −=−=

exp(-ΔĜn/RT)ΔĜnĜnn

exp(-ΔĜi/RT)ΔĜiĜiI

10Ĝ00

exp(-ΔĜ/RT)ΔĜĜi

( ) ( )∑=

−=−

=n

0ii

ii /RTGΔexpZ

Z/RTGΔexpP

partition function or binding polynomial

pH,...)(T,fSTΔHΔGΔ iiii =−=

Binding and Linkage: Functional Chemistry of Biological Macromolecules. J. Wyman and S. Gill. Ed. University Science Books

ergodic system → AA =

∑=

=0i

iiAPA ensemble average

∫ ′′=+∞→

t

0tt)dtA(

t1limA time average

A observable property of the system → measurement of A?

A[M]

AV[M]

T

T

=

=

value observed

value observed

RTlnZΔG −=

( )∑ −=i

i /RTGΔexpZ

( )Z

/RTGΔexpP ii

−=

( )T

/TΔGT

TlnZRTΔH 22

∂∂

−=∂∂

=

TΔG

TlnZTlnZRΔS

∂∂

−=⎟⎠⎞

⎜⎝⎛

∂∂

+=

( )Z

/RTGΔexpP ii

−=

( )

Z1NPNN

Z/RTGΔexpNPNN

00

iii

==

−==

( )∑ −=i

i /RTGΔexpZ

( )/RTGΔexpNN

i0

i −=

⎪⎪⎭

⎪⎪⎬

∑∑∑ ===i

i

i 0

i

i 0

i

[M]][ML

CC

NNZ

0,0

0,5

1,0

1,5

2,0

n LB

ln([L]/1M)

=

=== n

0ii

n

0ii

T

BLB

][ML

]i[ML

[M][L]n

Number of ligand moleculesbound per macromolecule

nnlim LB[L]=

+∞→

0.0

0.5

1.0

1.5

2.0

n LB

[L] (M)

nnF LB

B =

0nlim LB0[L]

=+→

0ln[L]nLB ≥

∂∂

Binding and Linkage: Functional Chemistry of Biological Macromolecules. J. Wyman and S. Gill. Ed. University Science Books

( )

( )

∑ ∏

=

∗∗∗

=

=

=

+++=⎟⎟⎠

⎞⎜⎜⎝

⎛=

+++==

−=

−====

=

−==

n

0i

2211

ii

1jj

221

n

0i

ii

ii

iii

i1i

ii

i

1jji

1-i

ii

iii

i

...[L]KK[L]K1[L]K

...[L]β[L]β1[L]βZ

ln[L]RTiΔGGΔ

/RTGΔexp[ML]

][ML[L]βββKKβ

][L][ML][MLK

/RTΔGexp[M][L]

][MLβ overall association constants

step-wise association constants

∑∑

=

=

=

=

==

==

==

n

0i

ii

ii

n

0in

0ii

n

0ii

LB

n

0i

ii

n

0i

i

[L]β

[L]βi

][ML

]i[MLn

[L]β[M]

][MLZ

∑∑

∑∑

=

=

=

=

Δ=Δ

=⎟⎠⎞

⎜⎝⎛∂∂

=

===⎟⎟⎠

⎞⎜⎜⎝

⎛∂∂

=

n

0iii

n

0ii

ii

[L]P,

2

n

0ii

n

0i

ii

TP,LB

HPZ

H[L]β

TlnZRTΔH

iiPZ

i[L]β

ln[L]lnZn

Measurement of thermodynamic binding parameters: ΔG, KA, ΔH, ΔS

• Direct measurement of equilibrium concentrations (method 1)

• Measurement of signal proportional to advance of reaction (method 2)

BT

BLB

B

Fn[M][L]n

F

==

∝signal

STΔΔHΔGRTΔH

TlnK

ΔGK[ML][M],[L],

2A

A

−=

=∂

∂→→

sign

al

ligand concentration

STΔΔHΔGRTΔH

TlnK

ΔGΔH,K

2A

A

−=

=∂

∂→→model

ln[L]lnZnLB ∂∂

=

TLBT [M]n[L][L] +=

TiiiTTLB [M]P][MLP[L]0[L][M]n[L] =→→→=−+

conservation or balance equation

∑∑

∑∑

==

==

===

===

0iii

0iiiTT

0iii

0iiiTT

]A[MLAP[M]A[M]

]A[MLVAPV[M]AV[M]

value observed

value observed

Note: The free species concentrations are unknown; we only manage total concentrations

∑∑==

===0i

iji0i

iji,jT,jjT,jT, HΔ][MLVHΔPV[M]ΔHV[M]Q

=

=

⎟⎠

⎞⎜⎝

⎛⎟⎠⎞

⎜⎝⎛ −−=

⎟⎠

⎞⎜⎝

⎛⎟⎠⎞

⎜⎝⎛ −−=⎟

⎠⎞

⎜⎝⎛ −−=

0ii1-jiji

0ii1-ji,ji,jT,1-jT,jT,j

ΔHVv1][ML][MLV

ΔHVv1PPV[M]

Vv1QQQ

0.0

0.5

1.0

1.5

2.0

2.5

3.00 30 60 90 120

dQ/d

t (μc

al/s

)

time (min)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0

2.0

4.0

6.0

8.0

10.0

Q (k

cal/m

ol)

[Ligand]T/[Macromolecule]T

0[L][M]n[L] jT,jT,jLBj =−+j

⎟⎟⎠

⎞⎜⎜⎝

⎛⎟⎠⎞

⎜⎝⎛ −−=

⎟⎠⎞

⎜⎝⎛ −=

j

0jT,

j

0jT,

Vv11[L][L]

Vv1[M][M]

( )

( )∑

∑∑

=

=

==

−+=

−+=

===

0i0iji0jT,

0i0ijT,ji,0jT,

0iiji

0iiji,jT,jT,j

AA][MLAM][

AA[M]PA[M]

A][MLAP[M]A[M]A

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

Sp

ectro

scop

ic S

igna

l (a.

u.)

[Ligand]T (μM)

0[L][M]n[L] jT,jT,jLBj =−+

j

jvVjv[L][L]

jvVV[M][M]

Vv11[L][L]

Vv1[M][M]

0jT,

0jT,

j

0jT,

j

0jT,

+=

+=

⎟⎟⎠

⎞⎜⎜⎝

⎛⎟⎠⎞

⎜⎝⎛ −−=

⎟⎠⎞

⎜⎝⎛ −=

Ligand binding to a simple protein

A single binding site

Binding affinity ΔG Gibbs energy for complex formationGibbs energy difference between free and bound states

[M][L][ML]K

RTlnKΔG

A

A

=

−=

⎩⎨⎧

↑↓

⇒↑KΔG

Affinity⎩⎨⎧

><

⇒1K

0ΔGBinding

MLLM ↔+

MML GGGΔ −=

G

MG

MLG

ΔG − RTln[L]0ΔĜi

K[L]1

exp(−ΔĜi/RT)i

K[L]1K[L]n

K[L]1Z

LB +=

+=

MLLM ↔+

ΔHVv1[ML][ML]VQ 1-jjj ⎟

⎞⎜⎝

⎛⎟⎠⎞

⎜⎝⎛ −−=

0[L][M]n[L] TTLB =−+

K[L]1K[L]nLB +

=

K[L]1Z +=

TT [M]K[L]1

K[L][ML][M]K[L]11[M]

+=

+=

0.0

0.5

1.0

1.5

2.0

2.5

3.00 30 60 90 120

dQ/d

t (μc

al/s

)

time (min)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0

2.0

4.0

6.0

8.0

10.0

Q (k

cal/m

ol)

[Ligand]T/[Macromolecule]T

nΔH,K,

0.0 0.5 1.0 1.5 2.0 2.5 3.0

-20

-16

-12

-8

-4

0

-8

-4

0

0 30 60 90 120 150 180 210

time (min)

dQ/d

t (μc

al/s

)

[2'CMP]T/[RNase A]T

Q (k

cal/m

ol o

f inj

ecta

nt)

Bovine Pancreatic Ribonuclease A2’CMP

KA 2.9·106 M-1

ΔH -19.3 kcal/moln 1.02

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

0.0

2.0

4.0

6.0

8.0

10.0

0.0

0.5

1.0

0 30 60 90 120 150 180 210

time (min)

dQ/d

t (μc

al/s

)

[PPT]T/[STI]T

Q (k

cal/m

ol o

f inj

ecta

nt)

Soybean Trypsin InhibitorPancreatic Porcine Trypsin

KA 1.5·106 M-1

ΔH 8.4 kcal/moln 1.2

Ligand binding to a “complex” protein

Two binding sites

ΔG2 − 2RTln[L]

ΔG1 − RTln[L]

0ΔĜi

β1[L]

β2[L]2

1exp(−ΔĜi/RT)i

221

221

LB

221

[L]β[L]β1[L]2β[L]βn

[L]β[L]β1Z

+++

=

++=

2ML2LM ↔+

⎟⎟⎠

⎞⎟⎟⎠

⎞⎜⎜⎝

⎛⎟⎠⎞

⎜⎝⎛ −−+

⎜⎜⎝

⎛⎟⎟⎠

⎞⎜⎜⎝

⎛⎟⎠⎞

⎜⎝⎛ −−=

21-j2j2

11-jjj

ΔHVv1][ML][ML

ΔHVv1[ML][ML]VQ

0[L][M]n[L] TTLB =−+

221

221

LB [L]β[L]β1[L]2β[L]βn

+++

=

221 [L]β[L]β1Z ++=

T221

22

2

T221

1T2

21

[M][L]β[L]β1

[L]β][ML

[M][L]β[L]β1

[L]β[ML][M][L]β[L]β1

1[M]

++=

++=

++=

0.0

1.0

2.0

3.0

4.0

0 30 60 90 120

dQ/d

t (μc

al/s

)

time (min)

0.0 1.0 2.0 3.0 4.0

0.0

0.2

0.4

0.6

0.8

1.0

Q (k

cal/m

ol)

[Ligand]T/[Macromolecule]T

222

111

n,ΔH,βn,ΔH,β

1β4β

1β4β

1β4β

21

2

21

2

21

2

>

<

=

First, perform data analysis with model-free general formalism.Then, once the system is classified, then, apply site-specific models.

What if the binding sites are different, but they display cooperativity?

Extra-thermodynamic considerations (e.g. structural features) may help in deciding which model applies.

Identical and independent binding sites

Non-identical and independent binding sites,or negative cooperativity

Positive cooperativity

Homotropic Interaction Heterotropic Interaction

[M], [A], [MA], [MA2] [M], [A], [B], [MA], [MB], [MAB]

Binding Cooperativity in Proteins

4nn

log[L]n

log[L]nn

nlogn

Hill

2nn

LB

2nn

LB

LB

Hill

LB

LB

=∂∂

⎟⎟⎠

⎞⎜⎜⎝

⎛−

∂=

=

=

Quantifying binding cooperativity

Hill coefficient

Binding capacity

• Measure of the ability for accepting or delivering large quantities of ligand for relatively small changes in ligand concentration

• Efficiency of biochemical signal transduction (response to changes in ligand concentration)

0 ≤ nHill < 1 negative cooperativitynHill = 1 independent binding1 < nHill ≤ n positive cooperativity

0 1 2 3 4 5

0

2

4

6

Q (k

cal/m

ol o

f inj

ecta

nt)

Molar Ratio

β1 5.5·104 M-1

ΔH1 -1.9 kcal/molβ2 4.2·109 M-2

ΔH2 9.9 kcal/mol

4β2/β12 5.4

nHill 1.40

cAMP Receptor Protein + cAMP

Gorshkova et al. (1995). Journal of Biological Chemistry 270 21679-21683

0.0 0.5 1.0 1.5 2.0

0.0

0.2

0.4

0.6

0.8

1.0

[ML i] /

[M] T

nLB

ML

M ML2

0 1 2 3 4

-10

-5

0

Q

(kca

l/mol

of i

njec

tant

)

Molar Ratio

β1 3.0·106 M-1

ΔH1 -10.1 kcal/molβ2 2.4·1012 M-2

ΔH2 -19.1 kcal/mol

4β2/β12 1.1

nHill 1.02

R. solanacearum Lectin + α-Methyl-Fucoside

Kostlanova et al. (2005). Journal of Biological Chemistry 280 27839-27849

0 1 2 3 4

-10

-5

0

Q (k

cal/m

ol o

f inj

ecta

nt)

Molar Ratio

β1 1.0·107 M-1

ΔH1 -9.5 kcal/molβ2 5.4·1013 M-2

ΔH2 -15.0 kcal/mol

4β2/β12 2.2

nHill 1.19

Human Transferrin + Fe3+

Lin et al. (1993). Biochemistry 32 9398-9406

0 1 2 3 4 5 6 7 8

-15

-10

-5

0

Q

(kca

l/mol

of i

njec

tant

)

Molar Ratio

β1 3.3·104 M-1

ΔH1 -23.8 kcal/molβ2 2.6·109 M-2

ΔH2 -33.2 kcal/mol

4β2/β12 9.6

nHill 1.51

H. vulgaris Hemocyanin + Caffeine

Menze et al. (2001). Journal of Experimental Biology 204 1033-1038

0 1 2 3 4

-10

-5

0

Q

(kca

l/mol

of i

njec

tant

)

Molar Ratio

β1 4.6·105 M-1

ΔH1 -9.5 kcal/molβ2 1.4·1010 M-2

ΔH2 -18.1 kcal/mol

4β2/β12 0.27

nHill 0.68

Cyanovirin + Manα1→2Man

Bewley et al. (2001). Journal of the American Chemical Society 123 3892-3902

0 1 2 3 4

-5

0

5

Q (k

cal/m

ol o

f inj

ecta

nt)

Molar Ratio

β1 2.5·107 M-1

ΔH1 3.4 kcal/molβ2 3.3·1012 M-2

ΔH2 -2.5 kcal/mol

4β2/β12 0.022

nHill 0.26

O. nova d(T4G4T4G4) + Telomere Binding Protein α Subunit N-domain

Buczek and Horvath. (2006). Journal of Molecular Biology 359 1217-1234

0 1 2 3 4 5 6 7

-8

-4

0

Q (k

cal/m

ol o

f inj

ecta

nt)

Molar Ratio

β1 3.1·104 M-1

ΔH1 -21.9 kcal/molβ2 3.3·109 M-2

ΔH2 -45.3 kcal/mol

4β2/β12 14.1

nHill 1.56

E. carinatus Ecarpholin S + Suramin

Zhou et al. (2008). Biophysical Journal 95 3366-3380

Ligand binding to a “complex” protein

Two nonidentical and independentbinding sites

ΔG1+ΔG2 − 2RTln[L]ΔG2 − RTln[L]ΔG1 − RTln[L]

0ΔĜi

K1[L]K2[L]

K1K2[L]2

1exp(−ΔĜi/RT)i

( ) ( )( )

( )( ) [L]K1

[L]K[L]K1

[L]K[L]KK[L]KK1

[L]K2K[L]KKn

[L]K1[L]K1[L]KK[L]KK1Z

2

2

1

12

2121

22121

LB

212

2121

++

+=

+++++

=

++=+++=

2ML2LM ↔+

( )⎟⎟⎠

⎞+⎟

⎞⎜⎝

⎛⎟⎠⎞

⎜⎝⎛ −−+

⎟⎠

⎞⎜⎝

⎛⎟⎠⎞

⎜⎝⎛ −−+

⎜⎜⎝

⎛⎟⎠

⎞⎜⎝

⎛⎟⎠⎞

⎜⎝⎛ −−=

211-jj

21-jj

11-jjj

ΔHΔHVv1[LML][LML]

ΔHVv1[LM][LM]

ΔHVv1[ML][ML]VQ

0[L][M]n[L] TTLB =−+

( )( ) 2

2121

22121

LB [L]KK[L]KK1[L]K2K[L]KKn

+++++

=

( ) 22121 [L]KK[L]KK1Z +++=

( ) ( )

( ) ( ) T22121

221

T22121

2

T22121

1T2

2121

[M][L]KK[L]KK1

[L]KK[LML][M][L]KK[L]KK1

[L]K[LM]

[M][L]KK[L]KK1

[L]K[ML][M][L]KK[L]KK1

1]M[

+++=

+++=

+++=

+++=

0.0

1.0

2.0

3.0

4.0

0 30 60 90 120

dQ/d

t (μc

al/s

)

time (min)

0.0 1.0 2.0 3.0 4.0

0.0

0.2

0.4

0.6

0.8

1.0

Q (k

cal/m

ol)

[Ligand]T/[Macromolecule]T

222

111

n,ΔH,Kn,ΔH,K

Ligand binding to a “complex” protein

Two identical and independent binding sites

2ΔG − 2RTln[L]ΔG − RTln[L]ΔG − RTln[L]

0ΔĜi

K[L]K[L]

K2[L]2

1exp(−ΔĜi/RT)i

( )

K[L]12K[L]

[L]K2K[L]1[L]2K2K[L]n

K[L]1[L]K2K[L]1Z

22

22

LB

222

+=

+++

=

+=++=

2ML2LM ↔+

0.0 1.0 2.0 3.0 4.0 5.0 6.0

0.0

2.0

4.0

6.0

8.0

10.0

Q (k

cal/m

ol)

[Ligand]T/[Macromolecule]T

⎟⎟⎠

⎞⎟⎠

⎞⎜⎝

⎛⎟⎠⎞

⎜⎝⎛ −−+

⎜⎜⎝

⎛⎟⎠

⎞⎜⎝

⎛⎟⎠⎞

⎜⎝⎛ −−=

H2ΔVv1][ML][ML

ΔHVv1[ML][ML]VQ

1-j2j2

1-jjj

0[L][M]n[L] TTLB =−+

22

22

LB [L]K2K[L]1[L]2K2K[L]n

+++

=

22[L]K2K[L]1Z ++=

T22

22

2

T22T22

[M][L]K2K[L]1

[L]K][ML

[M][L]K2K[L]1

2K[L][ML][M][L]K2K[L]1

1[M]

++=

++=

++=

nΔH,K,

0.0

0.5

1.0

1.5

2.0

2.5

3.00 30 60 90 120

dQ/d

t (μc

al/s

)

time (min)

Ligand binding to a “complex” protein

Two identical and cooperative binding sites

2ΔG+Δg − 2RTln[L]ΔG − RTln[L]ΔG − RTln[L]

0ΔĜi

K[L]K[L]

αK2[L]2

1exp(−ΔĜi/RT)i

22

22

LB

22

[L]Kα2K[L]1[L]K2α2K[L]n

[L]Kα2K[L]1Z

+++

=

++=

2ML2LM ↔+

( )( )

( )( )

[L]K1[L]K

[L]K1[L]K

[L]Kα2K[L]1[L]K2α2K[L]n

[L]K1[L]K1[L]Kα2K[L]1Z:1 α if

[L]K1[L]K

[L]K1[L]K

[L]Kα2K[L]1[L]K2α2K[L]n

[L]K1[L]K1[L]Kα2K[L]1Z:1 α if

2

2

1

122

22

LB

2122

2

2

1

122

22

LB

2122

++

+=

+++

=

++=++=

<

++

+≠

+++

=

++≠++=

>

αβ4β

21

2 =

nonidentical independent binding sites are equivalent toidentical binding sites with negative cooperativity

( )⎟⎟⎠

⎞+⎟

⎞⎜⎝

⎛⎟⎠⎞

⎜⎝⎛ −−+

⎜⎜⎝

⎛⎟⎠

⎞⎜⎝

⎛⎟⎠⎞

⎜⎝⎛ −−=

ΔhH2ΔVv1][ML][ML

ΔHVv1[ML][ML]VQ

1-j2j2

1-jjj

0[L][M]n[L] TTLB =−+

22

22

LB [L]Kα2K[L]1[L]K2α2K[L]n

+++

=

22[L]Kα2K[L]1Z ++=

T22

22

2

T22T22

[M][L]Kα2K[L]1

[L]Kα][ML

[M][L]Kα2K[L]1

2K[L][ML][M][L]Kα2K[L]1

1[M]

++=

++=

++=

0.0

0.5

1.0

1.5

2.0

0 30 60 90 120

dQ/d

t (μc

al/s

)

time (min)

0.0 1.0 2.0 3.0 4.0

0.0

0.2

0.4

Q (k

cal/m

ol)

[Ligand]T/[Macromolecule]T

0.0

0.5

1.0

1.5

2.0

0 30 60 90 120

dQ/d

t (μc

al/s

)

time (min)

0.0 1.0 2.0 3.0 4.0

0.0

0.2

0.4

0.6

Q (k

cal/m

ol)

[Ligand]T/[Macromolecule]T

1α>

1α<

Δhα,nΔH,K,

Δhα,nΔH,K,

A

B

+

Equilibrio conformacional modulado por unión de ligando

A

][11

][][

]][[][][

][][][

][][

LKAB

LAKAB

ALABK

ABK

AA

L

+=

+=

+=

=

L

( )][1ln

][11

LKRTGG

LKKK

AL

A

L

++Δ=Δ

+=

+

Unión de ligando modulada por equilibrio conformacional

A A

B

L

][1

1

][1

][1][

][][][][

][1][

][][][

LK

K

LK

K

KLKLK

BALAALF

LKLK

ALAALF

L

L

L

LBBL

L

LBL

++

+=++

=++

=

+=

+=

( )KRTGGK

KK

LBL

LBL

++Δ=Δ+

=

1ln1

+

+++

Equilibrio de unión modulado por la unión de otro ligando

][][1

1

][][1

][][1][

][][][][

][1][

][][][

LXK

K

LXK

K

XKLKLK

MXMLMMLF

LKLK

MLMMLF

X

L

X

L

XL

LXB

L

LB

++

+=

++=

++=

+=

+=

( )][1ln

][1

XKRTGG

XKKK

XLXL

X

LXL

++Δ=Δ

+=

0.0 2.5 5.0 7.5 10.0

0.0

0.4

0.8

1.2

F B

[L] (μM)

1E-3 0.01 0.1 1 10

0.0

0.4

0.8

1.2

F B

ln([L]/1μM)

KL = 107 M-1

KX = 105 M-1

[X] = 10-4 M

Isothermal Titration Calorimetry&

Differential Scanning Calorimetry

Adrián Velázquez Campoy

+

Every biological process can be decomposed in a sequence of sequential and/or simultaneous elemental processes

Binding Equilibrium

Conformational Equilibrium

BA

Peq CSHKG ΔΔΔΔ ,,,,

⎩⎨⎧<>

−=Δfavorable0

eunfavorabl0EnergyGibbs AB GGG

Gibbs energyEquilibrium constantEnthalpyEntropyHeat Capacity

BA

eqKRTG ln−=Δ

STHG Δ−Δ=Δ

PP T

HC ⎟⎠⎞

⎜⎝⎛∂Δ∂

Peq CSHKG ΔΔΔΔ ,,,,

PP T

STC ⎟⎠⎞

⎜⎝⎛∂Δ∂

⎟⎟⎠

⎞⎜⎜⎝

⎛Δ+Δ−−Δ+Δ=Δ

0000 ln)()()()(

TTCTSTTTCTHTG PP

⎩⎨⎧<>

−=Δfavorable0

eunfavorabl0EnergyGibbs AB GGG

SH

KG eq

ΔΔ

Δ

,

,

environmental variablesT, pH, ionic strength, solutes

information about the inter- and intramolecular interactions involved in the process

Two calorimetric techniques can be used to perform an exhaustive thermodynamic characterization of binding and conformational equilibrium processes:ITC Determination of Enthalpy, Affinity, Entropy and

of Binding.

DSC Characterization of Thermodynamic Stability.

ΔH, Ka, n, ΔG, ΔS, ΔCP

ΔH, Tm, ΔCP, ΔS, ΔG, K

MLLM ↔+

UnfoldedNative ↔

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0

2.0

4.0

6.0

8.0

10.0

Q (k

cal/m

ol)

[Ligand]T/[Macromolecule]T

0.0

0.5

1.0

1.5

2.0

2.5

3.00 30 60 90 120

dQ/d

t (μc

al/s

)

time (min)

30 40 50 60 70 80 90

0

2000

4000

6000

8000

<ΔC

p>ex

cess (c

al/K

·mol

)

Temperature (oC)

Isothermal Titration Calorimetry

Isothermal Titration Calorimetry

R S

ΔTR ΔT=TS-TR

Isothermal Titration Calorimetry

dQ/dt 0 100 200 300

2.0

3.0

4.0

5.0

dQ/d

t (μc

al/s

)

time (s)

adiabatic chamber

Peltierelement

The measured signal is the amount of heat per time unit, dQ/dt, that must be provided or removed in order to keep ΔT null.

Reference and

Sample cells

R S

ΔT=TS-TR

Isothermal Titration Calorimetry

dQ/dt

0 100 200 300

2.0

3.0

4.0

5.0

dQ/d

t (μc

al/s

)

time (s)

ΔTR

R S

ΔT=TS-TR

Isothermal Titration Calorimetry

dQ/dt

0 100 200 300

2.0

3.0

4.0

5.0

dQ/d

t (μc

al/s

)

time (s)

ΔTR

R S

ΔT=TS-TR

Isothermal Titration Calorimetry

dQ/dt

0 100 200 300

2.0

3.0

4.0

5.0

dQ/d

t (μc

al/s

)

time (s)

ΔTR

R S

ΔT=TS-TR

Isothermal Titration Calorimetry

dQ/dt

0 100 200 300

2.0

3.0

4.0

5.0

dQ/d

t (μc

al/s

)

time (s)

ΔTR

R S

ΔT=TS-TR

Isothermal Titration Calorimetry

dQ/dt

0 100 200 300

2.0

3.0

4.0

5.0

dQ/d

t (μc

al/s

)

time (s)

ΔTR

R S

ΔT=TS-TR

Isothermal Titration Calorimetry

dQ/dt

0 100 200 300

2.0

3.0

4.0

5.0

dQ/d

t (μc

al/s

)

time (s)

∫=f

o

t

tdt

dtdQQ

ΔTR Total heat released or absorbed during the thermal event

0.0

0.5

1.0

1.5

2.0

2.5

3.00 30 60 90 120

dQ/d

t (μc

al/s

)

time (min)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0

2.0

4.0

6.0

8.0

10.0

Q (k

cal/m

ol)

[Ligand]T/[Macromolecule]T

Isothermal Titration Calorimetry

0.0

0.5

1.0

1.5

2.0

2.5

3.00 30 60 90 120

dQ/d

t (μc

al/s

)

time (min)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0

2.0

4.0

6.0

8.0

10.0

Q (k

cal/m

ol)

[Ligand]T/[Macromolecule]T

MLLM ↔+

Isothermal Titration Calorimetry

0.0

0.5

1.0

1.5

2.0

2.5

3.00 30 60 90 120

dQ/d

t (μc

al/s

)

time (min)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0

2.0

4.0

6.0

8.0

10.0

Q (k

cal/m

ol)

[Ligand]T/[Macromolecule]T

MLLM ↔+

Isothermal Titration Calorimetry

0.0

0.5

1.0

1.5

2.0

2.5

3.00 30 60 90 120

dQ/d

t (μc

al/s

)

time (min)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0

2.0

4.0

6.0

8.0

10.0

Q (k

cal/m

ol)

[Ligand]T/[Macromolecule]T

MLLM ↔+

Isothermal Titration Calorimetry

0.0

0.5

1.0

1.5

2.0

2.5

3.00 30 60 90 120

dQ/d

t (μc

al/s

)

time (min)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0

2.0

4.0

6.0

8.0

10.0

Q (k

cal/m

ol)

[Ligand]T/[Macromolecule]T

MLLM ↔+

Isothermal Titration Calorimetry

0.0

0.5

1.0

1.5

2.0

2.5

3.00 30 60 90 120

dQ/d

t (μc

al/s

)

time (min)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0

2.0

4.0

6.0

8.0

10.0

Q (k

cal/m

ol)

[Ligand]T/[Macromolecule]T

MLLM ↔+

Isothermal Titration Calorimetry

0.0

0.5

1.0

1.5

2.0

2.5

3.00 30 60 90 120

dQ/d

t (μc

al/s

)

time (min)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0

2.0

4.0

6.0

8.0

10.0

Q (k

cal/m

ol)

[Ligand]T/[Macromolecule]T

ΔH

n

Ka ≡ 1/Kd

MLLM ↔+

Isothermal Titration Calorimetry

ITC: Advantages

Complete thermodynamic charaterization: ΔH, Ka, n, ΔG and ΔS

Direct determination of the binding enthalpy (with no additionalassumptions)

Heat is a universal signal

Absence of reporter labels

Non-destructive technique

10 20 30 40

6.0

8.0

10.0

ΔH (k

cal/m

ol)

T (oC)

PP T

HC ⎟⎠⎞

⎜⎝⎛∂Δ∂

)()()( 00 TTCTHTH P −Δ+Δ=Δ

Determination of the Binding Heat Capacity

-2 0 2 4 6 8 10

4.0

6.0

8.0

10.0

12.0

ΔH (k

cal/m

ol)

ΔHbufferionization (kcal/mol)

bufferionization

0 HnHHHΔ+Δ=Δ +

Determination of Proton Transfer Processes Coupled to Ligand Binding

ΔH*

ΔHbuffer,ionization

ΔHp

ΔH0 binding enthalpy independent of the buffer

nH+ number of protons exchanged between M-L complex and solution

macromolecule

ligand

protonbuffer

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0

2.0

4.0

6.0

8.0

10.0

Q (k

cal/m

ol o

f inj

ecta

nt)

[Ligand]T/[Macromolecule]T

0.0 0.5 1.0 1.5 2.0 2.5 3.0

[Ligand]T/[Macromolecule]T

0.0 0.5 1.0 1.5 2.0 2.5 3.0

[Ligand]T/[Macromolecule]T

time (min)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

time (min)

dQ/d

t (μc

al/s

)

time (min)

7.0][10

T

14

== −

MKMK

a

a

70][10

T

16

== −

MKMK

a

a

7000][10

T

18

== −

MKMK

a

a

ITC: Considerations

riment)hours/expe 2( techniqueanalyticfast mg)1(~sampleofamount

01010 1814

<••

≠Δ•≤≤• −−

HMKM a

Displacement Experiment

Scheme

0 20 40 60 80 100

0.0

0.5

1.0

0 20 40 60 80 100

-1.0

-0.5

0.0

0 20 40 60 80 100

-1.0

-0.5

0.0

Tight-Binding InhibitorWeak-Binding Inhibitor

Tight-Binding Inhibitor displacing the Weak-

Binding Inhibitor

0aK

XaK

aK ][1][0

XKXKHHH X

a

XaX

+Δ−Δ=Δ

][1

0

XKKK X

a

aa +=

Extension of the Practical Limits for Reliable Affinity Determination

-1.0

-0.5

0.0

0 10 20 30 40 50 60 70 80 90 100

0.0 0.5 1.0 1.5 2.0 2.5

-8.0

-6.0

-4.0

-2.0

0.0

Time (min)dQ

/dt (μc

al/s

)Q

(kca

l/mol

of i

njec

tant

)

[Inhibitor]T/[HIV-1 PR WT]T

0.0

0.5

1.0

0 10 20 30 40 50 60 70 80 90 100 110

0.0 0.5 1.0 1.5 2.0 2.5

0.0

2.0

4.0

6.0

8.0

-1.0

-0.5

0.0

0 10 20 30 40 50 60 70 80 90

0.0 0.5 1.0 1.5

-16.0

-12.0

-8.0

-4.0

0.0

Protease Protease + Ac-PepstatinProtease

KNI-764 KNI-764Ac-Pepstatin

0aK

][1

0

XKKK X

a

aa +=X

aK

Measuring High Binding Affinity

pM32

M1030

-1100

=

⋅=

d

a

K

K

Differential Scanning Calorimetry

Differential Scanning Calorimetry

Differential Scanning Calorimetry

30 40 50 60 70 80 90

0

2000

4000

6000

8000

<ΔC

P>ex

cess (c

al/K

·mol

)

T (oC)

R S

ΔTR

ΔT=TS-TR

dQ/dt

T0↑ ΔTS

The measured signal is the amount of heat per time unit, dQ/dt, that must be provided or in order to keep ΔT null.Later, thermal power is converted to heat capacity.

adiabatic chamber

Peltierelement

Reference and

Sample cells

Differential Scanning Calorimetry

30 40 50 60 70 80 90

0

2000

4000

6000

8000

<ΔC

P>ex

cess (c

al/K

·mol

)

T (oC)

R S

ΔTR

ΔT=TS-TR

dQ/dt

T0↑ ΔTS

0°C

100°C

Differential Scanning Calorimetry

30 40 50 60 70 80 90

0

2000

4000

6000

8000

<ΔC

P>ex

cess (c

al/K

·mol

)

T (oC)

R S

ΔTR

ΔT=TS-TR

dQ/dt

T0↑ ΔTS

0°C

100°C

Differential Scanning Calorimetry

30 40 50 60 70 80 90

0

2000

4000

6000

8000

<ΔC

P>ex

cess (c

al/K

·mol

)

T (oC)

R S

ΔTR

ΔT=TS-TR

dQ/dt

T0↑ ΔTS

0°C

100°C

Differential Scanning Calorimetry

30 40 50 60 70 80 90

0

2000

4000

6000

8000

<ΔC

P>ex

cess (c

al/K

·mol

)

T (oC)

R S

ΔTR

ΔT=TS-TR

dQ/dt

T0↑ ΔTS

0°C

100°C

Differential Scanning Calorimetry

30 40 50 60 70 80 90

0

2000

4000

6000

8000

<ΔC

P>ex

cess (c

al/K

·mol

)

T (oC)

R S

ΔTR

ΔT=TS-TR

dQ/dt

T0↑ ΔTS

0°C

100°C

Differential Scanning Calorimetry

30 40 50 60 70 80 90

0

2000

4000

6000

8000

<ΔC

P>ex

cess (c

al/K

·mol

)

T (oC)

R S

ΔTR

ΔT=TS-TR

dQ/dt

T0↑ ΔTS

0°C

100°C

30 40 50 60 70 80 90

0

2000

4000

6000

8000

<ΔC

P>ex

cess (c

al/K

·mol

)

T (oC)

Tm

ΔH(Tm)

ΔCP

UnfoldedNative ↔

Differential Scanning Calorimetry

30 40 50 60 70 80 90

0

2000

4000

6000

8000

<ΔC

P>ex

cess (c

al/K

·mol

)

T (oC)

UnfoldedNative ↔Differential Scanning Calorimetry

∫ >Δ<=Δ f

o

T

T excessPm dTCTH )(

∫>Δ<

=Δ f

o

T

TexcessP

m dTT

CTS )(

⎟⎟⎠

⎞⎜⎜⎝

⎛Δ+Δ−−Δ+Δ=Δ

mPmmPm T

TCTSTTTCTHTG ln)()()()(

0 20 40 60 80 100-12.0

-9.0

-6.0

-3.0

0.0

3.0

6.0

ΔG (k

cal/m

ol)

T (oC)

0 20 40 60 80 100

0

2000

4000

6000

8000

10000

12000

14000

CP>

exce

ss (c

al/K

·mol

)

T (oC)

UnfoldedteIntermediaNative ↔↔

Differential Scanning Calorimetry

Unfolded2Native2 ↔

Differential Scanning Calorimetry

40 60 80

0

2000

4000

6000

8000

10000

<ΔC

P>ex

cess (c

al/K

·mol

)

T (oC)0.00 0.02 0.04 0.06 0.08 0.10

60

62

64

66

68

T m (o C

)[Macromolecule]T,monomer (mM)

20 40 60 80 100

0

2000

4000

6000

8000

10000

<ΔC

P>ex

cess (c

al/K

·mol

)

T (oC)0 5 10 15 20

60

63

66

69

72

75

T m (o C

)

[Ligand]T/[Macromolecule]T

( )][1ln0 LKRTGG a++Δ=Δ

Determination of Binding Affinity:Effect of Ligand Binding on the Stability

of the Macromolecule

Recommended